Research Article
BibTex RIS Cite
Year 2024, Volume: 3 Issue: 1, 152 - 160, 25.04.2024

Abstract

References

  • Krishnamoorthy K, Kim G.S, Kim S.J. Graphene nanosheets: Ultrasound assisted synthesis and Characterization, Ultrason Sonochem., 2013; 20, 644–649.
  • Mouhat F, Coudert F. X, Bocquet L. M. Structure and chemistry of graphene oxide in liquid water from first principles, Nature Communications, 2020, 11(1)1566.
  • Valentini L, Bittolo Bon S, Giorgi G. Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites, Polymers (Basel), 2020, 12, (7) 1596.
  • Ramesha G.K, Kumara A.V, Muralidhara H.B, Sampath S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interface Sci. 2011, 361, 270–277.
  • Zhu J, Wei S, Gu H, Rapole S.B, Wang Q, Luo Z, Haldolaarachchige N, Young D.P, Guo Z. One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal, Environ. Sci. Technol. 2012, 46, (2) 977–985.
  • Tiwari J.N, Mahesh K, Le N.H, Timilsina K.C.K.R, Tiwari R.N, Kim K.S. Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels, Carbon, 2013, 56, 173–182.
  • Bai J, Zhong X, Jiang S, Huang Y, Duan X. Graphene nanomesh, Nat Mater., 2010, 5, 190–194.
  • Li Z, Fan J, Tong C, et al. A smart drugdelivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy, Nanomedicine, 2019, 14(15) 2011–2025.
  • Fedotova А. K, Prischepa S. L, Fedotova J, et al., Electrical conductivity and magnetoresistance in twisted graphene electrochemically decorated with Co particles, Physica E: Low-dimensional Systems and Nanostructures, 2020, 117 113790.
  • Brodie B. C. On the Atomic Weight of Graphite, Philos.Trans.R.Soc.London, 1859, 149, 249–259.
  • Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Adv. Mater, 2010, 22, 4467–4472.
  • Loh K. P, Bao Q. L, Ang P. K, Yang J. X. The Chemistry of Graphene, J. Mater. Chem., 2010, 20, 2277–2289
  • Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNAtransistor: interfacing graphene derivatives with nanoscale and microscale biocomponents, .Nano Lett. 2008, 8, 4469–4476.17
  • Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamermodifiedgraphene field-effect transistors, J. Am. Chem. Soc. 2010,132, 18012–18013
  • Kwon O.S, Park S.J, Hong J.Y, Han A.R, Lee J.S, Lee J.S, Oh J.H, Jang J. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer, ACS Nano, 2012, 6, 1486–1493.
  • He Q, Sudibya H. G, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabricationand sensing applications, ACS Nano, 2010, 4, 3201–3208.
  • Georgakilas V, Tiwari J. N, Kemp K. C, Perman J. A, Bourlinos A. B, Kim K. S, and Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications, Chem. Rev. 2016, 116, 9, 5464–5519.
  • Ang P. K, Li A, Jaiswal M, Wang Y, Hou H. W, Thong J. T, Lim C. T, Loh K. P. Flowsensing of single cell by graphene transistor in a microfluidic channel, Nano Lett., 2011,11,5240–5246.
  • Dooley M, Goa, K.L. Urapidil A Reappraisal of its Use in the Management of Hypertension, Adis Drug Evaluation, 1998, 56 (5): 929-55.
  • Davidson E. R. Quantum Theory of Matter: Introduction, Chemical Reviews, 1991, 91 (5):649.
  • Palafox M.A, Rastogi V.K, Tanwar R.P, Mittal L. Vibrational frequencies and structure of 2-thiouracil by Hartree-Fock, post-Hartree-Fock and density functional methods, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2003, 59:2473–86.
  • Kanmazalp S.D. Investigation of Theoretical Calculations of 2-(1-Phenylethylideneamino)guanidine Compound: NBO, NLO, HOMO-LUMO and MEP Analysis by DFT Method, Karaelmas Fen ve Mühendislik Dergisi, 2017, 7(2), 491-496.
  • Frisch M. J, Trucks G. W, Schlegel H. B, Scuseria G. E, Robb M. A, Cheeseman J. R, Scalmani G, Barone V, Mennucci B, Petersson G. A, H Nakatsuji, Caricato M, Li X, Hratchian H. P, Izmaylov A. F, Bloino J, Zheng G, Sonnenberg J. L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J. A, Peralta Jr. J. E, Ogliaro F, Bearpark M, Heyd J. J, Brothers E, Kudin K. N, Staroverov V. N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J. C, Iyengar S. S, Tomasi J, Cossi M, Rega N, Millam J. M, Klene M, Knox J. E, Cross J. B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R. E, Yazyev O, Austin A. J, Cammi R, Pomelli C, Ochterski J. W, Martin R. L, Morokuma K, Zakrzewski V. G, Voth G. A, Salvador P, Dannenberg J. J, Dapprich S, Daniels A. D, Farkas Ö, Foresman J. B, Ortiz J. V, Cioslowski J. and Fox D. J. Gaussian, Inc., Wallingford, 2009,CT, USA.
  • Perdew J. P, Wang Y. Accurate and simple analytic representation of the electrongas correlation energy, Phys. Rev. B. Condens. Matter; 1992, 45 13244–13249.
  • Simos T. E, Tsitouras C, Kovalnogov V. N, Fedorov R. V, Generalov D. A. Real-Time Estimation of R0 for COVID-19 Spread, Mathematics (Basel), 2021, 9 664.
  • Karzazi Y, Belghiti M.E. A, Dafali A, and Hammouti B. A theoretical investigation on the corrosion inhibition of mild steel by piperidine derivatives in hydrochloric acid solution, Journal of Chemical and Pharmaceutical Research, 2014, 6(4) 689-696.
  • Glendening E. D, Landis C. R, Weinhold F. Natural bond orbital methods, WIREs Computational Molecular Science, 2011, 2, 1–42.
  • Lee C, Yang W, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 1988, 37, 785.
  • Fleming I, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York,. 1976.

Investigation of the adsorption of urapidil, which is used as an antihypertensive drug, on graphene oxide by DFT calculation method

Year 2024, Volume: 3 Issue: 1, 152 - 160, 25.04.2024

Abstract

Graphene oxide (GO) has become a very interesting structure in recent years due to its important results in biomedical applications of nano-bio researchers. Graphene oxide is a form of graphene decorated with oxygen-containing groups. When compared to graphene, GO is easily dispersible in water as well as any other solvents. It is easy to process and also make graphene too. Graphene-based materials are also widely studied in biomedical applications in smart medicine and genetic engineering. In this work, the electronic properties of commercially available urapidil used in antihypertensive treatment and its adsorption on GO nanocage were calculated using density functional theory (DFT).

References

  • Krishnamoorthy K, Kim G.S, Kim S.J. Graphene nanosheets: Ultrasound assisted synthesis and Characterization, Ultrason Sonochem., 2013; 20, 644–649.
  • Mouhat F, Coudert F. X, Bocquet L. M. Structure and chemistry of graphene oxide in liquid water from first principles, Nature Communications, 2020, 11(1)1566.
  • Valentini L, Bittolo Bon S, Giorgi G. Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites, Polymers (Basel), 2020, 12, (7) 1596.
  • Ramesha G.K, Kumara A.V, Muralidhara H.B, Sampath S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interface Sci. 2011, 361, 270–277.
  • Zhu J, Wei S, Gu H, Rapole S.B, Wang Q, Luo Z, Haldolaarachchige N, Young D.P, Guo Z. One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal, Environ. Sci. Technol. 2012, 46, (2) 977–985.
  • Tiwari J.N, Mahesh K, Le N.H, Timilsina K.C.K.R, Tiwari R.N, Kim K.S. Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels, Carbon, 2013, 56, 173–182.
  • Bai J, Zhong X, Jiang S, Huang Y, Duan X. Graphene nanomesh, Nat Mater., 2010, 5, 190–194.
  • Li Z, Fan J, Tong C, et al. A smart drugdelivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy, Nanomedicine, 2019, 14(15) 2011–2025.
  • Fedotova А. K, Prischepa S. L, Fedotova J, et al., Electrical conductivity and magnetoresistance in twisted graphene electrochemically decorated with Co particles, Physica E: Low-dimensional Systems and Nanostructures, 2020, 117 113790.
  • Brodie B. C. On the Atomic Weight of Graphite, Philos.Trans.R.Soc.London, 1859, 149, 249–259.
  • Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Adv. Mater, 2010, 22, 4467–4472.
  • Loh K. P, Bao Q. L, Ang P. K, Yang J. X. The Chemistry of Graphene, J. Mater. Chem., 2010, 20, 2277–2289
  • Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNAtransistor: interfacing graphene derivatives with nanoscale and microscale biocomponents, .Nano Lett. 2008, 8, 4469–4476.17
  • Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamermodifiedgraphene field-effect transistors, J. Am. Chem. Soc. 2010,132, 18012–18013
  • Kwon O.S, Park S.J, Hong J.Y, Han A.R, Lee J.S, Lee J.S, Oh J.H, Jang J. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer, ACS Nano, 2012, 6, 1486–1493.
  • He Q, Sudibya H. G, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabricationand sensing applications, ACS Nano, 2010, 4, 3201–3208.
  • Georgakilas V, Tiwari J. N, Kemp K. C, Perman J. A, Bourlinos A. B, Kim K. S, and Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications, Chem. Rev. 2016, 116, 9, 5464–5519.
  • Ang P. K, Li A, Jaiswal M, Wang Y, Hou H. W, Thong J. T, Lim C. T, Loh K. P. Flowsensing of single cell by graphene transistor in a microfluidic channel, Nano Lett., 2011,11,5240–5246.
  • Dooley M, Goa, K.L. Urapidil A Reappraisal of its Use in the Management of Hypertension, Adis Drug Evaluation, 1998, 56 (5): 929-55.
  • Davidson E. R. Quantum Theory of Matter: Introduction, Chemical Reviews, 1991, 91 (5):649.
  • Palafox M.A, Rastogi V.K, Tanwar R.P, Mittal L. Vibrational frequencies and structure of 2-thiouracil by Hartree-Fock, post-Hartree-Fock and density functional methods, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2003, 59:2473–86.
  • Kanmazalp S.D. Investigation of Theoretical Calculations of 2-(1-Phenylethylideneamino)guanidine Compound: NBO, NLO, HOMO-LUMO and MEP Analysis by DFT Method, Karaelmas Fen ve Mühendislik Dergisi, 2017, 7(2), 491-496.
  • Frisch M. J, Trucks G. W, Schlegel H. B, Scuseria G. E, Robb M. A, Cheeseman J. R, Scalmani G, Barone V, Mennucci B, Petersson G. A, H Nakatsuji, Caricato M, Li X, Hratchian H. P, Izmaylov A. F, Bloino J, Zheng G, Sonnenberg J. L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J. A, Peralta Jr. J. E, Ogliaro F, Bearpark M, Heyd J. J, Brothers E, Kudin K. N, Staroverov V. N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J. C, Iyengar S. S, Tomasi J, Cossi M, Rega N, Millam J. M, Klene M, Knox J. E, Cross J. B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R. E, Yazyev O, Austin A. J, Cammi R, Pomelli C, Ochterski J. W, Martin R. L, Morokuma K, Zakrzewski V. G, Voth G. A, Salvador P, Dannenberg J. J, Dapprich S, Daniels A. D, Farkas Ö, Foresman J. B, Ortiz J. V, Cioslowski J. and Fox D. J. Gaussian, Inc., Wallingford, 2009,CT, USA.
  • Perdew J. P, Wang Y. Accurate and simple analytic representation of the electrongas correlation energy, Phys. Rev. B. Condens. Matter; 1992, 45 13244–13249.
  • Simos T. E, Tsitouras C, Kovalnogov V. N, Fedorov R. V, Generalov D. A. Real-Time Estimation of R0 for COVID-19 Spread, Mathematics (Basel), 2021, 9 664.
  • Karzazi Y, Belghiti M.E. A, Dafali A, and Hammouti B. A theoretical investigation on the corrosion inhibition of mild steel by piperidine derivatives in hydrochloric acid solution, Journal of Chemical and Pharmaceutical Research, 2014, 6(4) 689-696.
  • Glendening E. D, Landis C. R, Weinhold F. Natural bond orbital methods, WIREs Computational Molecular Science, 2011, 2, 1–42.
  • Lee C, Yang W, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 1988, 37, 785.
  • Fleming I, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York,. 1976.
There are 29 citations in total.

Details

Primary Language English
Subjects Medicinal and Biomolecular Chemistry (Other)
Journal Section Research Articles
Authors

Begüm Çağla Akbaş 0000-0002-1926-9873

Mehmet Abdullah Alagöz 0000-0001-5190-7196

Esvet Akbaş 0000-0001-6260-5556

Publication Date April 25, 2024
Submission Date December 14, 2023
Acceptance Date February 19, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

EndNote Akbaş BÇ, Alagöz MA, Akbaş E (April 1, 2024) Investigation of the adsorption of urapidil, which is used as an antihypertensive drug, on graphene oxide by DFT calculation method. Anatolian Journal of Pharmaceutical Sciences 3 1 152–160.

by.png

This work is licensed by CC by under the Creative Commons Attribution 4.0 International License.