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DEVELOPED MOTION OF ROBOT END-EFFECTOR
OF TIMELIKE RULED SURFACES WITH SPACELIKE
RULINGS (THE FIRST CASE)
Gülnur Şaffak Atalay, Emin Kasap

Abstract
The trajectory of a robot end effector is described by a ruled surface and a spin angle about the ruling of the ruled
surface. In this paper, we analyzed the problem of describing trajectory of a robot end-effector by a timelike ruled
surface with spacelike ruling. We obtained the developed frame {k1 (s) ,r1 (s) , t1 (s)} by rotating the generator
frame {r (s) , t (s) ,k (s)} at an Darboux angle θ = θ (s) in the plane {r (s) ,k (s)} , which is on the striction curve
β (s) of the timelike ruled surface . Afterword, natural frame, tool frame and surface frame which is necessary for
the movements of robot are defined derivative formulas of the frames are founded by calculating the Darboux
vectors. Tool frame {O(s) ,A(s) ,N (s)} are constituted by means of this developed frame. Thus, robot end effector
motion is defined for the timelike ruled surface ϕ generated by the orientation vector k1 (s) = O(s) . Also, by using
Lancret curvature of the surface and rotation angle (Darboux angle) in the developed frame the robot end-effector
motion is developed. Therefore, differential properties and movements an different surfaces in Minkowski space
is analyzed by getting the relations for curvature functions which are characterized a timelike ruled surface with
spacelike directix. Finally, to be able to get a member of trajectory surface family which has the same trajectory
curve is shown with the examples in every different choice of the Darboux angle which is used to described the
developed frame.
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Gülnur Şaffak Atalay: gulnur.saffak@omu.edu.tr
Article History: Received 15 August 2019 ; Accepted 9 September 2019

1. Introduction
The motion of a robot end effector is referred to as the robot trajectory. The trajectory of a robot end effector is described by a
ruled surface and a spin angle about the ruling of the ruled surface. A robot trajeectory consist of; (i) a sequence of positions,
velocities and accelerations of a point fixed in the end effector, and (ii) a sequence of orientations, angular velocities and angular
accelerations of the end effector. The point fixed in the end effector will be referred to as the Tool Center Point and denoted
as the TCP. Ruled surfaces were first investigated by G. Monge who established the partial differential equation satisfied by
all ruled surfaces. Ruled surfaces have been widely applied in designing cars, ships, manufacturing (e.g. , CAD/CAM) of
products and many other areas such as motion analysis and simulation of rigid body, as well as model-based object recognition
system. However, ruled surfaces are stil widely used in many areas in modern surface modelling systems. Ruled surfaces in
Minkowski 3-space have been studied in a lot of fields. More information about timelike ruled surfaces in Minkowski 3-space
may be also found in Turgut and Hacısalihoğlu’s papers in [1-2] and Öğrenmiş et al, [3]. Curvature theory investigates the
intrinsic geometric properties of the trajectory of points, lines, and planes embedded in a moving rigid body. Curvature theory
is also concerned with the velocity and acceleration distribution of a moving rigid body in constrained motion. The curvature
theory is using to determine the differential properties of the motion of a robot end effector. The differential properties of



the robot end effector motion are then related to the time dependent properties of the motion which are essential in the robot
trajectory planning. The differential properties of the ruled surface generate the linear and angular motion properties of the
robot end effector for robot path planning, [4]. Also, the curvature theory of line trajectories seeks to characterize the shape of
the trajectory ruled surface and relates it to the motion of body carrying the linet hat generates it,[5]. Ryuh and Pennock, [6]
applied the curvature theory of a ruled surface to study the instantaneous motion properties of a robotic device. The differential
properties of motion of the end effector were determined from the curvature theory. Also, they proposed a method of robot
trajectory planning based on the curvature theory of a ruled surface incorporated with the geometric modeling technique in
[4]. In this method, it is shown that how a ruled surface may be generated using the geometric modeling technique of a curve.
Ryuh, Lee and Moon in [7] studied a precision control method of a robot path generation based on the dual curvature theory a
ruled surface. In [8], the authors are developed a new adjustment method for improving machining accuracy of tool path in
five-axis flank milling of ruled surfaces. They proposed a feedrate adjustment rule that automatically controls the tool motion
at feedrate-sensitive corners based on a bisection method. Also they are conducted on different ruled surfaces to verify the
effectiveness of the proposed method. Kim et al. [9] developed a real-time trajectory generation method and control approach
for a five-axis NC machine. They describe the spatial trajectory of the tool of the five axis machine by a ruled surface, and
the differential motion parameters of the tool were obtained from the curvature theory of the ruled surface. Also, they were
used the Fergusen geometric modeling technique to present the tool trajectory as a ruled surface. Also, in [10-12] the authors
have studied manipulators. The motion of robot end-effector is a research topic of various studies in Minkowski 3-space. Ekici
et al. studied the differential properties of robot end-effectors motion using the curvature theory of timelike ruled surfaces
with timelike ruling in [13]. In [14], Turhan and Ayyıldız used the curvature theory of ruled surfaces with lightlike ruling in
Minkowski 3-space. They also derived the relation between these functions and the curvature functions of the central normal
surface whose ruling spacelike. Recently, in [15], Sahiner et al. studied the motion of a robot end-effector by using the curvature
theory of a dual unit hyperbolic spherical curve which corresponds to a timelike ruled surface with timelike ruling generated by
a line fixed in the end-effector. In this way, the linear and angular differential properties of the motion of a robot end-effector
such as velocities and accelerations which are important information in robot trajectory planning are determined. They also
derived the motion of a robot end-effector which moves on the surface of a right circular hyperboloid of one sheet is examined
as a practical example. In this paper, we address the path planning problem using the curvature theory of a ruled surface.
The objects consist of point in the coordinate plane. We can locate such coordinates by rotating these objects in a specific
direction. This allows the calculation of the robot’s next motion. So, any errors and miscalculations that may arise in trajectory
planning can be prevented. Each robot has a unique coordinate system. However, the appropriate choice of coordinates for
the robot motion allows us to define the work area of the robot more efficiently. Therefore, we obtained the developed frame
{k1 (s) ,r1 (s) , t1 (s)} by rotating the generator frame {r (s) ,k (s)} at an angle θ = θ (s) in the plane {r (s) ,k (s)} to provide a
practical work area. It is useful in animation motion planning, and tool path planning in CAD/CAM. Thus, this study represents
robot path as a ruled surface generated at the Tool Center Point and by the unit vector ( k1 (s) = O(s) ) of the tool frame. The
vector k1 (s) = O(s) is depending on the Darboux angle function θ = θ (s) .New direction vectors are achieved by changing the
angle function. The robot trajectory changes depending on the angle function. Therefore, we obtained trajectory ruled surface
family with a common trajectory curve in the rotation trihedron. Any other generated trajectory corresponds to a member of
this trajectory ruled surface family. The given calculations (i.e, positional variation of the TCP, linear velocity, angular velocity)
are valid for all members of the trajectory ruled surface family. Therefore, we defined the desired trajectory of the robot end
effector motion and give the differential properties of robot end effectors motion using the curvature theory. Also, the motion of
robot end effector is illustrated with examples by two members of the trajectory ruled surface family.

2. Preliminaries
Let us consider Minkowski 3-Space R3

1 and let the Lorentzian inner product of X = (x1,x2,x3) and Y = (y1,y2,y3) ∈ R3
1 be

g(X ,Y ) =−x1 · y1 + x2 · y2 + x3 · y3

The norm of a vector X is defined by ‖X‖ =
√
|g(X ,X)| [16]. A vector X = (x1,x2,x3) ∈ R3

1 is said to be timelike if
g(X ,X) < 0, spacelike if g(X ,X) > 0 or X = 0 and lightlike (or null) if g(X ,X) = 0 and X 6= 0 [16]. A timelike vector
is to be positive (resp.negative) if and only if x3 > 0 (resp. x3 < 0 ) The vector product of vectors X = (x1,x2,x3) and
Y = (y1,y2,y3) ∈ R3

1 is defined by

X×Y = (x2 · y3− x3 · y1,x1 · y3− x3 · y1,x2 · y1− x1 · y2).

The vectors X = (x1,x2,x3), Y = (y1,y2,y3) ∈ R3
1 are Lorentzian orthogonal if and only if g(X ,X) = 0 [17].

Lemma 1. Let X and Y be nonzero Lorentz orthogonal vectors in R3
1. If X is timelike, then Y is spacelike [17].
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Lemma 2. Let X and Y be positive (negative ) timelike vectors in R3
1. Then

g(X ,Y )≤ ‖X‖‖Y‖

whit equality if and only if X and Y are linearly dependent [17].

Lemma 3. i) Let X and Y be positive (negative ) timelike vectors in R3
1. By Lemma 2, there is a unique nonnegative real

number ϕ (X ,Y ) such that

g(X ,Y ) = ‖X‖‖Y‖coshϕ (X ,Y ) .

The Lorentzian timelike angle between X and Y is defined to be ϕ (X ,Y ) [17].
ii) Let X and Y be spacelike vectors in R3

1 that span a spacelike vector subspace. Then we have

|g(X ,Y )| ≤ ‖X‖‖Y‖ .

Hence, there is a unique real number ϕ (X ,Y ) between 0 and π such that

g(X ,Y ) = ‖X‖‖Y‖cosϕ (X ,Y ) .

ϕ (X ,Y ) is defined to be the Lorentzian spacelike angle between X and Y [17].
iii) Let X and Y be spacelike vectors in R3

1 that span a timelike vector subspace. Then, we have

g(X ,Y )> ‖X‖‖Y‖ .

Hence, there is a unique positive real number ϕ (X ,Y ) between 0 and π such that

|g(X ,Y )|= ‖X‖‖Y‖coshϕ (X ,Y ) .

ϕ (X ,Y ) is defined to be the Lorentzian timelike angle between X and Y [17].
iv) Let X be a spacelike vector and Y be a positive timelike vector in R3

1. Then there is a unique nonnegative real number
ϕ (X ,Y ) such that

|g(X ,Y )|= ‖X‖‖Y‖sinhϕ (X ,Y ) .

ϕ (X ,Y ) is defined to be the Lorentzian timelike angle between X and Y [17].

Theorem 4. Let X, Y in R3
1 . We have

i) If X and Y are the spacelike vectors , X×Y is a timelike vector
ii) If X and Y are the timelike vectors, X×Y is a spacelike vector
iii) If X is the spacelike vector and Y is the timelike vector, X×Y is a spacelike vector
where, × is Lorentzian cross product , [1-2].

• Let α = α (s) be a unit speed curve in R3
1 ;by κ = κ (s) and torsion τ = τ (s) we denote the natural curvature and torsion

of α (s),respectively. {T (s) ,N (s) ,B(s)} the moving Frenet frame along the curve α , where T, N and B are the tangent,
the principal normal and the binormal vector fields of the curve α , respectively.

• Let α be a unit speed timelike curve with curvature κ and torsion τ . So, T is a timelike vector field, N and B are
spacelike vector fields. For these vectors, we can write

T ×N =−B, N×B = T, B×T =−N,

where× is the Lorentzian cross product in R3
1 [18]. The binormal vector field B(s) is the unique spacelike unit vector fleld

perpendicular to the timelike plane {T (s),N(s)} at every point α (s) of α , such that {T,N,B} has the same orientation
as R3

1. Then, Frenet formulas are given by [18]

T ′ = κN, N′ = κT + τB, B′ =−τN.
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• Let α be a unit speed spacelike curve with spacelike binormal. Now, T and B are spacelike vector fields and N is a
timelike vector field. In this situation, we have

T ×N =−B, N×B =−T, B×T = N.

The binormal vector field B(s) is the unique spacelike unit vector fleld perpendicular to the timelike plane {T (s),N(s)}
at every point α (s) of α , such that {T,N,B} has the same orientation as R3

1. Then, Frenet formulas are given by [18]

T ′ = κN, N′ = κT + τB, B′ = τN.

• Let α be a unit speed spacelike curve with timelike binormal. In this case, T and N are spacelike vector fields and B is a
timelike vector field and we have the following vectoral relation

T ×N = B, N×B =−T, B×T =−N,

The binormal vector field B(s) is the unique timelike unit vector field perpendicular to the spacelike plane {T (s),N(s)}
at every point α (s) of α , such that {T,N,B} has the same orientation as R3

1. Then, Frenet formulas are given by [18]

T ′ = κN, N′ =−κT + τB, B′ = τN.

A surface M in R3
1 is called a timelike surface if the induceded metric on the surface is a Lorentz metric [14]. The normal

vector on the timelike surface is a spacelike vector , [16]. A timelike ruled surface in R3
1 is obtained by a timelike straight line

moving along spacelike curve or by a spacelike straight line moving along a timelike curve, [16]. The timelike ruled surface M
is given parameterization

Ψ : I× IR→ IR3
1 , Ψ(s,v) = α(s)+ vX(s) in R3

1.

3. Frames of Reference
A timelike ruled surface which indicates the tool path has a parametric representation,

X(s,v) = α(s)+ vR(s) (3.1)

where α(s) a timelike curve is the specified path of the TCP, v is a real-valued parameter and R(s) spacelike straigth line is the
vector generating the timelike ruked surface (called the ruling). The striction curve of the timelike ruled surface X is

β (s) = α(s)−µ(s)R(s) (3.2)

where the parameter

µ(s) =
〈

α
′(s),R′(s)

〉
(3.3)

indicates the distance from the striction point of the timelike ruled surfaces to the TCP.
For the generator trihedron, there are two cases. The generator trihedron is defined by three mutually orthogonal unit

vectors, namely;
i) the spacelike generator vector r = (1/R)R(s), the timelike central normal vector t = R′(s) and the spacelike central

tangent vector k = t× r, where R is
∥∥R(s)

∥∥.
ii) the spacelike generator vector r = (1/R)R(s), the spacelike central normal vector t = R′(s) and the timelike central

tangent vector k = r× t, where R is
∥∥R(s)

∥∥.
Now let’s make the ecessary calculations for the first of these cases. Likewise it can be done in the other. The first

order positional variation of the striction line of the timelike ruled surface may be expressed in the generator trihedron as

β
′ = Γr+∆k (3.4)

where

{
Γ = 1

R

〈
α ′,R

〉
−µ ′R

∆ = 1
R

〈
α ′,R′×R

〉 (3.5)
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is referred to as the curvature functions of the timelike ruled surface.
First order angular variation of the generator trihedron may be expressed in the matrix form as

d
ds

 r
t
k

=
1
R

 0 1 0
1 0 −γ

0 −γ 0

 r
t
k

 (3.6)

where
γ =

〈
R′′,R×R′

〉
is referred to as the geodesic curvature of the curve drawn by the ruling vectors R(s) of the timelike ruled surface.
For the Darboux vector of generator trihedron of timelike ruled surface, we can write

Ur = t× t ′ =
1
R
(γr+ k) (3.7)

Also, the Lancret curvature of timelike ruled surface X is

λ =
∥∥t ′
∥∥=√∣∣∣∣γ2 +1

R2

∣∣∣∣ (3.8)

4. Developed Trihedron

Let us rotate the generator trihedron {r, t,k} on the striction curve of the timelike ruled surface X at the central point at an
Darboux Lorentzian angle θ = θ(s) , θ 6=fixed, in the plane {r,k} . So, it can be written in matrix form as

(
r1
k1

)
=

(
cosθ −sinθ

sinθ cosθ

)(
r
k

)
(4.1)

In fact, by using the above rotation equation and we have relations

r1 = cosθr− sinθk,

t1 = t,

k1 = sinθr+ cosθk.

The orthonormal system {k1 =U,r1, t1} is called the developed trihedron of the timelike ruled surface X . Here, k1 is
Darboux vector of generator trihedron of the timelike ruled surface X .

Eqns.(3.7) and (3.9) may be written as

sinθ − γ cosθ = 0 (4.2)

By using Eqn. (4.2) into Eqn.(3.8) we get the relations

{ 1
R =∓λ cosθ
γ

R =∓λ sinθ
(4.3)

The first-order angular variation of developed trihedron {k1,r1, t1} may be expressed in the matrix form as

d
ds

 k1
r1
t1

=

 0 θ ′ 0
−θ ′ 0 λ

0 λ 0

 k1
r1
t1

 (4.4)
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where θ ′ is the curvature and λ is the Lancret curvature of the timelike ruled surface X . Also; k1,r1 and t1 be the spacelike
generator vector, the spacelike central normal vector and the timelike central tangent vector, respectively.

Each vector of developed trihedron in end effector defines its own ruled surface while the robot moves. Let us take the
following timelike ruled surface (robot trajectory ruled surface) as

ϕ(s,v) = α(s)+ vk1(s) (4.5)

where α(s) timelike curve is the specified path of the TCP (called the directrix of the timelike ruled surface X and ϕ), v is a real
valued parameter and k1(s) is the spacelike vector generating the timelike ruled surface ϕ (called the ruling or direction). Also,
this surface is trajectory surface of robot.

If you take a surface formed by a t1 timelike central tangent vector , such a surface is not defined in IR3
1 . So, is not talk

about the robot trajectory ruled surface.
If you take a surface formed by a r1 spacelike central normal vector , such a surface is to be central normal surface, will

examine in section 5.
The striction curve of timelike ruled surface ϕ is

βk1(s) = α(s)−µk1(s)k1(s) (4.6)

where the parameter

µk1(s) =
Γcosθ −∆sinθ +µ ′Rcosθ

θ ′
(4.7)

Also, Γ and ∆ are referred to as the curvature functions of the timelike ruled surface ( Eqn. (3.1) ). Differentiating Eqn.(4.6)
gives first order positional variation of the striction point of the timelike ruled surface ϕ . By using Eqns. (4.4) and (4.7) we can
write Eqn.(4.6) with respect to developed trihedron as

β
′
k1
(s) = Γk1k1 +µt1 (4.8)

where

Γk1 = Γsinθ +∆cosθ +µ
′Rsinθ −µ

′
k1

(4.9)

How that, Γ and ∆ are curvature functions which characterize the timelike ruled surface here Γk1 and µ are curvature functions
which characterize the robot trajectory timelike ruled surface.

The positional variation of the striction line may be considered as the linear velocity. As in the case of the developed frame
(4.4) may also be written as

Uk1 = r1× r′1 = θ
′t1−λk1 (4.10)

which is Darboux vector of the developed frame. In a planar curve, the first term will drop out and the developed frame will
rotate around the k1 vector with an angular velocity. This formulation is useful for studying the rotational motions of rigid body
attached to the developed frame moving along a curve.

5. Central Normal Surface

As the developed trihedron moves along the striction curve , the central normal vector generates another timelike ruled surface
which is called the timelike central normal surface. The timelike central normal surface is defined as

ϕr1(s,v) = βk1(s)+ vr1(s) (5.1)

The striction curve of timelike central normal surface is

βr1(s,v) = βk1(s)−µk1(s)r1(s) (5.2)
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Differentiating (5.2) and by using Eqn. (4.8) into Eqn. (4.4) gives

µr1(s) =
Γk1θ ′+λ µ

θ ′2−λ 2 (5.3)

The natural trihedron is defined by the following three orthonormal vectors; the timelike central normal vector , spacelike
principal normal vector , and spacelike binormal vector, as shown in figure 1. Also, the natural trihedron is used to study the
angular and positional variation of the normal vector.

For the natural trihedron {r1,r2,r3}, there are two cases:
i) r2 timelike vector, r2 and r3 spacelike generator vector:
These three vectors are defined, respectively, as

 r1 =
k′1
θ ′

r2 =
1
κ

r′1
r3 = r2× r1

(5.4)

where κ = ‖r′1‖ is the curvature of the timelike ruled surface ϕ . Also, here is r1× r2 = −r3, r2× r3 = −r1 and r3× r1 =
r2.

ii) r3 timelike vector, r1 and r2 spacelike generator vector:
These three vectors are defined, respectively, as

 r1 =
k′1
θ ′

r2 =
1
κ

r′1
r3 = r1× r2

where κ = ‖r′1‖ is the curvature of the timelike ruled surface ϕ . Also, here is r1× r2 = r3, r2× r3 = −r1 and r3× r1 =
−r2.

Now let’s make the necessary calculations for the first of these cases. Likewise it can be done in the other.
Let η be the angle between the spacelike vectors k1 and r3, see figure 1. Here, the developed trihedron and the natural

trihedron have the timelike central normal vector in common. Then, we have

{
k1 = sinhηr2 + coshηr3
t1 = coshηr2 + sinhηr3

(5.5)

Substituting Eqn. (4.4) into Eqn. (5.5) and using r′1 = κr2 it follows that

{
coshη = λ

κ

sinhη = θ ′
κ

(5.6)

From Eqn. (5.6), adding the result and rearranging gives the curvature

κ =
√

λ 2−θ ′2 (5.7)

The Darboux vector of developed trihedron may be obtained in the natural trihedron as follows. Substituting Eqn. (5.6) into
Eqn. (5.5) gives

 r1
r2
r3

=
1
κ

 0 κ 0
−θ ′ 0 λ

λ 0 −θ ′

 k1
r1
t1

 (5.8)
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Hence, the Darboux vector of the developed trihedron may be written as

Uk1 =−κr3 (5.9)

which shows that the binormal vector plays the role of the opposite direction of rotation for developed trihedron.
Differentiating Eqn. (5.2) and substituting Eqns.(4.8) and (5.8) into the result, we obtain

β
′
r1
(s) = Γr1r1 +∆r1r3 (5.10)

where{
Γr1 =−µ ′r1

∆r1 =
µθ ′+Γk1

λ

κ

(5.11)

The first-order angular variation of natural trihedron may be expressed in the matrix form as

d
ds

 r1
r2
r3

=

 0 κ 0
κ 0 τ

0 τ 0

 r1
r2
r3

 (5.12)

where κ and τ =
〈

r
′
2,r3

〉
are the curvature and torsion of the timelike ruled surface ϕ , respectively.

To find simpler expressions for the curvature and torsion, we substituting Eqn. (5.6) into Eqn. (5.7) which gives

κ = θ
′ cosechη (5.13)

Differentiating eqn.(5.4) and by using eqns (4.4) and (5.8) we have

τ =−η
′ (5.14)

As in the case of the natural trihedron, eqn. (5.16) may also be written as

Ur2 = κr3− τr1 (5.15)

which is the Darboux vector of the natural trihedron.
Hence, observe that both the Darboux vector of the natural trihedron and the Darboux vector of the developed trihedron

describe the angular motion of the timelike ruled surface and the timelike central normal surface.

6. Relationship Between The Frames

Path of a robot may be represented by a tool center point and tool frame of end-effector. For tool frame, there are two cases.
The tool frame is represented by three mutually perpendicular unit vector [O,A,N] ,

i) where O is the spacelike orientation vector, A is the timelike approach vector and N is the spacelike normal vector, shown
in figure 1.

ii) where O is the spacelike orientation vector, A is the spacelike approach vector and N is the timelike normal vector, shown
in figure 1.

Each vector of tool frame in end-effector defines its own ruled surface while the robot moves. Let O = k1 and the vector O
are called directix and ruling, respectively. Then, ,for v = 0 ,the surface frame [O,Sn,Sb] of timelike ruled surface ϕ may be
determined as follows;

Sn =
ϕs×ϕv

‖ϕs×ϕv‖
(6.1)
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which is the unit spacelike normal of timelike ruled surface in TCP.
Substituting Eqns. (4.4), (4.8) and Eqn.(4.6) into Eqn.(6.1) we obtain

Sn =
(∆k1 +µk1θ ′)t1 +µr1√
(∆k1 +µk1θ ′)2 +µ2

(6.2)

where ∆k1 , µk1 ,θ
′ and µ are as defined by Eqs.(4.9), (4.7), (5.3) and (3.3), respectively.

Sb = O×Sn (6.3)

is unit timelike binormal vector of the timelike ruled surface.
Substituting Eqn.(6.2) into Eqn.(6.3) gives

Sb =
−(∆k1 +µk1θ ′)r1−µt1√

(∆k1 +µk1θ ′)2 +µ2
(6.4)

The orientation of the surface frame relative to the tool frame and the developed trihedron is shown in figure 1. Let ζ be the
angle between spacelike vector and the timelike approach vector . Then, we have

〈Sn,A〉= sinhζ , A×O = N (6.5)

We may express the results in matrix form as

 O
A
N

=

 1 0 0
0 sinhζ coshζ

0 coshζ sinhζ

 O
Sn
Sb

 (6.6)

Let the angle between the vectors Sb and t1 be σ . Then, we have

{
Sn = sinhσr1 + coshσt1
Sb = coshσr1 + sinhηt1

(6.7)

From Eqns.(6.6) and (6.7) we can write

 O
A
N

=

 1 0 0
0 coshΣ sinhΣ

0 sinhΣ coshΣ

 k1
r1
t1

 (6.8)

where Σ = ζ +σ describes the orientation of the end-effector.

7. Differential Motion Of The Tool Frame

The spacelike curve generated by TCP from eqn. (3.2) is

α(s) = β (s)+µR(s) (7.1)

Differentiating eqn. (7.1) with respect to the arc length, using eqns.(3.6) and (3.4), the first-order positional variation of the
TCP, expressed in the generator trihedron is

α
′(s) =

(
Γ+µ

′R
)

r+µt +∆k (7.2)
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Substituting eqn. (4.1) into eqn.(7.2), gives

α
′ =
((

Γ+µ
′R
)

sinhθ +∆coshθ
)

k1 +
((

Γ+µ
′R
)

coshθ + sinhθ
)

r1 +µt1 (7.3)

Also, substituting eqn. (6.8) into eqn. (7.3), gives

α
′=
((

Γ+µ
′R
)

sinhθ +∆coshθ
)

O+
(
coshΣ

((
Γ+µ

′R
)

coshθ +∆sinhθ
)
+µ sinhΣ

)
A+
(
sinhΣ

((
Γ+µ

′R
)

coshθ +∆sinhθ
)
+µ coshΣ

)
N

(7.4)

Differentiating eqn. (6.8) and substituting eqn.(4.4) into the result the first order angular variation of the tool frame gives

d
ds

 O
A
N

=

 0 0 0
θ ′ coshΣ sinhΣ(λ +Σ′) coshΣ(λ +Σ′)
θ ′ sinhΣ coshΣ(λ +Σ′) sinhΣ(λ +Σ′)

 k1
r1
t1

 (7.5)

The first-order angular variation of tool frame {O,A,N} may be expressed in the matrix form as

d
ds

 O
A
N

=

 0 −θ ′ sinhΣ θ ′ coshΣ

−θ ′ sinhΣ 0 λ +Σ′

θ ′ coshΣ λ +Σ′ 0

 O
A
N

 (7.6)

As in the case of the tool frame, may also be written as

UA =−
(
λ +Σ

′)O+
(
θ
′ coshΣ

)
A−

(
θ
′ sinhΣ

)
N (7.7)

which is the Darboux vector of the tool frame. Here, we obtain by using eqn.(6.8)

UA =−
(
λ +Σ

′)k1 +θ
′t1 (7.8)

Also, substituting eqn. (4.10) into eqn. (7.8), gives

UA =Uk1 −Σ
′k1 (7.9)

Hence, angular variation of tool frame that according to developed frame is the rotation around the r1 vector.

Fig. 1. The relationship between frames.
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8. Example

Consider the timelike ruled surface
X(s,v) =

(
−sinhs

(√
2+ v

)
,s+2v,coshs

(√
2+ v

))
where α(s) =

(
−
√

2sinhs,s,
√

2coshs
)

(timelike) is the base curve R(s) = (−sinhs,2,coshs) (spacelike) is the generator.

−π ≤ s≤ 0 ,−1≤ v≤ 1 ,(Fig. 2).Since ,
∥∥R ′(s)

∥∥= 1 the generator trihedron is
r(s) = 1√

5
(−sinhs,2,coshs) ,

t(s) = (coshs,0,sinhs) ,
k(s) = 1√

5
(2sinhs,1,−2coshs) .

A straight forward computation shows that

µ(s) =
√

2,Γ(s) = 2√
5
, ∆(s) = 1√

5
and γ =

〈
R′′,R′×R

〉
=−2.

Also, the Darboux vector of generator trihedron Ur =
1√
5
(3sinhs,0,−4coshs) .

Fig. 2. Timelike ruled surface with generator vector R(s)

The developed trihedron is defined by,
k1 =

(
1√
5

sinhs(2cosθ(s)− sinθ(s)) , 1√
5
(2sinθ(s)+ cosθ(s)) , 1√

5
coshs(sinθ(s)−2cosθ(s))

)
,

r1 =
(
− 1√

5
sinhs(cosθ(s)−2sinθ(s)) , 1√

5
(2cosθ(s)− sinθ(s)), 1√

5
coshs(cosθ(s)+2sinθ(s))

)
,

t1 = (−coshs,0,sinhs) .
Therefore, timelike trajectory ruled surface family with a common trajectory curve is defined by

ϕ(s,v)=
(

sinhs(−
√

2+
v√
5
(2cosθ(s)− sinθ(s))),s+

v√
5
(2sinθ(s)+ cosθ(s))),coshs(

√
2+

v√
5
(sinθ(s)−2cosθ(s)))

)
(8.1)

If we take θ(s) = s, −π ≤ s≤ 0 and −1≤ v≤ 1 then we obtain ϕ1 = ϕ1(s,v) a member of the timelike trajectory ruled
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surface family with a common trajectory curve in the developed trihedron as shown in (Fig.3) in green.

ϕ1(s,v) =

(
sinhs(−

√
2+

v√
5
(2coss− sins)),s+

v√
5
(2sins+ coss)),coshs(

√
2+

v√
5
(sins−2coss))

)
(8.2)

If we take θ(s) = s2, −π ≤ s≤ 0 and −1≤ v≤ 1 then we obtain ϕ2 = ϕ2(s,v) another member of the timelike trajectory
ruled surface family with a common trajectory curve in the developed trihedron as shown in (Fig.3) in red.

ϕ2(s,v) =

(
sinhs(−

√
2+

v√
5
(2cos(s2)− sin(s2))),s+

v√
5
(2sin(s2)+ cos(s2))),coshs(

√
2+

v√
5
(sin(s2)−2cos(s2)))

)
(8.3)

Fig. 3. Timelike trajectory ruled surface.

9. Conclusion
In the 3-dimensional Minkowski space, based on the theory of the curve of the ruled surface, the improved robot end-effector
motion of the spacelike ruling timelike ruled surface was examined by investigating its differential properties. In addition,
the spacelike ruling timelike ruled surface was observed to be the robot trajectory surface timelike ruled surface. It was also
observed that the derivative formulas of the tool frame used to define the trajectory of the robot depend on the Lancret curvature
of the given surface, the angular velocity of the Darboux angle and the angle of rotation between the frames. The robot end
effector motion is developed by using the Lancret curvature of the surface with the rotation trihedron. Finally, we obtained
trajectory ruled surface family with a common trajectory curve with the developed frame. Therefore, we changed trajectories of
the robot end effector motion according to the Darboux angle function. Also, the motion of robot end effector is illustrated with
examples by two of the desired trajectory of the robot end effector motion.
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