Research Article
BibTex RIS Cite

Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements

Year 2018, Volume: 156 Issue: 156, 205 - 220, 27.06.2018
https://doi.org/10.19111/bulletinofmre.348301

Abstract

The caliche profi les
that have been observed in arid-semi arid climate regions can be described as
terrestrial formations which are vertical succession and composed predominantly
of calcium carbonate. At the top of the caliche profi le, there is hard pan
leyer as a weak rock and soft pan layer characterized by loose soil is existed.
Caliche is formed by the displacement and/or cementation of soil, rock, and
weathered material, and is usually found in unsaturated zones. In the study
area, consist of caliche units located in Adana. It is noteworthy that the
caliches of Quaternary is widely crop out throughout the region, exhibited a fl
at topography in the region locate at this unit. The paleosolic deposits in the
Adana Basin, which is characterized by climate oscillations in the Pleistocene
and surface waters rich in carbonate, following draining, capillarity and
weathering, initially formed as a result of sedimentological and followed by
pedological processes. Adana is located in the I. and II. degree seismic zone,
where many earthquakes have been observed in historical and instrumental
periods. It was found that the greatest structural damage sustained by the
earthquakes that occurred in Adana especially in 1998, was seen in the
buildings located on caliche ; it is believed that the damage caused to the
buildings located on chalice can be attributed to the of morphologically
distinct layers or horizons. This study determines the sediment amplifi cation
characteristics and horizontal to vertical spectral ratio (H/V) within the
borders. Accordingly, to demonstrate H/V between the hard pan and the soft pan
horizon of the caliche, 24 microtremor measurements were performed on locatio
ns with soft pan, on locations with no hard pan, and on locations where the profi
le directly begins with the soft pan.

References

  • Aydan, Ö., Ulusay, R., Kumsar, H., Sönmez, H., Tuncay, E. 1998. A site investigation of Adana-Ceyhan Earthquake of June 27, 1998. Turkish Earthquake Foundation. TDV/DR006-30, 131p.
  • Bayülke, N. 1978. Tuğla yığla yapıların depremdeki davranışı. Deprem Araştırma Enstitüsü Bülteni 6 (22), 26-41.
  • Clayton, C.R.I., Serratrice, J.F. 1977. The mechanical properties and behaviour of hard soils ad soft rocks. Proceedings of Geotechnical Engineering of Hard Soils - Soft Rocks Symposium, Athens, Greece.
  • Çelebi, M. 1998. The Adana-Ceyhan Earthquake of June 27, 1998, Learning From Earthquakes. EERI Special Earthquake Report, Earthquake Engineering Research Institute Newsletter 32(9), 1-5.
  • Goudie, P. A. Pye, K. 1983. Chemical sediments and geomorphology, Academic Press, London, 93-131.
  • Halaç, B. 2016. Deprem yönetmeliklerindeki zemin sınıflandırma kriterlerinin zemin büyütme açısından incelenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 100s.
  • Johsonston, I.W., Novello, E.A. 1993. Soft rock in the geotechnical spectrum, Proceedings of Geotechnical Engineering of Hard Soils - Soft Rocks Symposium Under the Auspices of the ISSMFE, Athens, Greece, 1, 177-183.
  • Kozlu, H. 1987. Misis-Andırın dolaylarının stratigrafisi ve yapısal evrimi, Türkiye 7. Petrol Kongresi Bildiriler Kitabı, 104-117.
  • Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quaterly Report of RTRI, Railway Technical Research Institue (RTRI) 30(1), 25-33.
  • Nurlu, M. 1998. 27 Haziran Adana-Ceyhan Depremi ön raporu. Afet İşleri Genel Müdürlüğü Deprem Araştırma Daire Başkanlığı Raporu. No: DEP2, 852/1 (yayımlanmamış).
  • Popescu, M.E. 1986, A comparision between the behaviour of swelling and collapsing soils. Engineering Geology 23, 145-163.
  • Rogers, C.D.F. 1995. Types and distribution of collapsible soils. Derbyshire, E. Dijkstra, T., Smalley, I. (Ed.). Genesis and properties of collapsible soils. NATO Ası Series, Kluwer Academic Publisher, 1-17.
  • Rollins, K.M., Rollins, R.L., Smith, T.D., Beckwith, G.H. 1993. Identification and characterization of collapsible gravels, Journal of Geotechnical Engineering 120(3), 528-542.
  • Steven, L. 1998. Evaluation design and mitigation of project sites in collapsible soils areas in Western Colorado. Project Report 45 p. (yayınlanmamış).
  • Şenol, M. 1989. Adana-Balcalı/Çatalan Bölgesinin Genç Tersiyer-Kuvaterner İstifinin Lito-Pedolojik ve Sedimantolojik İncelemesi. Doktora Tezi, Ç.Ü Fen Bilimleri Enstitüsü, 128s. (yayımlanmamış).
  • Terzaghi, K., Peck, B.R. 1967. Soil Mechanics in Engineering Practice. John Willey and Sons Inc., 729 p.
  • Udwadia, F.E., Trifunac, M.D. 1973. Comparison of earthquake and mircrotremor ground motions in El Centro, California. Bulletin of Seismological Society of America 63, 1227-1253.
  • Wenk, T., Lacave, C., Peter, K. 1998. The Adana-Ceyhan earthquake of June 27, 1998. Swiss Society for Earthquake Engineering and Structural Dynamics (report), 1-47.
  • Yetiş, C. 1978. Adana kuzeyinin jeolojisi ve şehir merkezinin bazı temel sorunlarıa ilişik gözlemler. Çukurova Üniversitesi, Müh-Mim. Fak. Dergisi, 115-123.
  • Zorlu K., Kasapoglu, K.E. 2009. Determination of geomechanical properties and collapse potential of a caliche by in-situ and laboratory tests, Environmental Geology 56(7), 1449-1459.
Year 2018, Volume: 156 Issue: 156, 205 - 220, 27.06.2018
https://doi.org/10.19111/bulletinofmre.348301

Abstract


References

  • Aydan, Ö., Ulusay, R., Kumsar, H., Sönmez, H., Tuncay, E. 1998. A site investigation of Adana-Ceyhan Earthquake of June 27, 1998. Turkish Earthquake Foundation. TDV/DR006-30, 131p.
  • Bayülke, N. 1978. Tuğla yığla yapıların depremdeki davranışı. Deprem Araştırma Enstitüsü Bülteni 6 (22), 26-41.
  • Clayton, C.R.I., Serratrice, J.F. 1977. The mechanical properties and behaviour of hard soils ad soft rocks. Proceedings of Geotechnical Engineering of Hard Soils - Soft Rocks Symposium, Athens, Greece.
  • Çelebi, M. 1998. The Adana-Ceyhan Earthquake of June 27, 1998, Learning From Earthquakes. EERI Special Earthquake Report, Earthquake Engineering Research Institute Newsletter 32(9), 1-5.
  • Goudie, P. A. Pye, K. 1983. Chemical sediments and geomorphology, Academic Press, London, 93-131.
  • Halaç, B. 2016. Deprem yönetmeliklerindeki zemin sınıflandırma kriterlerinin zemin büyütme açısından incelenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 100s.
  • Johsonston, I.W., Novello, E.A. 1993. Soft rock in the geotechnical spectrum, Proceedings of Geotechnical Engineering of Hard Soils - Soft Rocks Symposium Under the Auspices of the ISSMFE, Athens, Greece, 1, 177-183.
  • Kozlu, H. 1987. Misis-Andırın dolaylarının stratigrafisi ve yapısal evrimi, Türkiye 7. Petrol Kongresi Bildiriler Kitabı, 104-117.
  • Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quaterly Report of RTRI, Railway Technical Research Institue (RTRI) 30(1), 25-33.
  • Nurlu, M. 1998. 27 Haziran Adana-Ceyhan Depremi ön raporu. Afet İşleri Genel Müdürlüğü Deprem Araştırma Daire Başkanlığı Raporu. No: DEP2, 852/1 (yayımlanmamış).
  • Popescu, M.E. 1986, A comparision between the behaviour of swelling and collapsing soils. Engineering Geology 23, 145-163.
  • Rogers, C.D.F. 1995. Types and distribution of collapsible soils. Derbyshire, E. Dijkstra, T., Smalley, I. (Ed.). Genesis and properties of collapsible soils. NATO Ası Series, Kluwer Academic Publisher, 1-17.
  • Rollins, K.M., Rollins, R.L., Smith, T.D., Beckwith, G.H. 1993. Identification and characterization of collapsible gravels, Journal of Geotechnical Engineering 120(3), 528-542.
  • Steven, L. 1998. Evaluation design and mitigation of project sites in collapsible soils areas in Western Colorado. Project Report 45 p. (yayınlanmamış).
  • Şenol, M. 1989. Adana-Balcalı/Çatalan Bölgesinin Genç Tersiyer-Kuvaterner İstifinin Lito-Pedolojik ve Sedimantolojik İncelemesi. Doktora Tezi, Ç.Ü Fen Bilimleri Enstitüsü, 128s. (yayımlanmamış).
  • Terzaghi, K., Peck, B.R. 1967. Soil Mechanics in Engineering Practice. John Willey and Sons Inc., 729 p.
  • Udwadia, F.E., Trifunac, M.D. 1973. Comparison of earthquake and mircrotremor ground motions in El Centro, California. Bulletin of Seismological Society of America 63, 1227-1253.
  • Wenk, T., Lacave, C., Peter, K. 1998. The Adana-Ceyhan earthquake of June 27, 1998. Swiss Society for Earthquake Engineering and Structural Dynamics (report), 1-47.
  • Yetiş, C. 1978. Adana kuzeyinin jeolojisi ve şehir merkezinin bazı temel sorunlarıa ilişik gözlemler. Çukurova Üniversitesi, Müh-Mim. Fak. Dergisi, 115-123.
  • Zorlu K., Kasapoglu, K.E. 2009. Determination of geomechanical properties and collapse potential of a caliche by in-situ and laboratory tests, Environmental Geology 56(7), 1449-1459.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kıvanç Zorlu

Publication Date June 27, 2018
Published in Issue Year 2018 Volume: 156 Issue: 156

Cite

APA Zorlu, K. (2018). Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements. Bulletin of the Mineral Research and Exploration, 156(156), 205-220. https://doi.org/10.19111/bulletinofmre.348301
AMA Zorlu K. Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements. Bull.Min.Res.Exp. June 2018;156(156):205-220. doi:10.19111/bulletinofmre.348301
Chicago Zorlu, Kıvanç. “Determination of Predominant Site Period of Loose Terestrial Units (Caliche) by Microtremor Measurements”. Bulletin of the Mineral Research and Exploration 156, no. 156 (June 2018): 205-20. https://doi.org/10.19111/bulletinofmre.348301.
EndNote Zorlu K (June 1, 2018) Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements. Bulletin of the Mineral Research and Exploration 156 156 205–220.
IEEE K. Zorlu, “Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements”, Bull.Min.Res.Exp., vol. 156, no. 156, pp. 205–220, 2018, doi: 10.19111/bulletinofmre.348301.
ISNAD Zorlu, Kıvanç. “Determination of Predominant Site Period of Loose Terestrial Units (Caliche) by Microtremor Measurements”. Bulletin of the Mineral Research and Exploration 156/156 (June 2018), 205-220. https://doi.org/10.19111/bulletinofmre.348301.
JAMA Zorlu K. Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements. Bull.Min.Res.Exp. 2018;156:205–220.
MLA Zorlu, Kıvanç. “Determination of Predominant Site Period of Loose Terestrial Units (Caliche) by Microtremor Measurements”. Bulletin of the Mineral Research and Exploration, vol. 156, no. 156, 2018, pp. 205-20, doi:10.19111/bulletinofmre.348301.
Vancouver Zorlu K. Determination of predominant site period of loose terestrial units (Caliche) by microtremor measurements. Bull.Min.Res.Exp. 2018;156(156):205-20.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en