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Structures and D-isometric warping
BELDJILALI Gherici

Abstract
We introduce the notion of D-isometric warping and we use it to construct a 1-parameter family of Kählerian
structures from a single Sasakian structure and also a quaternionic Kählerian structure from a Sasakian
3-structure.
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1. Introduction
The product of an almost contact manifold M and the real line R carries a natural almost complex structure. When this structure
is integrable the almost contact structure is said to be normal.

In 1985, using the warped product M× f R where f ∈C∞(R+), Oubiña showed that there is a one-to-one correspondence
between Sasakian and Kähler structures [11].

In 2013, building on the work of Tanno [12] (the homothetic deformation on contact metric manifold), Blair [8] introduced
the notion of D-homothetic warping. He used it to show by another way that there is a one-to-one correspondence between
Sasakian and Kählerian structures too.

Recently, Beldjilali and Belkhelfa [2] have generalized the idea of Blair, they introduced the notion of generalized
D-homothetic bi-warping and they proved that every Sasakian manifold M generates a 1-parameter family of Kählerian
manifolds. After that, they gives the notion of generalized doubly D-homothetic bi-warping [3].

By a similar techniques of Oubiña, Bär [1] and Tshikuna-Matamba [14] pointed out that there is one-to-one correspondence
between Sasakian 3-structures and hyperKähler structures. In [15] and [16] we find the construction of quaternionic kählerian
structure from 3-Sasakian structures.

Here, after giving preliminary background on almost Hermitian structures and almost contact metric manifolds in Section 2,
we introduce in Section 3 the notion of D-isometric warping and prove some basic properties. In Section 4 we give the first
application for this product. Starting from a Sasakian manifold M, we construct a 1-parameter family of Kählerian structures
on the product of a R×M which is different from that in [2] and we construct an example. In Section 5, we give the second
application, we constructed a quaternionic kählerian structure from 3-Sasakian structures.

2. Preliminaries on manifolds
Recall that an almost Hermitian manifold is a Riemannian manifold (M2n,g) equipped with a tensor field J of type (1,1) such
that for all vectors fiels X ,Y on M the following two conditions are satisfied:

J2(X) =−X , g(JX ,JY ) = g(X ,Y ).



An almost complex stucture J is integrable, and hence the manifold is a complex manifold, if and only if its Nijenhuis
tensor N j vanishes, with

N j(X ,Y ) = [JX ,JY ]− [X ,Y ]− J[X ,JY ]− J[JX ,Y ].

Any almost Hermitian manifold (M,g,J) possesses a differential 2-form Ω, called the fundamental 2-form or the Kähler 2-form,
defined by

Ω(X ,Y ) = g(X ,JY ). (1)

(M,J,g) is then called almost Kähler if Ω is closed i.e. dΩ = 0. An almost Kähler manifold with integrable J is called a Kähler
manifold, and thus is characterized by the conditions: dΩ = 0 and N = 0. One can prove that these both conditions combined
are equivalent with the single condition

∇J = 0.

An almost quaternionic metric manifold is a quintuple (M,g,J1,J2,J3), where (1) : (M,g) is a Riemannian mani f old;
(2) : (g,Jα) is an almost Hermitian structure on M f or α = 1,2,3;
(3) : J1J2 = J3, J2J3 = J1, J3J1 = J2.

(2)

Almost quaternionic metric manifolds are of dimension 4m and their nomenclature is related to that of almost Hermitian
structures. According Calabi [9], for a structure to be hyperkählerian, it is sufficient that in (g,J1,J2,J3) two of these structures
are kählerians. A differential 4-form is defined by

Ω̃ =
3

∑
α=1

Ωα ∧Ωα .

An almost quaternion metric manifold is quaternion kählerian manifold if and only if ∇Ω̃ = 0 [17].

Proposition 1. ([17], p 161) An almost quaternionic Hermitian manifold is called a quaternionic kähler manifold if an almost
hypercomplex structure Jα , α = 1,2,3 in any local coordinate neighborhood U satisfies

 ∇X J1 = ω3(X)J2−ω2(X)J3
∇X J2 =−ω3(X)J1 +ω1(X)J3
∇X J3 = ω2(X)J1−ω1(X)J2

(3)

for any vector field X on U, where ∇ is the Levi-Civita connection of the Riemannian metric, and ωα are certain local 1-forms
defined in U. In particular, if all ωα for each U are vanishing, then the structure is called hyper-Kähler. Remark that if
dimM > 4, a quaternionic Kähler manifold is an Einstein manifold.

By an almost contact metric manifold, one understands a quintuple (M,g,ϕ,ξ ,η), where

(1) ξ is a characteristic vector field ;

(2) η is a differential 1-form such that η(ξ ) = 1;

(3) ϕ is a tensor field of type (1,1) satisfying ϕ2X =−X +η(X)ξ ;

(4) g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ).

Replacing J by ϕ , the fundamental 2-form φ is defined by

φ(X ,Y ) = g(X ,ϕY ). (4)

Denoting by ∇ the Levi-Civita connection of g, the covariant derivative of η and the exterior differential of η are defined,
respectively, by

(∇X η)Y = g(Y,∇X ξ ), (5)
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2dη(X ,Y ) = (∇X η)Y − (∇Y η)X , (6)

An almost contact metric manifold is said to be almost cosymplectic if the forms φ and η are closed, that is, dφ = dη = 0.

Such a manifold is said to be a contact metric manifold if dη = φ . If, in addition, ξ is a Killing vector field, then M
is said to be a K-contact manifold. It is well-known that a contact metric manifold is a K-contact manifold if and only if
∇X ξ =−ϕX , for any vector field X on M. On the other hand, the almost contact metric structure of M is said to be normal if
[ϕ,ϕ](X ,Y ) =−2dη (X ,Y )ξ , for any X and Y where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ , given by

[ϕ,ϕ](X ,Y ) = ϕ
2[X ,Y ]+ [ϕX ,ϕY ]−ϕ[ϕX ,Y ]−ϕ[X ,ϕY ].

A normal almost cosymplectic manifold is called a cosymplectic manifold. It is well-known that a necessary and suffı̀cient
condition for M to be cosymplectic is ∇ϕ = 0.

A normal contact metric manifold is called a Sasakian manifold. It can be proved that a Sasakian manifold is K-contact,
and that an almost contact metric manifold is Sasakian if and only if

(∇X ϕ)Y = g(X ,Y )ξ −η(Y )X , (7)

for any X ,Y . Moreover, for a Sasakian manifold we have the following identities:

∇X ξ =−ϕX , (∇X η)(Y ) =−g(ϕX ,Y ). (8)

Let (ϕi,ξi,ηi)
3
i=1 be three almost contact structures such that each of them is compatible with the Riemannian structure g (

i.e. g(ϕiX ,ϕiY ) = g(X ,Y )−ηi(X)ηi(Y ), i = 1,2,3). We say that
(
M,g,(ϕi,ξi,ηi)

3
i=1
)

is an almost contact metric manifold
3-structure if for any cyclic permutation (i, j,k) of {1,2,3} the following conditions are satisfied :

(1) : ηi(ξ j) = η j(ξi) = 0;
(2) : ϕiξ j =−ϕ jξi = ξk;
(3) : ϕi ◦ϕ j−η j⊗ξi =−ϕ j ◦ϕi +ηi⊗ξ j = ϕk;
(4) : ηi ◦ϕ j =−η j ◦ϕi = ηk.

(9)

Almost contact metric manifolds 3-structure are of odd dimension 4m+3. If each (ϕi,ξi,ηi)
3
i=1 is a Sasakian structure then

almost contact metric manifolds 3-structure (ϕi,ξi,ηi)
3
i=1 is called a Sasakian 3-structure and ξ1,ξ2,ξ3 are orthonormal vector

fields, satisfying
[ξi,ξ j] = 2ξk

for any cyclic permutation (i, j,k) of {1,2,3} ( [6], p.294). Such a manifold with a Sasakian 3-structure is called a 3-Sasakian
manifold. Remark that a 3-Sasakian manifold is an Einstein manifold.

3. D-isometric warping

Let (M,ϕ,ξ ,η ,g) be an almost contact metric manifold with dimM = 2n+1. The equation η = 0 defines a 2n-dimensional
distribution D on M. By an 2n-isometric deformation or D-isometric deformation we mean a change of structure tensors of the
form

ϕ = ϕ, η = aη , ξ =
1
a

ξ , g = g+(a2−1)η⊗η , a 6= 0.

If (M,ϕ,ξ ,η ,g) is an almost contact metric structure , then (M,ϕ,ξ ,η ,g) is also an almost contact metric structure.

The notion of D-homothetic warping is very well known [2], [3], [4] and [8]. Given a Riemannian manifolds (M1,g1)
and an almost contact metric manifold (M2,ϕ2,ξ2,η2,g2), and a positive function f on M1, the Riemannian metric g =
g1 + f g2 + f ( f −1)η2⊗η2 on M1×M2 is known as a D-homothetically warped metric.

Now consider the product of a Riemannian manifold (M1,g1) and an almost contact metric manifold (M2,ϕ2,ξ2,η2,g2).
On M1×M2 define a metric g by

g = g1 +g2 +( f 2−1)η2⊗η2
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where f is a function non-zero everywhere on M1.
Notice that, for all X vectors field on M2 orthogonal to ξ2 we have g(X ,X) = g2(X ,X). That is why, we refer to this construction
as D-isometric warping.

Using the Koszul formula for the Levi-Civita connection of a Riemannian metric

2g(∇XY,Z) = Xg(Y,Z)+Y g(X ,Z)−Zg(X ,Y )+g([X ,Y ],Z)+g([Z,X ],Y )−g([Y,Z],X),

where X = (X1,X2), Y = (Y1,Y2) and Z = (Z1,Z2), one can compute the Levi-Civita connection of the D-isometrically warped
metric.

Proposition 2. Let ∇1,∇2 and ∇ be connections of g1, g2 and g respectively. For all vectors field X1,Y1,Z1 tangent to M1 and
independent of M2 and similarly for X2,Y2,Z2 we have:

∇X1Y1 = ∇1
X1

Y1,

∇X1Y2 = ∇Y2X1 =
X1( f )

f η2(Y2)ξ2,

g(∇X2Y2,Z2) = g(∇2
X2

Y2,Z2)+( f 2−1)
(

1
2

(
g2(∇

2
X2

ξ2,Y2)+g2(∇
2
Y2

ξ2,X2)
)
η2(Z2)+dη2(X2,Z2)η2(Y2)+dη2(Y2,Z2)η2(X2)

)
,

which in turn can be used to find g(∇X2Y2,Z1) =−g(∇X2Z1,Y2).

Let σ denote the second fundamental form of M2 in M1×M2 and while f is a function on M1, for emphasis we denote its
gradient by grad1 f . Then we have the following Theorem.

Theorem 3. For an almost contact metric manifold (M2,ϕ2,ξ2,η2,g2) and a D-isometrically warped metric on M1×M2 we
have the following:

1. M1 is a totally geodesic submanifold.

2. M2 is a cylindrical submanifold and its second fundamental form is given by

σ2(X2,Y2) =−
1
2

η2(X2)η2(Y2)grad1 f 2.

3. The mean curvature vector of M2 in M1×M2 is

H =− 1
2(2n+1)

grad1 f 2.

4. If in addition, dη2(ξ2,X2) = 0 for every X2 (equivalently the integral curves of ξ2 are geodesics ), then the Reeb vector
field ξ2 is g-Killing if and only if it is g2-Killing.

Proof. Recall that a submanifold N of a Riemannian manifold (M2n+1,g) is called quasi-umbilical [10] if its second fundamental
tensor has the form

ω(X ,Y ) = αg(X ,Y )ρ +βη(X)η(Y )ρ

where α,β are scalars, X ,Y are vectors fields on N and ρ is the unit normal vector field

• If α = 0, then N is cylindrical.

• If β = 0, then N is umbilical.

• If α = β = 0, then N is geodesic.

1. Let σ1 be the second fundamental form of M1 in M1×M2. Since ∇X1Y1 = ∇1
X1

Y1, then

σ1 = ∇X1Y1−∇
1
X1

Y1 = 0.

2. Let σ2 be the second fundamental form of M2 in M1×M2. We have

g
(
∇X2Y2,Z1

)
= − f Z1( f )η2(X2)η2(Y2)

= g1

(
− 1

2
η2(X2)η2(Y2)grad1 f 2,Z1

)
,
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since g
(
∇2

X2
Y2,Z1

)
= 0 then

σ2(X2,Y2) =−
1
2

η2(X2)η2(Y2)grad1 f 2.

3. Knowing that The mean curvature vector of M2 in M1×M2 is defined by

H =
1

2n+1
trg2 and σ2 =

1
2n+1

2n+1

∑
i=1

σ2(ei,ei)

where {ei}i=1,2n+1 orthonormal basis of M2 then,

H =
1

2n+1

i=2n+1

∑
i=1

σ2(ei,ei)

= − 1
2(2n+1)

grad1 f 2
i=2n+1

∑
i=1

η2(ei)η2(ei)

= − 1
2(2n+1)

grad1 f 2.

4. For all X = X1 +X2 and Y = Y1 +Y2 two vectors fields on M1×M2 we have

ξ2 is g−Killing⇔ g(∇X ξ2,Y )+g(∇Y ξ2,X) = 0.

So,

g(∇X ξ2,Y )+g(∇Y ξ2,X) = g(∇X1+X2ξ2,Y1 +Y2)+g(∇Y1+Y2ξ2,X1 +X2)

= g(∇X1 ξ2,Y2)+g(∇X2ξ2,Y1)+g(∇X2ξ2,Y2)

+g(∇Y1ξ2,X2)+g(∇Y2ξ2,X1)+g(∇Y2ξ2,X2) (10)

suppose that dη2(ξ2,X2) = 0 equivalent to ξ2η2(X2) = η2
(
∇2

ξ2
X2
)

(i.e. ∇2
ξ2

ξ2 = 0) then, we can easily verify the following
statements:

g(∇X1ξ2,Y2) =
1
2

X1( f 2)η2(Y2),

g̃(∇X2ξ2,Y1) =−
1
2

Y ′( f 2)η2(X2),

g(∇X2ξ2,Y2) = g(∇2
X2

ξ2,Y2)+( f 2−1)dη2(X2,Y2).

Replacing in formula (10), we get

g(∇X ξ2,Y )+g(∇Y ξ2,X) = g(∇X2ξ2,Y2)+g(∇2
Y2

ξ2,X2)

= g2(∇
2
X2

ξ2,Y2)+g2(∇
2
Y2

ξ2,X2).

This completes the proof. �

4. From a single Sasakian structure to a 1-parameter family of Kählerian structures.

For our first application of the idea of D-isometric warping we consider the case where M1 =R, M2 = M is a Sasakian manifold
and the metric

g̃ = h2(dt2 +g+( f 2−1)η⊗η
)
, (11)

where f ,h are two functions non-zero everywhere on R. For brevity, we denote the unit tangent field to R by ∂t . In this
case the proposition (2) becomes:
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Proposition 4. Let (M,ϕ,ξ ,η ,g) be a Sasakian manifold. Let ∇ and ∇̃ denote the Riemannian connections of g, and g̃
respectively. For all X ,Y vector fields tangent to M and independent of R, we have

∇̃∂t ∂t =
h′

h
∂t ,

∇̃∂t X = ∇̃X ∂t =
h′

h
X +

f ′

f
η(X)ξ ,

∇̃XY = ∇XY +(1− f 2)
(
η(X)ϕY +η(Y )ϕX

)
− 1

h

(
h′g(X ,Y )+

(
f ( f h)′−h′

)
η(X)η(Y )

)
∂t .

Next, we introduce a class of almost complex structure J̃ on manifold M̃:

J̃(a∂t ,X) =
(

f η(X)∂t , ϕX− a
f

ξ

)
, (12)

for any vector filds X of M where f ,h are functions on R and f h 6= 0 everywhere.
That J2 = −I is easily checked and for all X̃ = (a∂t ,X),Ỹ = (b∂t ,Y ) on M̃ we can see that g̃ is almost Hermitian with

respect to J̃ i.e.
g̃
(
J̃X̃ , J̃Ỹ

)
= g̃(X̃ ,Ỹ ).

Knowing that (∇X̃ J)Ỹ = ∇X̃ (J̃Ỹ )− J̃∇X̃Ỹ with using the proposition (4) and formulas (7) and (8), we get the following
proposition:

Proposition 5. Let (M,ϕ,ξ ,η ,g) be a Sasakian manifold. Let ∇ and ∇̃ denote the Riemannian connections of g and g̃
respectively. For all X ,Y vector fields tangent to M and independent element of R, we have

(∇̃X J̃)∂t =
(

f − h′

h

)
ϕX ,

(∇̃X J̃)Y =
(

f − h′

h

)( 1
f

g(X ,Y )ξ − f η(Y )X−
( 1

f
− f
)
η(X)η(Y )ξ +g(X ,ϕY )∂t

)
.

Therefore, summing up the arguments above, we have the following main theorem:

Theorem 6. Let (M,ϕ,ξ ,η ,g) be a Sasakian manifold. The almost Hermitian structure constructed in (11) and (12) is
Kählerian if and only if f = h′

h .

Remark 7. In this theorem, for h = cet where c > 0 i.e. f = 1 we get the result of Oubiña ( see [11]).

Remark 8. In [11], Oubiña showed that there is a one-to-one correspondence between Sasakian and Kählerian structures and
in [8], Blair showed by another way this correspondence. Here again, we generalized this correspondence by building another
1-parameter family of Kählérian structures from a single Sasakian structure (see [2]).

Example 9. For this example, we rely on the example of Blair [5]. We know that R3 with coordinates (x,y,z), admits the
Sasakian structure

g =
1
4

 1+ y2 0 −y
0 1 0
−y 0 1

 , ϕ =

 0 1 0
−1 0 0
0 y 0

 , ξ = 2
(

∂

∂ z

)
, η =

1
2
(dz− ydx).

So, using this structure, we can define a family of Kählerian structures (J̃, g̃) on R4 as follows

g̃ =
1
4


4h2 0 0 0
0 (h2 +h′2y2) 0 −h′2y
0 0 h2 0
0 −h′2y 0 h′2



J̃ =


0 − 1

2 yh 0 1
2 h

0 0 1 0
0 −1 0 0
− 2

h 0 y 0
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5. From 3-Sasakian structure to quaternionic Kählerian structure

For a second application of the idea of D-isometric warping we consider a three almost contact structures (ϕi,ξi,ηi)
3
i=1 on a

manifold M of dimension 4n+3 and we define an almost hypercomplex structure J̃α , α = 1,2,3 on M̃4n+4 = M×R by

J̃α(a∂t ,X) = ( f ηα(X)∂t ,ϕα X− a
f

ξα), (13)

then we give a Riemannian metric on M̃ by

g̃ = h2(dt2 +g+( f 2−1)
i=3

∑
i=1

ηi⊗ηi
)
, (14)

where f ,h are functions on R such that f h 6= 0 everywhere and dt2 is the usual metric on R. Then by (2) and (9) one can
showed the following:

Proposition 10. Let (ϕi,ξi,ηi)
3
i=1 be an almost contact metric 3-structure on a manifold M of dimension 4n+ 3 and f ,h

are functions on R such that f h 6= 0 everywhere. Then
(
M̃4n+1,(J̃α)

3
α=1, g̃

)
constructed as above is an almost quaternionic

Hermitian manifold.

Proof. Obvious. �

Next, let
(
M4n+3,(ϕi,ξi,ηi)

3
i=1,g

)
be a 3-Sasakian manifold then, from proposition (4) we can conclude that

∇̃∂t ∂t =
h′

h
∂t ,

∇̃∂t X = ∇̃X ∂t =
h′

h
X +

f ′

f
ηi(X)ξi,

∇̃XY = ∇XY +(1− f 2)
(
ηi(X)ϕiY +ηi(Y )ϕiX

)
− 1

h

(
h′g(X ,Y )+

(
f ( f h)′−h′

)
ηi(X)ηi(Y )

)
∂t .

Note: we will use the convention of Einstein. (Whenever an index is repeated, it is a dummy index and is summed from 1 to
3).

Now, we compute directly ∇̃J̃α , α = 1,2,3 we get

Proposition 11. Let
(
M4n+3,(ϕi,ξi,ηi)

3
i=1,g

)
be 3-Sasakian manifold. Let ∇ and ∇̃ denote the Riemannian connections of

g, and g̃ respectively. For all X ,Y vector fields tangent to M and independent of R, we have

(∇̃X J̃α)∂t =
(

f − h′

h

)
ϕα X +

1
f
(1− f 2− f ′)ηi(X)ϕα ξi, α = 1,2,3

(∇̃X J̃1)Y =
(

f − h′

h

)
A1 +(1− f 2 + f ′)B1 +2(1− f 2)

(
η3(X)ϕ2Y −η2(X)ϕ3Y

)
−1

h

(
f ( f h)′−h′

)(
η3(X)η2(Y )−η2(X)η3(Y )

)
∂t ,

(∇̃X J̃2)Y =
(

f − h′

h

)
A2 +(1− f 2 + f ′)B2 +2(1− f 2)

(
η1(X)ϕ3Y −η3(X)ϕ1Y

)
−1

h

(
f ( f h)′−h′

)(
η1(X)η3(Y )−η3(X)η1(Y )

)
∂t ,

(∇̃X J̃3)Y =
(

f − h′

h

)
A3 +(1− f 2 + f ′)B3 +2(1− f 2)

(
η2(X)ϕ1Y −η1(X)ϕ2Y

)
,

−1
h

(
f ( f h)′−h′

)(
η2(X)η1(Y )−η1(X)η2(Y )

)
∂t ,

others =0, and

Aα =
(

f − h′

h

)( 1
f

g(X ,Y )ξα − f ηα(Y )X +
(

f − 1
f

)
ηi(X)ηi(Y )ξα

)
,

Bα = (1− f 2 + f ′)ηα(X)
(
ηα(X)ξi−ηi(X)ξα

)
.
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On the other hand, we have
(
ω3(X)J2−ω2(X)J3

)
∂t =

1
f

(
ω2(X)ξ3−ω3(X)ξ2

)
,(

−ω3(X)J1 +ω1(X)J3
)
∂t =

1
f

(
ω3(X)ξ1−ω1(X)ξ3

)
,(

ω2(X)J1−ω1(X)J2
)
∂t =

1
f

(
ω1(X)ξ2−ω2(X)ξ1

)
and 

(
ω3(X)J2−ω2(X)J3

)
Y = ω3(X)ϕ2Y −ω2(X)ϕ3Y + f

(
ω3(X)η2(Y )−ω2(X)η3(Y )

)
∂t ,(

−ω3(X)J1 +ω1(X)J3
)
Y = −ω3(X)ϕ1Y +ω1(X)ϕ3Y + f

(
−ω3(X)η1(Y )+ω1(X)η3(Y )

)
∂t ,(

ω2(X)J1−ω1(X)J2
)
Y = ω2(X)ϕ1Y −ω1(X)ϕ2Y + f

(
ω2(X)η1(Y )−ω1(X)η2(Y )

)
∂t .

Now, we will make a comparison using the proposition (1) we get the following equations:

f =
h′

h
, 1− f 2 + f ′ = 0,

ωα = (1− f ′− f 2)ηα = 2(1− f 2)ηα =−1
h

(
f ( f h)′−h′

)
ηα .

and moreover that these equations are equivalent to the OED system

f =
h′

h
, 1− f 2 + f ′ = 0, ωα = 2(1− f 2)ηα ,

Solving the differential equation system, we obtain the following theorem:

Theorem 12. Let (ϕi,ξi,ηi)
3
i=1 be a 3-Sasakian manifold. Then the almost quaternionic Hermitian structure constructed in

(13) and (14) is:

1. Hyper-Kählerian structure if and only if f = 1 and h = cet where c > 0.

2. Quaternionic Kählerian structure if and only if

f (t) =− tanh(t + c1), and h(t) =
c2

cosh(t + c1)
,

where c1 and c2 are two arbitrary constants.

Remark 13. In [14], T. Tshikuna-Matamba showed that the method of Oubiña [11], serves to define an hyperKählerian
manifold using a 3-Sasakian manifold. Here, for f = 1 and h = cet , (c > 0), we can see immediatly that the idea of
Tshikuna-Matamba is a particular case.

6. Doubly D-isometric warping
Finally recall the notion of a doubly warped product metric, namely

g = Fg1 + f g2,

where f is a positive function on M1 and F is a positive function on M2. If now both (M1,ϕ1,ξ1,η1,g1) and (M2,ϕ2,ξ2,η2,g2)
are almost contact metric manifolds we can define a doubly D-isometrically warped metric by

g = g1 +(F2−1)η1⊗η1 +g2 +( f 2−1)η2⊗η2,

where F and f are two functions non-zero everywhere on M1 and M2 respectively. On the other hand, we can introduce a class
of almost complex structure J on the product manifold M1×M2:

J̃(X1,X2) =
(

ϕ1X1−
f
F

η1(X1)ξ2 , ϕ2X2 +
F
f

η2(X2)ξ1

)
,

then it is easily seen that (J,g) is an almost Hermitian structure on the product M1×M2. While this is an area of possible
future research.
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7. Conclusion
We know that through a conformal and related changes of the metric we can build several bridges between the various known
structures ( almost complex, almost contact, almost Golden,...). Here, we introduced a certain deformation called ” D-isometric
warping” and we studied some basic properties. As applications, we constructed a 1-parameter family of Kahlerian structures
from a single Sasakian structure with this deformation. Then, a quaternionic Kahlerian structure from a 3-Sasakian structures.
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