Structures and \mathscr{D}-isometric warping

BELDJILALI Gherici

Abstract

We introduce the notion of \mathscr{D}-isometric warping and we use it to construct a 1-parameter family of Kählerian structures from a single Sasakian structure and also a quaternionic Kählerian structure from a Sasakian 3-structure.

Keywords and 2010 Mathematics Subject Classification
Sasakian structure, kählerian structure, 3-Sasakian structure, Quaternionic kählerian structure. MSC: 53C25, 53C55
Laboratory of Quantum Physics and Mathematical Modeling (LPQ3M), University of Mascara, Algeria, gherici.beldjilali@univ-mascara.dz
Corresponding author: BELDJILALI Gherici
Article History: Received 31 January 2020; Accepted 27 February 2020

1. Introduction

The product of an almost contact manifold M and the real line \mathbb{R} carries a natural almost complex structure. When this structure is integrable the almost contact structure is said to be normal.

In 1985, using the warped product $M \times_{f} \mathbb{R}$ where $f \in C^{\infty}\left(\mathbb{R}_{+}\right)$, Oubiña showed that there is a one-to-one correspondence between Sasakian and Kähler structures [11].

In 2013, building on the work of Tanno [12] (the homothetic deformation on contact metric manifold), Blair [8] introduced the notion of \mathscr{D}-homothetic warping. He used it to show by another way that there is a one-to-one correspondence between Sasakian and Kählerian structures too.

Recently, Beldjilali and Belkhelfa [2] have generalized the idea of Blair, they introduced the notion of generalized \mathscr{D}-homothetic bi-warping and they proved that every Sasakian manifold M generates a 1-parameter family of Kählerian manifolds. After that, they gives the notion of generalized doubly \mathscr{D}-homothetic bi-warping [3].

By a similar techniques of Oubiña, Bär [1] and Tshikuna-Matamba [14] pointed out that there is one-to-one correspondence between Sasakian 3-structures and hyperKähler structures. In [15] and [16] we find the construction of quaternionic kählerian structure from 3-Sasakian structures.

Here, after giving preliminary background on almost Hermitian structures and almost contact metric manifolds in Section 2, we introduce in Section 3 the notion of \mathscr{D}-isometric warping and prove some basic properties. In Section 4 we give the first application for this product. Starting from a Sasakian manifold M, we construct a 1-parameter family of Kählerian structures on the product of a $\mathbb{R} \times M$ which is different from that in [2] and we construct an example. In Section 5, we give the second application, we constructed a quaternionic kählerian structure from 3-Sasakian structures.

2. Preliminaries on manifolds

Recall that an almost Hermitian manifold is a Riemannian manifold $\left(M^{2 n}, g\right)$ equipped with a tensor field J of type $(1,1)$ such that for all vectors fiels X, Y on M the following two conditions are satisfied:

$$
J^{2}(X)=-X, \quad g(J X, J Y)=g(X, Y)
$$

An almost complex stucture J is integrable, and hence the manifold is a complex manifold, if and only if its Nijenhuis tensor N_{j} vanishes, with

$$
N_{j}(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y] .
$$

Any almost Hermitian manifold (M, g, J) possesses a differential 2-form Ω, called the fundamental 2-form or the Kähler 2-form, defined by

$$
\begin{equation*}
\Omega(X, Y)=g(X, J Y) \tag{1}
\end{equation*}
$$

(M, J, g) is then called almost Kähler if Ω is closed i.e. $d \Omega=0$. An almost Kähler manifold with integrable J is called a Kähler manifold, and thus is characterized by the conditions: $d \Omega=0$ and $N=0$. One can prove that these both conditions combined are equivalent with the single condition

$$
\nabla J=0
$$

An almost quaternionic metric manifold is a quintuple $\left(M, g, J_{1}, J_{2}, J_{3}\right)$, where

$$
\left\{\begin{array}{l}
(1):(M, g) \text { is a Riemannian manifold; } \tag{2}\\
(2):\left(g, J_{\alpha}\right) \text { is an almost Hermitian structure on } M \text { for } \alpha=1,2,3 \\
(3): J_{1} J_{2}=J_{3}, J_{2} J_{3}=J_{1}, J_{3} J_{1}=J_{2}
\end{array}\right.
$$

Almost quaternionic metric manifolds are of dimension $4 m$ and their nomenclature is related to that of almost Hermitian structures. According Calabi [9], for a structure to be hyperkählerian, it is sufficient that in $\left(g, J_{1}, J_{2}, J_{3}\right)$ two of these structures are kählerians. A differential 4-form is defined by

$$
\tilde{\Omega}=\sum_{\alpha=1}^{3} \Omega_{\alpha} \wedge \Omega_{\alpha}
$$

An almost quaternion metric manifold is quaternion kählerian manifold if and only if $\nabla \tilde{\Omega}=0$ [17].

Proposition 1. ([17], p 161) An almost quaternionic Hermitian manifold is called a quaternionic kähler manifold if an almost hypercomplex structure $J_{\alpha}, \alpha=1,2,3$ in any local coordinate neighborhood U satisfies

$$
\left\{\begin{array}{l}
\nabla_{X} J_{1}=\quad \omega_{3}(X) J_{2}-\omega_{2}(X) J_{3} \tag{3}\\
\nabla_{X} J_{2}=-\omega_{3}(X) J_{1}+\omega_{1}(X) J_{3} \\
\nabla_{X} J_{3}=\omega_{2}(X) J_{1}-\omega_{1}(X) J_{2}
\end{array}\right.
$$

for any vector field X on U, where ∇ is the Levi-Civita connection of the Riemannian metric, and ω_{α} are certain local 1-forms defined in U. In particular, if all ω_{α} for each U are vanishing, then the structure is called hyper-Kähler. Remark that if $\operatorname{dimM}>4$, a quaternionic Kähler manifold is an Einstein manifold.

By an almost contact metric manifold, one understands a quintuple $(M, g, \varphi, \xi, \eta)$, where
(1) ξ is a characteristic vector field;
(2) η is a differential 1 -form such that $\eta(\xi)=1$;
(3) φ is a tensor field of type $(1,1)$ satisfying $\varphi^{2} X=-X+\eta(X) \xi$;
(4) $g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)$.

Replacing J by φ, the fundamental 2-form ϕ is defined by

$$
\begin{equation*}
\phi(X, Y)=g(X, \varphi Y) \tag{4}
\end{equation*}
$$

Denoting by ∇ the Levi-Civita connection of g, the covariant derivative of η and the exterior differential of η are defined, respectively, by

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=g\left(Y, \nabla_{X} \xi\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
2 d \eta(X, Y)=\left(\nabla_{X} \eta\right) Y-\left(\nabla_{Y} \eta\right) X \tag{6}
\end{equation*}
$$

An almost contact metric manifold is said to be almost cosymplectic if the forms ϕ and η are closed, that is, $d \phi=d \eta=0$.
Such a manifold is said to be a contact metric manifold if $d \eta=\phi$. If, in addition, ξ is a Killing vector field, then M is said to be a K-contact manifold. It is well-known that a contact metric manifold is a K-contact manifold if and only if $\nabla_{X} \xi=-\varphi X$, for any vector field X on M. On the other hand, the almost contact metric structure of M is said to be normal if $[\varphi, \varphi](X, Y)=-2 d \eta(X, Y) \xi$, for any X and Y where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ, given by

$$
[\varphi, \varphi](X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] .
$$

A normal almost cosymplectic manifold is called a cosymplectic manifold. It is well-known that a necessary and sufficient condition for M to be cosymplectic is $\nabla \varphi=0$.

A normal contact metric manifold is called a Sasakian manifold. It can be proved that a Sasakian manifold is K-contact, and that an almost contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X, \tag{7}
\end{equation*}
$$

for any X, Y. Moreover, for a Sasakian manifold we have the following identities:

$$
\begin{equation*}
\nabla_{X} \xi=-\varphi X, \quad\left(\nabla_{X} \eta\right)(Y)=-g(\varphi X, Y) \tag{8}
\end{equation*}
$$

Let $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}$ be three almost contact structures such that each of them is compatible with the Riemannian structure g (i.e. $\left.g\left(\varphi_{i} X, \varphi_{i} Y\right)=g(X, Y)-\eta_{i}(X) \eta_{i}(Y), i=1,2,3\right)$. We say that $\left(M, g,\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}\right)$ is an almost contact metric manifold 3 -structure if for any cyclic permutation (i, j, k) of $\{1,2,3\}$ the following conditions are satisfied :

$$
\left\{\begin{array}{l}
(1): \eta_{i}\left(\xi_{j}\right)=\eta_{j}\left(\xi_{i}\right)=0 \tag{9}\\
(2): \varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i}=\xi_{k} \\
(3): \varphi_{i} \circ \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \circ \varphi_{i}+\eta_{i} \otimes \xi_{j}=\varphi_{k} \\
(4): \eta_{i} \circ \varphi_{j}=-\eta_{j} \circ \varphi_{i}=\eta_{k}
\end{array}\right.
$$

Almost contact metric manifolds 3-structure are of odd dimension $4 m+3$. If each $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}$ is a Sasakian structure then almost contact metric manifolds 3-structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}$ is called a Sasakian 3-structure and $\xi_{1}, \xi_{2}, \xi_{3}$ are orthonormal vector fields, satisfying

$$
\left[\xi_{i}, \xi_{j}\right]=2 \xi_{k}
$$

for any cyclic permutation (i, j, k) of $\{1,2,3\}$ ([6], p.294). Such a manifold with a Sasakian 3 -structure is called a 3-Sasakian manifold. Remark that a 3-Sasakian manifold is an Einstein manifold.

3. \mathscr{D}-isometric warping

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold with $\operatorname{dim} M=2 n+1$. The equation $\eta=0$ defines a $2 n$-dimensional distribution \mathscr{D} on M. By an $2 n$-isometric deformation or \mathscr{D}-isometric deformation we mean a change of structure tensors of the form

$$
\bar{\varphi}=\varphi, \quad \bar{\eta}=a \eta, \quad \bar{\xi}=\frac{1}{a} \xi, \quad \bar{g}=g+\left(a^{2}-1\right) \eta \otimes \eta, \quad a \neq 0 .
$$

If $(M, \varphi, \xi, \eta, g)$ is an almost contact metric structure , then $(\bar{M}, \bar{\varphi}, \bar{\xi}, \bar{\eta}, \bar{g})$ is also an almost contact metric structure.
The notion of \mathscr{D}-homothetic warping is very well known [2], [3], [4] and [8]. Given a Riemannian manifolds (M_{1}, g_{1}) and an almost contact metric manifold $\left(M_{2}, \varphi_{2}, \xi_{2}, \eta_{2}, g_{2}\right)$, and a positive function f on M_{1}, the Riemannian metric $g=$ $g_{1}+f g_{2}+f(f-1) \eta_{2} \otimes \eta_{2}$ on $M_{1} \times M_{2}$ is known as a \mathscr{D}-homothetically warped metric.

Now consider the product of a Riemannian manifold $\left(M_{1}, g_{1}\right)$ and an almost contact metric manifold $\left(M_{2}, \varphi_{2}, \xi_{2}, \eta_{2}, g_{2}\right)$. On $M_{1} \times M_{2}$ define a metric g by

$$
g=g_{1}+g_{2}+\left(f^{2}-1\right) \eta_{2} \otimes \eta_{2}
$$

where f is a function non-zero everywhere on M_{1}.
Notice that, for all X vectors field on M_{2} orthogonal to ξ_{2} we have $g(X, X)=g_{2}(X, X)$. That is why, we refer to this construction as \mathscr{D}-isometric warping.

Using the Koszul formula for the Levi-Civita connection of a Riemannian metric

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(X, Z)-Z g(X, Y)+g([X, Y], Z)+g([Z, X], Y)-g([Y, Z], X)
$$

where $X=\left(X_{1}, X_{2}\right), Y=\left(Y_{1}, Y_{2}\right)$ and $Z=\left(Z_{1}, Z_{2}\right)$, one can compute the Levi-Civita connection of the \mathscr{D}-isometrically warped metric.

Proposition 2. Let ∇^{1}, ∇^{2} and ∇ be connections of g_{1}, g_{2} and g respectively. For all vectors field X_{1}, Y_{1}, Z_{1} tangent to M_{1} and independent of M_{2} and similarly for X_{2}, Y_{2}, Z_{2} we have:

$$
\begin{aligned}
& \nabla_{X_{1}} Y_{1}=\nabla_{X_{1}}^{1} Y_{1} \\
& \nabla_{X_{1}} Y_{2}=\nabla_{Y_{2}} X_{1}=\frac{X_{1}(f)}{f} \eta_{2}\left(Y_{2}\right) \xi_{2}, \\
& g\left(\nabla_{X_{2}} Y_{2}, Z_{2}\right)=g\left(\nabla_{X_{2}}^{2} Y_{2}, Z_{2}\right)+\left(f^{2}-1\right)\left(\frac{1}{2}\left(g_{2}\left(\nabla_{X_{2}}^{2} \xi_{2}, Y_{2}\right)+g_{2}\left(\nabla_{Y_{2}}^{2} \xi_{2}, X_{2}\right)\right) \eta_{2}\left(Z_{2}\right)+d \eta_{2}\left(X_{2}, Z_{2}\right) \eta_{2}\left(Y_{2}\right)+d \eta_{2}\left(Y_{2}, Z_{2}\right) \eta_{2}\left(X_{2}\right)\right),
\end{aligned}
$$

$$
\text { which in turn can be used to find } \quad g\left(\nabla_{X_{2}} Y_{2}, Z_{1}\right)=-g\left(\nabla_{X_{2}} Z_{1}, Y_{2}\right) .
$$

Let σ denote the second fundamental form of M_{2} in $M_{1} \times M_{2}$ and while f is a function on M_{1}, for emphasis we denote its gradient by $\operatorname{grad}_{1} f$. Then we have the following Theorem.

Theorem 3. For an almost contact metric manifold $\left(M_{2}, \varphi_{2}, \xi_{2}, \eta_{2}, g_{2}\right)$ and a \mathscr{D}-isometrically warped metric on $M_{1} \times M_{2}$ we have the following:

1. M_{1} is a totally geodesic submanifold.
2. M_{2} is a cylindrical submanifold and its second fundamental form is given by

$$
\sigma_{2}\left(X_{2}, Y_{2}\right)=-\frac{1}{2} \eta_{2}\left(X_{2}\right) \eta_{2}\left(Y_{2}\right) \operatorname{grad}_{1} f^{2}
$$

3. The mean curvature vector of M_{2} in $M_{1} \times M_{2}$ is

$$
\mathscr{H}=-\frac{1}{2(2 n+1)} \operatorname{grad}_{1} f^{2}
$$

4. If in addition, $d \eta_{2}\left(\xi_{2}, X_{2}\right)=0$ for every X_{2} (equivalently the integral curves of ξ_{2} are geodesics), then the Reeb vector field ξ_{2} is g-Killing if and only if it is g_{2}-Killing.
Proof. Recall that a submanifold N of a Riemannian manifold $\left(M^{2 n+1}, g\right)$ is called quasi-umbilical [10] if its second fundamental tensor has the form

$$
\omega(X, Y)=\alpha g(X, Y) \rho+\beta \eta(X) \eta(Y) \rho
$$

where α, β are scalars, X, Y are vectors fields on N and ρ is the unit normal vector field

- If $\alpha=0$, then N is cylindrical.
- If $\beta=0$, then N is umbilical.
- If $\alpha=\beta=0$, then N is geodesic.

1. Let σ_{1} be the second fundamental form of M_{1} in $M_{1} \times M_{2}$. Since $\nabla_{X_{1}} Y_{1}=\nabla_{X_{1}}^{1} Y_{1}$, then

$$
\sigma_{1}=\nabla_{X_{1}} Y_{1}-\nabla_{X_{1}}^{1} Y_{1}=0
$$

2. Let σ_{2} be the second fundamental form of M_{2} in $M_{1} \times M_{2}$. We have

$$
\begin{aligned}
g\left(\nabla_{X_{2}} Y_{2}, Z_{1}\right) & =-f Z_{1}(f) \eta_{2}\left(X_{2}\right) \eta_{2}\left(Y_{2}\right) \\
& =g_{1}\left(-\frac{1}{2} \eta_{2}\left(X_{2}\right) \eta_{2}\left(Y_{2}\right) \operatorname{grad}_{1} f^{2}, Z_{1}\right)
\end{aligned}
$$

since $g\left(\nabla_{X_{2}}^{2} Y_{2}, Z_{1}\right)=0$ then

$$
\sigma_{2}\left(X_{2}, Y_{2}\right)=-\frac{1}{2} \eta_{2}\left(X_{2}\right) \eta_{2}\left(Y_{2}\right) \operatorname{grad}_{1} f^{2}
$$

3. Knowing that The mean curvature vector of M_{2} in $M_{1} \times M_{2}$ is defined by

$$
\mathscr{H}=\frac{1}{2 n+1} \operatorname{tr}_{g_{2}} \quad \text { and } \quad \sigma_{2}=\frac{1}{2 n+1} \sum_{i=1}^{2 n+1} \sigma_{2}\left(e_{i}, e_{i}\right)
$$

where $\left\{e_{i}\right\}_{i=1,2 n+1}$ orthonormal basis of M_{2} then,

$$
\begin{aligned}
\mathscr{H} & =\frac{1}{2 n+1} \sum_{i=1}^{i=2 n+1} \sigma_{2}\left(e_{i}, e_{i}\right) \\
& =-\frac{1}{2(2 n+1)} \operatorname{grad}_{1} f^{2} \sum_{i=1}^{i=2 n+1} \eta_{2}\left(e_{i}\right) \eta_{2}\left(e_{i}\right) \\
& =-\frac{1}{2(2 n+1)} \operatorname{grad}_{1} f^{2}
\end{aligned}
$$

4. For all $X=X_{1}+X_{2}$ and $Y=Y_{1}+Y_{2}$ two vectors fields on $M_{1} \times M_{2}$ we have

$$
\xi_{2} \text { is } g-\text { Killing } \Leftrightarrow g\left(\nabla_{X} \xi_{2}, Y\right)+g\left(\nabla_{Y} \xi_{2}, X\right)=0 .
$$

So,

$$
\begin{align*}
g\left(\nabla_{X} \xi_{2}, Y\right)+g\left(\nabla_{Y} \xi_{2}, X\right)= & g\left(\nabla_{X_{1}+X_{2}} \xi_{2}, Y_{1}+Y_{2}\right)+g\left(\nabla_{Y_{1}+Y_{2}} \xi_{2}, X_{1}+X_{2}\right) \\
= & g\left(\nabla_{X_{1}} \xi_{2}, Y_{2}\right)+g\left(\nabla_{X_{2}} \xi_{2}, Y_{1}\right)+g\left(\nabla_{X_{2}} \xi_{2}, Y_{2}\right) \\
& +g\left(\nabla_{Y_{1}} \xi_{2}, X_{2}\right)+g\left(\nabla_{Y_{2}} \xi_{2}, X_{1}\right)+g\left(\nabla_{Y_{2}} \xi_{2}, X_{2}\right) \tag{10}
\end{align*}
$$

suppose that $d \eta_{2}\left(\xi_{2}, X_{2}\right)=0$ equivalent to $\xi_{2} \eta_{2}\left(X_{2}\right)=\eta_{2}\left(\nabla_{\xi_{2}}^{2} X_{2}\right)$ (i.e. $\left.\nabla_{\xi_{2}}^{2} \xi_{2}=0\right)$ then, we can easily verify the following statements:

$$
\begin{gathered}
g\left(\nabla_{X_{1}} \xi_{2}, Y_{2}\right)=\frac{1}{2} X_{1}\left(f^{2}\right) \eta_{2}\left(Y_{2}\right) \\
\tilde{g}\left(\nabla_{X_{2}} \xi_{2}, Y_{1}\right)=-\frac{1}{2} Y^{\prime}\left(f^{2}\right) \eta_{2}\left(X_{2}\right) \\
g\left(\nabla_{X_{2}} \xi_{2}, Y_{2}\right)=g\left(\nabla_{X_{2}}^{2} \xi_{2}, Y_{2}\right)+\left(f^{2}-1\right) d \eta_{2}\left(X_{2}, Y_{2}\right)
\end{gathered}
$$

Replacing in formula (10), we get

$$
\begin{aligned}
g\left(\nabla_{X} \xi_{2}, Y\right)+g\left(\nabla_{Y} \xi_{2}, X\right) & =g\left(\nabla_{X_{2}} \xi_{2}, Y_{2}\right)+g\left(\nabla_{Y_{2}}^{2} \xi_{2}, X_{2}\right) \\
& =g_{2}\left(\nabla_{X_{2}}^{2} \xi_{2}, Y_{2}\right)+g_{2}\left(\nabla_{Y_{2}}^{2} \xi_{2}, X_{2}\right)
\end{aligned}
$$

This completes the proof.

4. From a single Sasakian structure to a 1-parameter family of Kählerian structures.

For our first application of the idea of \mathscr{D}-isometric warping we consider the case where $M_{1}=\mathbb{R}, M_{2}=M$ is a Sasakian manifold and the metric

$$
\begin{equation*}
\tilde{g}=h^{2}\left(d t^{2}+g+\left(f^{2}-1\right) \eta \otimes \eta\right) \tag{11}
\end{equation*}
$$

where f, h are two functions non-zero everywhere on \mathbb{R}. For brevity, we denote the unit tangent field to \mathbb{R} by ∂_{t}. In this case the proposition (2) becomes:

Proposition 4. Let $(M, \varphi, \xi, \eta, g)$ be a Sasakian manifold. Let ∇ and $\tilde{\nabla}$ denote the Riemannian connections of g, and \tilde{g} respectively. For all X, Y vector fields tangent to M and independent of \mathbb{R}, we have

$$
\begin{aligned}
& \tilde{\nabla}_{\partial_{t}} \partial_{t}=\frac{h^{\prime}}{h} \partial_{t} \\
& \tilde{\nabla}_{\partial_{t}} X=\tilde{\nabla}_{X} \partial_{t}=\frac{h^{\prime}}{h} X+\frac{f^{\prime}}{f} \eta(X) \xi \\
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+\left(1-f^{2}\right)(\eta(X) \varphi Y+\eta(Y) \varphi X)-\frac{1}{h}\left(h^{\prime} g(X, Y)+\left(f(f h)^{\prime}-h^{\prime}\right) \eta(X) \eta(Y)\right) \partial_{t}
\end{aligned}
$$

Next, we introduce a class of almost complex structure \tilde{J} on manifold \tilde{M} :

$$
\begin{equation*}
\tilde{J}\left(a \partial_{t}, X\right)=\left(f \eta(X) \partial_{t}, \varphi X-\frac{a}{f} \xi\right) \tag{12}
\end{equation*}
$$

for any vector filds X of M where f, h are functions on \mathbb{R} and $f h \neq 0$ everywhere.
That $J^{2}=-I$ is easily checked and for all $\tilde{X}=\left(a \partial_{t}, X\right), \tilde{Y}=\left(b \partial_{t}, Y\right)$ on \tilde{M} we can see that \tilde{g} is almost Hermitian with respect to \tilde{J} i.e.

$$
\tilde{g}(\tilde{J} \tilde{X}, \tilde{J} \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y})
$$

Knowing that $\left(\nabla_{\tilde{X}} J\right) \tilde{Y}=\nabla_{\tilde{X}}(\tilde{J} \tilde{Y})-\tilde{J} \nabla_{\tilde{X}} \tilde{Y}$ with using the proposition (4) and formulas (7) and (8), we get the following proposition:

Proposition 5. Let $(M, \varphi, \xi, \eta, g)$ be a Sasakian manifold. Let ∇ and $\tilde{\nabla}$ denote the Riemannian connections of g and \tilde{g} respectively. For all X, Y vector fields tangent to M and independent element of \mathbb{R}, we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} \tilde{J}\right) \partial_{t} & =\left(f-\frac{h^{\prime}}{h}\right) \varphi X \\
\left(\tilde{\nabla}_{X} \tilde{J}\right) Y & =\left(f-\frac{h^{\prime}}{h}\right)\left(\frac{1}{f} g(X, Y) \xi-f \eta(Y) X-\left(\frac{1}{f}-f\right) \eta(X) \eta(Y) \xi+g(X, \varphi Y) \partial_{t}\right)
\end{aligned}
$$

Therefore, summing up the arguments above, we have the following main theorem:
Theorem 6. Let $(M, \varphi, \xi, \eta, g)$ be a Sasakian manifold. The almost Hermitian structure constructed in (11) and (12) is Kählerian if and only if $f=\frac{h^{\prime}}{h}$.
Remark 7. In this theorem, for $h=c e^{t}$ where $c>0$ i.e. $f=1$ we get the result of Oubiña (see [11]).
Remark 8. In [11], Oubiña showed that there is a one-to-one correspondence between Sasakian and Kählerian structures and in [8], Blair showed by another way this correspondence. Here again, we generalized this correspondence by building another 1-parameter family of Kählérian structures from a single Sasakian structure (see [2]).

Example 9. For this example, we rely on the example of Blair [5]. We know that \mathbb{R}^{3} with coordinates (x, y, z), admits the Sasakian structure

$$
g=\frac{1}{4}\left(\begin{array}{ccc}
1+y^{2} & 0 & -y \\
0 & 1 & 0 \\
-y & 0 & 1
\end{array}\right), \quad \varphi=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & y & 0
\end{array}\right), \quad \xi=2\left(\frac{\partial}{\partial z}\right), \quad \eta=\frac{1}{2}(d z-y d x)
$$

So, using this structure, we can define a family of Kählerian structures ($\tilde{J}, \tilde{g})$ on \mathbb{R}^{4} as follows

$$
\begin{gathered}
\tilde{g}=\frac{1}{4}\left(\begin{array}{cccc}
4 h^{2} & 0 & 0 & 0 \\
0 & \left(h^{2}+h^{\prime 2} y^{2}\right) & 0 & -h^{\prime 2} y \\
0 & 0 & h^{2} & 0 \\
0 & -h^{\prime 2} y & 0 & h^{\prime 2}
\end{array}\right) \\
\tilde{J}=\left(\begin{array}{cccc}
0 & -\frac{1}{2} y h & 0 & \frac{1}{2} h \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-\frac{2}{h} & 0 & y & 0
\end{array}\right)
\end{gathered}
$$

5. From 3-Sasakian structure to quaternionic Kählerian structure

For a second application of the idea of \mathscr{D}-isometric warping we consider a three almost contact structures $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}$ on a manifold M of dimension $4 n+3$ and we define an almost hypercomplex structure $\tilde{J}_{\alpha}, \alpha=1,2,3$ on $\tilde{M}^{4 n+4}=M \times \mathbb{R}$ by

$$
\begin{equation*}
\tilde{J}_{\alpha}\left(a \partial_{t}, X\right)=\left(f \eta_{\alpha}(X) \partial_{t}, \varphi_{\alpha} X-\frac{a}{f} \xi_{\alpha}\right) \tag{13}
\end{equation*}
$$

then we give a Riemannian metric on \tilde{M} by

$$
\begin{equation*}
\tilde{g}=h^{2}\left(d t^{2}+g+\left(f^{2}-1\right) \sum_{i=1}^{i=3} \eta_{i} \otimes \eta_{i}\right) \tag{14}
\end{equation*}
$$

where f, h are functions on \mathbb{R} such that $f h \neq 0$ everywhere and $d t^{2}$ is the usual metric on \mathbb{R}. Then by (2) and (9) one can showed the following:

Proposition 10. Let $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}$ be an almost contact metric 3-structure on a manifold M of dimension $4 n+3$ and f, h are functions on \mathbb{R} such that fh$\neq 0$ everywhere. Then $\left(\tilde{M}^{4 n+1},\left(\tilde{J}_{\alpha}\right)_{\alpha=1}^{3}, \tilde{g}\right)$ constructed as above is an almost quaternionic Hermitian manifold.

Proof. Obvious.
Next, let $\left(M^{4 n+3},\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}, g\right)$ be a 3-Sasakian manifold then, from proposition (4) we can conclude that

$$
\begin{aligned}
& \tilde{\nabla}_{\partial_{t}} \partial_{t}=\frac{h^{\prime}}{h} \partial_{t}, \\
& \tilde{\nabla}_{\partial_{t}} X=\tilde{\nabla}_{X} \partial_{t}=\frac{h^{\prime}}{h} X+\frac{f^{\prime}}{f} \eta_{i}(X) \xi_{i}, \\
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+\left(1-f^{2}\right)\left(\eta_{i}(X) \varphi_{i} Y+\eta_{i}(Y) \varphi_{i} X\right)-\frac{1}{h}\left(h^{\prime} g(X, Y)+\left(f(f h)^{\prime}-h^{\prime}\right) \eta_{i}(X) \eta_{i}(Y)\right) \partial_{t} .
\end{aligned}
$$

Note: we will use the convention of Einstein. (Whenever an index is repeated, it is a dummy index and is summed from 1 to $3)$.

Now, we compute directly $\tilde{\nabla} \tilde{J}_{\alpha}, \alpha=1,2,3$ we get
Proposition 11. Let $\left(M^{4 n+3},\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}, g\right)$ be 3-Sasakian manifold. Let ∇ and $\tilde{\nabla}$ denote the Riemannian connections of g, and \tilde{g} respectively. For all X, Y vector fields tangent to M and independent of \mathbb{R}, we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} \tilde{J}_{\alpha}\right) \partial_{t}= & \left(f-\frac{h^{\prime}}{h}\right) \varphi_{\alpha} X+\frac{1}{f}\left(1-f^{2}-f^{\prime}\right) \eta_{i}(X) \varphi_{\alpha} \xi_{i}, \quad \alpha=1,2,3 \\
\left(\tilde{\nabla}_{X} \tilde{J}_{1}\right) Y= & \left(f-\frac{h^{\prime}}{h}\right) A_{1}+\left(1-f^{2}+f^{\prime}\right) B_{1}+2\left(1-f^{2}\right)\left(\eta_{3}(X) \varphi_{2} Y-\eta_{2}(X) \varphi_{3} Y\right) \\
& -\frac{1}{h}\left(f(f h)^{\prime}-h^{\prime}\right)\left(\eta_{3}(X) \eta_{2}(Y)-\eta_{2}(X) \eta_{3}(Y)\right) \partial_{t}, \\
\left(\tilde{\nabla}_{X} \tilde{J}_{2}\right) Y= & \left(f-\frac{h^{\prime}}{h}\right) A_{2}+\left(1-f^{2}+f^{\prime}\right) B_{2}+2\left(1-f^{2}\right)\left(\eta_{1}(X) \varphi_{3} Y-\eta_{3}(X) \varphi_{1} Y\right) \\
& -\frac{1}{h}\left(f(f h)^{\prime}-h^{\prime}\right)\left(\eta_{1}(X) \eta_{3}(Y)-\eta_{3}(X) \eta_{1}(Y)\right) \partial_{t}, \\
\left(\tilde{\nabla}_{X} \tilde{J}_{3}\right) Y= & \left(f-\frac{h^{\prime}}{h}\right) A_{3}+\left(1-f^{2}+f^{\prime}\right) B_{3}+2\left(1-f^{2}\right)\left(\eta_{2}(X) \varphi_{1} Y-\eta_{1}(X) \varphi_{2} Y\right), \\
& -\frac{1}{h}\left(f(f h)^{\prime}-h^{\prime}\right)\left(\eta_{2}(X) \eta_{1}(Y)-\eta_{1}(X) \eta_{2}(Y)\right) \partial_{t},
\end{aligned}
$$

others $=0$, and

$$
\begin{aligned}
A_{\alpha} & =\left(f-\frac{h^{\prime}}{h}\right)\left(\frac{1}{f} g(X, Y) \xi_{\alpha}-f \eta_{\alpha}(Y) X+\left(f-\frac{1}{f}\right) \eta_{i}(X) \eta_{i}(Y) \xi_{\alpha}\right) \\
B_{\alpha} & =\left(1-f^{2}+f^{\prime}\right) \eta_{\alpha}(X)\left(\eta_{\alpha}(X) \xi_{i}-\eta_{i}(X) \xi_{\alpha}\right)
\end{aligned}
$$

On the other hand, we have

$$
\left\{\begin{array}{l}
\left(\omega_{3}(X) J_{2}-\omega_{2}(X) J_{3}\right) \partial_{t}=\frac{1}{f}\left(\omega_{2}(X) \xi_{3}-\omega_{3}(X) \xi_{2}\right) \\
\left(-\omega_{3}(X) J_{1}+\omega_{1}(X) J_{3}\right) \partial_{t}=\frac{1}{f}\left(\omega_{3}(X) \xi_{1}-\omega_{1}(X) \xi_{3}\right) \\
\left(\omega_{2}(X) J_{1}-\omega_{1}(X) J_{2}\right) \partial_{t}=\frac{1}{f}\left(\omega_{1}(X) \xi_{2}-\omega_{2}(X) \xi_{1}\right)
\end{array}\right.
$$

and

$$
\begin{cases}\left(\omega_{3}(X) J_{2}-\omega_{2}(X) J_{3}\right) Y & =\omega_{3}(X) \varphi_{2} Y-\omega_{2}(X) \varphi_{3} Y+f\left(\omega_{3}(X) \eta_{2}(Y)-\omega_{2}(X) \eta_{3}(Y)\right) \partial_{t} \\ \left.-\omega_{3}(X) J_{1}+\omega_{1}(X) J_{3}\right) Y & =-\omega_{3}(X) \varphi_{1} Y+\omega_{1}(X) \varphi_{3} Y+f\left(-\omega_{3}(X) \eta_{1}(Y)+\omega_{1}(X) \eta_{3}(Y)\right) \partial_{t}, \\ \left(\omega_{2}(X) J_{1}-\omega_{1}(X) J_{2}\right) Y & =\omega_{2}(X) \varphi_{1} Y-\omega_{1}(X) \varphi_{2} Y+f\left(\omega_{2}(X) \eta_{1}(Y)-\omega_{1}(X) \eta_{2}(Y)\right) \partial_{t}\end{cases}
$$

Now, we will make a comparison using the proposition (1) we get the following equations:

$$
\begin{gathered}
f=\frac{h^{\prime}}{h}, \quad 1-f^{2}+f^{\prime}=0 \\
\omega_{\alpha}=\left(1-f^{\prime}-f^{2}\right) \eta_{\alpha}=2\left(1-f^{2}\right) \eta_{\alpha}=-\frac{1}{h}\left(f(f h)^{\prime}-h^{\prime}\right) \eta_{\alpha}
\end{gathered}
$$

and moreover that these equations are equivalent to the OED system

$$
f=\frac{h^{\prime}}{h}, \quad 1-f^{2}+f^{\prime}=0, \quad \omega_{\alpha}=2\left(1-f^{2}\right) \eta_{\alpha}
$$

Solving the differential equation system, we obtain the following theorem:
Theorem 12. Let $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1}^{3}$ be a 3-Sasakian manifold. Then the almost quaternionic Hermitian structure constructed in (13) and (14) is:

1. Hyper-Kählerian structure if and only if $f=1$ and $h=c e^{t}$ where $c>0$.
2. Quaternionic Kählerian structure if and only if

$$
f(t)=-\tanh \left(t+c_{1}\right), \quad \text { and } \quad h(t)=\frac{c_{2}}{\cosh \left(t+c_{1}\right)}
$$

where c_{1} and c_{2} are two arbitrary constants.
Remark 13. In [14], T. Tshikuna-Matamba showed that the method of Oubiña [11], serves to define an hyperKählerian manifold using a 3-Sasakian manifold. Here, for $f=1$ and $h=c e^{t},(c>0)$, we can see immediatly that the idea of Tshikuna-Matamba is a particular case.

6. Doubly D-isometric warping

Finally recall the notion of a doubly warped product metric, namely

$$
g=F g_{1}+f g_{2}
$$

where f is a positive function on M_{1} and F is a positive function on M_{2}. If now both $\left(M_{1}, \varphi_{1}, \xi_{1}, \eta_{1}, g_{1}\right)$ and $\left(M_{2}, \varphi_{2}, \xi_{2}, \eta_{2}, g_{2}\right)$ are almost contact metric manifolds we can define a doubly \mathscr{D}-isometrically warped metric by

$$
g=g_{1}+\left(F^{2}-1\right) \eta_{1} \otimes \eta_{1}+g_{2}+\left(f^{2}-1\right) \eta_{2} \otimes \eta_{2}
$$

where F and f are two functions non-zero everywhere on M_{1} and M_{2} respectively. On the other hand, we can introduce a class of almost complex structure J on the product manifold $M_{1} \times M_{2}$:

$$
\tilde{J}\left(X_{1}, X_{2}\right)=\left(\varphi_{1} X_{1}-\frac{f}{F} \eta_{1}\left(X_{1}\right) \xi_{2}, \varphi_{2} X_{2}+\frac{F}{f} \eta_{2}\left(X_{2}\right) \xi_{1}\right)
$$

then it is easily seen that (J, g) is an almost Hermitian structure on the product $M_{1} \times M_{2}$. While this is an area of possible future research.

7. Conclusion

We know that through a conformal and related changes of the metric we can build several bridges between the various known structures (almost complex, almost contact, almost Golden,...). Here, we introduced a certain deformation called " D-isometric warping" and we studied some basic properties. As applications, we constructed a 1-parameter family of Kahlerian structures from a single Sasakian structure with this deformation. Then, a quaternionic Kahlerian structure from a 3-Sasakian structures.

8. Acknowledgements

The author would like to thank the referees for their helpful suggestions and their valuable comments which helped to improve the manuscript.

References

[1] Bär C., Real Killing spinors and holonomy, Comm. Math. Phys., 154, 509-521, 1993.
${ }^{[2]}$ Beldjilali G., Belkhelfa M., Kählerian structures on \mathscr{D}-homothetic bi-warping, JGSP 42, 1-13, 2016.
${ }^{[3]}$ Beldjilali G., Belkhelfa M., Kählerian structures on generalized doubly \mathscr{D}-homothetic bi-warping, Afr. Diasp. J. of Math. 21(2), 1-14, 2018.
${ }^{\text {[4] Bejan C. and Güler S., Laplace, Einstein and Related Equations on D-General Warping, Mediterr. J. Math. }}$ https://doi.org/10.1007/s00009-018-1283-9, 2019.
${ }^{[5]}$ Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Nots in Mathematics 509, Springer, 117-35, 976.
${ }^{[6]}$ Blair D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics Vol. 203, Birhauser, Boston, 2002.
${ }^{[7]}$ Blair D. E., Oubiña J. A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1), 199-207, 1990.
${ }^{[8]}$ Blair D. E., \mathscr{D}-homothetic warping, Publications de l'institut mathématique, Nouvelle série, tome 94 (108), 47-54, 2013.
${ }^{[9]}$ Calabi E., Métriques kählériennes et fibrés holomorphes, Ann. Scient. Ec. Norm. Sup., 12, pp. 269-294, 1979.
${ }^{[10]}$ Chen B. Y., Geometry of submanifolds, Marcel Dekker. Ine. New York, 1973.
${ }^{[11]}$ Oubiña J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32, 187-193,1985.
${ }^{[12]}$ Tanno S., The topology of contact Riemannian manifolds, Illinois J. Math. 12, 700-717, 1968.
[13] Tanno S., Partially conformal transformations with respect to ($m-1$)-dimensional distribution of m-dimensional Riemannian manifolds, Tohoku Math. J. 17(2), 358-409, 1965.
${ }^{[14]}$ Tshikuna-Matamba T., Quelques classes des variétés métriques á 3-structures presque de contact, Annals of University of Craiova, Math. Comp. Sci. Ser. Vol. 31, Pages 94-101, 2004.
[15] Watanabe Y., Almost Hermitian and Kähler structures on product manifolds, Proc of the Thirteenth International Workshop on Diff. Geom. 13, 1-16, 2009.
[16] Watanabe Y., Hiroshi M., From Sasakian 3-structures to quaternionic geometry, Archivum Mathematicum, Vol. 34 (3), 379-386, 1998.
${ }^{[17]}$ Yano, K. and Kon, M., Structures on Manifolds, Series in Pure Math., Vol 3, World Sci.,1984.

