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 Abstract  
One of the significant models in chemical reactions with oscillations is the Brusselator model. 

This model essentially describes a nonlinear reaction-diffusion equation. Brusselator system 

arises in applications of many physical and chemical models. In this study, the Brusselator 

model is solved numerically with the help of a time-splitting method. Consistency and stability 

of the method are proved with the help of auxiliary lemmas. Additionally, the positivity 

preservation of the method is analyzed. The accuracy of the presented method is also tested 

on numerical examples and all theoretical results are supported by the tables and figures. 
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1. Introduction  

 

Reaction-diffusion models have great importance in the study of chemical and biological systems. One of the 

main important reaction-diffusion equations is known as the Brusselator system, which is used to describe the 

mechanism of chemical reaction-diffusion with non-linear oscillations [1-4]. In 1952 Turing [5] showed the 

importance of oscillations in biochemical systems that leads to the theory of morphogenesis. The Brusselator 

system occurs in a large number of physical problems such as the formation of ozone by atomic oxygen through 

a triple collision and enzymatic reactions. In 1968 Prigogine and Lefever proposed the system and the name was 

coined by Tyson in [6]. In the middle of the last century, Belousov and Zhabotinsky discovered chemical systems 

exhibiting oscillations. 

 

The non-linear two-dimensional reaction-diffusion Brusselator system is given by [7] 

 
𝜕𝑢

𝜕𝑡
= 𝛼∆𝑢 + 𝐵 + 𝑢2𝑣 − (𝐴 + 1)𝑢                                                                                                                          (1) 

𝜕𝑣

𝜕𝑡
= 𝛼∆𝑣 + 𝐴𝑢 − 𝑢2𝑣,                                                                                                                                              (2) 

 

for 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) in the two-dimensional region, Ω = [𝑎, 𝑏]2, with initial condition 

 

(𝑢(𝑥, 𝑦, 0), 𝑣(𝑥, 𝑦, 0)) = (𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦)), 

 

and Dirichlet boundary condition 

 

(𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)) = (𝑀(𝑥, 𝑦, 𝑡), 𝑁(𝑥, 𝑦, 𝑡))   for (𝑥, 𝑦) ∈ 𝜕Ω,    𝑡 > 0 

 

or subject to Neumann’s boundary conditions on the boundary 𝜕Ω. Here 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) represent 

dimensionless concentrations of two reactants, 𝐴 and 𝐵 are constants concentrations of two reactants, 𝛼 is 

diffusion coefficient, ∆ is Laplace operator, and 𝑝(𝑥, 𝑦), and 𝑞(𝑥, 𝑦) are suitably prescribed functions. 

The numerical solution of the reaction-diffusion Brusselator system has been an important area of research. There 

is limited literature on the numerical solution of the Brusselator system. A decomposition method is applied for 

http://dx.doi.org/10.17776/csj.695738
https://orcid.org/0000-0003-4784-2013
https://orcid.org/0000-0001-5438-4685


 

76 

 

Korkut, Çiçek / Cumhuriyet Sci. J., 42(1) (2021) 75-87 
 

the numerical solution of the reaction-diffusion Brusselator system in [8]. Twizell et al. [9] developed a second-

order (in space and time) finite difference method for a diffusion-free Brusselator system. The modified Adomain 

decomposition method is applied by Wazwaz in [10]. Ang, in [7] presented the dual-reciprocity boundary element 

method for the numerical solution of the reaction-diffusion Brusselator system. In [11] the authors proposed a 

modified cubic B-spline differential quadrature method to show computational modeling of a two-dimensional 

Brusselator system for Neumann’s boundary conditions. A polynomial based differential quadrature method is 

employed for numerical solutions of two-dimensional nonlinear reaction-diffusion Brusselator system in [12].  A 

meshless method has been suggested in [13] to obtain a numerical solution of the mentioned system. Another 

meshfree method based on the radial basis functions has been presented in [14]. Furthermore, more recently, a 

finite element approach has been applied to several chemical reaction-diffusion equations including the 

Brusselator system in [15-16] by Yadav and Jiwari. Also, a meshfree algorithm based on radial basis multiquadric 

functions and differential quadrature (DQ) technique has been developed to approximate the numerical solution 

of the Brusselator system in [17]. Bhatt and Chowdhury have presented a comparative study of performances of 

meshfree (radial basis functions) and mesh-based (finite difference) schemes in terms of their accuracy and 

computational efficiency for solving multi-dimensional Brusselator system in [18]. Moreover, several chemical 

systems including a two-dimensional Brusselator model have been studied in [19].  All mentioned researches 

take into account space discretization. Even though the authors in [19] suggest a kind of splitting method, they 

utilize the method as dimensional splitting to get one-dimensional problems. Unlike their study, we focus on a 

kind of splitting method for separating the operators concerning their linearity structure. Our purpose is not 

underestimating that study but considering the problem from a different angle.   

The main aim of the present study is that the Lie-Trotter splitting method which is a well-known first-order time 

splitting method is applied for the numerical solution of Equation 1-2. The essential idea of the splitting methods 

is that instead of the sum, the operators are considered separately. This means that the original problem is split 

into sub-problems and the numerical solution of the original problem is obtained from a combination of numerical 

solutions of these sub-problems. The reader interested in the splitting methods can see [20-23] and the references 

therein. One of the important advantages of these methods is that the operators with different structures can be 

solved by different methods. Moreover, employing the splitting idea, some operators can be solved exactly which 

can increase the reliability of the solution. This is one of our purposes. The other purpose is to preserve some 

physical behavior such as positivity, stability, and preserving the dynamics of the system. 

The paper is organized as follows: Section 2 is devoted to introducing the idea of the time splitting for Equation 

1-2. All theoretical results such as consistency and stability are presented in this section. For consistency and 

stability analyses, the auxiliary lemmas are utilized. Furthermore, the preservation of the positivity of the 

proposed method has been shown in the current section. In section 3, we apply the proposed scheme to different 

types of problems related to the reaction-diffusion Brusselator system in both one- and two- dimensional cases. 

The obtained numerical solutions are tested in both compatibility and accuracy. The theoretical claims are 

supported by simulations and tables. Finally, Section 4 concludes the study. 

 

2. Materials and Methods 

In this section, we introduce the Lie-Trotter splitting method (LSM) for the Brusselator model given in Equation 

1-2. For this purpose, we first set up the equations given in Equation 1-2 with the appropriate system form.  

 

𝑢𝑡 = 𝛼∆𝑢 + 𝑓(𝑢, 𝑣)                                                                                                                                                 (3) 

𝑣𝑡 = 𝛼∆𝑣 + 𝑔(𝑢, 𝑣)                                                                                                                                               (4) 

 

where 𝑓(𝑢, 𝑣) = 𝐵 + 𝑢2𝑣 − (𝐴 + 1)𝑢 and 𝑔(𝑢, 𝑣) = 𝐴𝑢 − 𝑢2 are scalar functions and the operator ∆ 

corresponds to the spatial derivatives. Equation 3-4 turn into system form as follows: 

 

[
𝑢𝑡

𝑣𝑡
] = 𝛼 [

∆ 𝟎
𝟎 ∆

] [
𝑢
𝑣

] + [
𝑓(𝑢, 𝑣)
𝑔(𝑢, 𝑣)

]                                                                                                                              (5) 

 

Throughout the section, we denote (𝑢, 𝑣)𝑇 by the variable  𝑌 for the sake of simplicity of the notations. Thus, 

Equation 5 can be expressed as follows: 
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𝑌𝑡 = 𝛼𝐷𝑌 + 𝐹(𝑌),              𝑌(𝑡): 𝔻(𝐷) ∩ 𝔻(𝐹(𝑌)) → 𝑋                                                                                             (6) 

 

where 𝔻(𝐷): ∁2(Ω), and 𝔻(𝐹(𝑌)): ∁1(Ω × [0, 𝑡𝑒𝑛𝑑]) and 𝑋 is a Banach space. As mentioned previously, the 

essential idea of the time splitting methods is that instead of the sum, the operators are considered separately. To 

do this, the original problem is divided into sub-problems and they are solved efficiently by an appropriate 

numerical method. The connections of these sub-problems are via the initial conditions. That is, 

 

𝑌𝑡,1 = 𝛼𝐷𝑌1,      𝑌1(𝑡𝑛) = 𝑌(𝑡𝑛)        ∀𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],                                                                                                      (7)                                                              

𝑌𝑡,2 = 𝐹(𝑌2),     𝑌2(𝑡𝑛) = 𝑌1(𝑡𝑛+1)     ∀𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],                                                                                           (8) 

 

where 𝑌1 and 𝑌2 denote the sub-problems and  𝑡𝑛 denotes the present time whereas  𝑡𝑛+1 does the future. 

Moreover, matrix 𝐷 stands for the matrix consisting of spatial derivative operators. Such splitting leads to two 

initial value problems which will be solved sequentially. Due to the linearity of Equation 7, the exact solution of 

this part is already known. However, an efficient solver will be used to obtain a solution of Equation 8, 

numerically, which will be stored as the approximated one, i. e. 𝑌(𝑡𝑛+1) = 𝑌2(𝑡𝑛+1). By the nonlinearity of 

Equation 8, a predictor-corrector method is the correct choice to obtain the approximate solution. In the current 

study, we utilize Heun’s method to obtain the approximate solution for the non-linear part. For the sake of 

simplicity of notations, Heun’s method can be expressed on the non-linear part as follows: 

 

𝑌2(𝑡𝑛+1) = 𝑌2(𝑡𝑛) +
∆𝑡

2
(𝐹(𝑌2(𝑡𝑛)) + 𝐹 (𝑌2(𝑡𝑛) + ∆𝑡𝐹(𝑌2(𝑡𝑛)))) , ∀𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]                                           (9) 

The convergence of the composite of numerical flows should be validated by appropriate analysis. The upcoming 

subsections present the preservation of positivity and the issue of convergence with the concepts of consistency 

and stability. 

 

2.1. Positivity preservation of the LSM 

Since the solution of the Brusselator system given in Equation 1-2 describes the concentrations of two reactants, 

the solution is positive naturally. Thus, the approximate solution must satisfy the positivity for each time step. 

To guarantee the positivity of the LSM we only impose the following assumption: 

Assumption 1. Let 𝑌(𝑥, 𝑦, 0) = 𝑌0 ≥ 0. Assume that 

 

𝐹𝑖(𝑌𝑖) ≥ 0,         ∀𝑌𝑖 ≥ 0,       𝑖 = 1, 2     

 

where 𝐹 corresponds to the nonlinear part of the Brusselator system, and  𝐹𝑖  and 𝑌𝑖 denote the 𝑖𝑡ℎ components 

of the 𝐹 and 𝑌, respectively.  

 

Due to this condition, vector field 𝐹 pushes the trajectories back to the positive domain whenever the solutions 

approach the boundary. Moreover, the condition on the nonlinear field is enough to say the LSM preserves the 

positivity of the solution. Our general reference on positivity preservation is the book given in [24]. 

 

Theorem 1. Let Assumption 1 hold for Equation 1-2. The LSM preserves the positivity of the solutions over all 

the time. 

 

Proof.  To prove the positivity we shall first write the approximate solution on [0, ∆𝑡]: 
 

�̃�(∆𝑡) = 𝑒𝐷∆𝑡𝑌(𝑡0) +
∆𝑡

2
(𝐹(𝑌2(𝑡0)) + 𝐹 (𝑌2(𝑡0) + ∆𝑡𝐹(𝑌2(𝑡0))))                                                                    (10) 

 

where 𝑌2(𝑡0) = 𝑌1(∆𝑡) = 𝑒𝐷∆𝑡𝑌1(𝑡0). One can be easily seen that the solution obtained by  Equation 7 gives a 

positive solution when the initial condition is positive, i. e. 𝑌(𝑡0) ≥ 0. This provides the positivity of the second 

term with the help of Assumption 1, which concludes the positivity of �̃�(∆𝑡) = �̃�(𝑡1). The solution is stored as 
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the initial condition for the next interval [∆𝑡, 2∆𝑡]. Inductively, since the scheme preserves the positivity at each 

one step we guarantee the positivity of the approximate solution �̃�(𝑡𝑘+1) for all 𝑌(𝑡𝑘) ≥ 0.  

In [25] the author proposed a finite difference scheme preserving the positivity of the reaction-diffusion equation 

which requires the differentiability of the field. It is crucial to emphasize that the LSM does not need to have any 

condition on the derivative of the field.  

 

2.2. Local error analysis 

The present section aims to analyze the consistency of the method. One can be seen in Table 1 that the eigenvalues 

of the discretization matrix to approximate to the Laplace operator are negative. Thus, the solutions of Equation 

7 remain bounded over all the time. With the help of these results, Remark 1 is given. 

 
Table 1. Several examples of eigenvalues of D for different domains 

Domain max
Ω

𝑒𝑖𝑔(𝐷) min
Ω

𝑒𝑖𝑔(𝐷) 

Ω = [0,1] × [0,1]      -19.7291 -1.2780e+4 

Ω = [0,10] × [0,10] -0.1973 -127.8027 

Ω = [0,30] × [0,30] -0.0219 -88.8670 

 

Remark 1. Due to the max
Ω

𝑒𝑖𝑔(𝐷) ≤ 0, where  𝑒𝑖𝑔(𝐷) represents the eigenvalues of 𝐷, the solution of the linear 

part of the Brusselator system is bounded by the initial condition as follows: 

 

‖𝑒𝛼𝐷𝑡𝑌0‖𝑋 ≤ 𝛾‖𝑌0‖𝑋                                                                                                                                                  (11) 

 

where the constant 𝛾 ∈ [0, 1]  provided that 𝛼 ≥ 0. 

 

Moreover, the nonlinear part of the Brusselator system, which is given in Equation 1-2, is bounded, under the 

well-posedness of the solutions.  

 

Lemma 1. Let the field 𝐹(𝑌): ∁1(Ω × [0, 𝑡𝑒𝑛𝑑]) → 𝑋 be a nonlinear operator. Suppose that there exists 𝑀, 𝑁 ∈
ℝ+ such that 

 

‖𝐹(𝑌)‖𝑋 ≤ 𝑀‖𝑌0‖𝑋                                                                                                                                                      (12) 
‖𝜕𝐹(𝑌)‖𝑋 ≤ 𝑁‖𝑌0‖𝑋                                                                                                                                            (13) 

 

where 𝜕𝐹 =
𝜕(𝑓,𝑔)

𝜕(𝑢,𝑣)
= [

2𝑢𝑣 − (𝐴 + 1) 𝑢2

𝐴 − 2𝑢𝑣 −𝑢2
]. 

 

Theorem 2 presents the local error analysis of the LSM. To do this, the method is considered on [0, ∆𝑡]. 
 

Theorem 2. Let Remark 1 and Lemma 1 be fulfilled. LSM is the first-order accuracy with error bound 

 

‖𝑌(∆𝑡) − �̃�(∆𝑡)‖
𝑋

≤ 𝐶∆𝑡2 + ℴ(∆𝑡3)                                                                                                                        (14) 

 

where 𝐶 depends on 𝑀 and ‖𝑌0‖𝑋. 
 

Proof:  To obtain the local error bound of the numerical scheme we employ the standard technique. That is,  

‖𝑌(∆𝑡) − �̃�(∆𝑡)‖
𝑋

 will be calculated.  

 

On one hand, by Picard-Lindelöf theorem the exact solution of Equation 6 is expressed as follows: 

 

𝑌(∆𝑡) = 𝑒𝐷∆𝑡𝑌0 + ∫ 𝑒𝐷(∆𝑡−𝑠)𝐹(𝑌(𝑠))𝑑𝑠
∆𝑡

0
                                                                                                          (15) 

 

On the other hand, the numerical solution is defined by  
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�̃�(∆𝑡) = 𝑒𝐷∆𝑡𝑌0 +
∆𝑡

2
(𝐹(𝑒𝐷∆𝑡𝑌0) + 𝐹 (𝑒𝐷∆𝑡𝑌0 + ∆𝑡𝐹(𝑒𝐷∆𝑡𝑌0)))                                                                      (16) 

 

For the convenience of calculations we restate the exact solution as follows: 

 

𝑌(∆𝑡) = 𝑒𝐷∆𝑡𝑌0 + ∫ 𝑒𝐷(∆𝑡−𝑠)𝐹(𝑒𝐷𝑠𝑌0 + ∫ 𝑒𝐷(𝑠−𝜏)𝐹(𝑌(𝜏))𝑑𝜏
𝑠

0
)𝑑𝑠

∆𝑡

0
                                                                              (17) 

 

With the help of the Taylor's Expansion Equation 16 and Equation 17 can be rewritten as follows: 

 

𝑌(∆𝑡) = 𝑒𝐷∆𝑡𝑌0 + ∫ 𝑒𝐷(∆𝑡−𝑠)𝐹(𝑒𝐷𝑠𝑌0)𝑑𝑠

∆𝑡

0

+ 

                                                                         ∫ 𝑒𝐷(∆𝑡−𝑠)∆𝑡

0
(∫ 𝑒𝐷(𝑠−𝜏)𝐹(𝑌(𝜏))𝑑𝜏

𝑠

0
𝜕𝐹(𝑒𝐷𝑠𝑌0) + ℴ(𝑠2)) 𝑑𝑠               (18) 

and 

 

�̃�(∆𝑡) = 𝑒𝐷∆𝑡𝑌0 +
∆𝑡

2
(𝐹(𝑒𝐷∆𝑡𝑌0) + 𝐹(𝑒𝐷∆𝑡𝑌0) + ∆𝑡𝐹(𝑒𝐷∆𝑡𝑌0)𝜕𝐹(𝑒𝐷∆𝑡𝑌0) + ℴ(∆𝑡2))                               (19) 

 

Subtracting Equation 19 from Equation 18 the residual term is achieved. By virtue of Lemma 1 and Remark 1, 

the local error bound is attained as follows: 

 

‖𝑌(∆𝑡) − �̃�(∆𝑡)‖
𝑋

≤ 𝐶∆𝑡2 + ℴ(∆𝑡3)                                                                                                                   (20) 

 

where 𝐶 depends on 𝑀, 𝑁, and ‖𝑌0‖𝑋. 
 

2.3. Stability analysis 

Theorem 3. Let Remark 1 and Lemma 1 be satisfied. The LSM is unconditionally stable.  

 

Proof: To prove the stability of the method we first start with finding a bound of one-step approximate solution 

given as follows: 

 

�̃�1 = 𝑒𝐷∆𝑡𝑌0 +
∆𝑡

2
(𝐹(𝑒𝐷∆𝑡𝑌0) + 𝐹 (𝑒𝐷∆𝑡𝑌0 + ∆𝑡𝐹(𝑒𝐷∆𝑡𝑌0))),                                                                            (21) 

 

where �̃�1 = 𝑌2(∆𝑡) in Equation 7-8. Taking the norm of both sides and utilizing from Remark 1 yield 

 

‖�̃�1‖
𝑋

= ‖𝑒𝐷∆𝑡𝑌0 +
∆𝑡

2
(𝐹(𝑒𝐷∆𝑡𝑌0) + 𝐹 (𝑒𝐷∆𝑡𝑌0 + ∆𝑡𝐹(𝑒𝐷∆𝑡𝑌0)))‖

𝑋
                                                                            (22) 

‖�̃�1‖
𝑋

≤ 𝛾‖𝑌0‖𝑋 + ∆𝑡 (1 +
∆𝑡

2
) 𝑀𝛾‖𝑌0‖𝑋                                                                                                                (23)  

 

Equation 23 represents the boundedness of a one-step solution by the initial condition as ∆𝑡 → 0. If the process 

is repeated inductively, one can obtain 

 

‖�̃�𝑛‖
𝑋

≤ 𝛾𝑛 (1 + 𝑀∆𝑡 + 𝑀
∆𝑡2

2
)

𝑛

‖𝑌0‖𝑋                                                                                                                              (24) 

 

where the coefficient of ‖𝑌0‖𝑋 denotes the amplification factor of LSM.  As it can be easily seen in Equation 24, 

the terms consisting of ∆𝑡 are negligible when 𝑛 increases. This leads to  

 

‖�̃�𝑛‖
𝑋

≤ 𝛾𝑛‖𝑌0‖𝑋                                                                                                                                                 (25) 
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which concludes the proof. This also guarantees that the LSM is unconditionally stable. 

 

3. Results and Discussion 

The current section is dedicated to confirming the theoretical results obtained in the previous section. In this 

context, it is crucial to state the Brusselator system from both physical and chemical aspects. A chemical process 

is related to converting reactants into products. One of the most important points for closed systems such as 

Brusselator is that one can generate an oscillating chemical reaction model using the Belousov-Zhabotinsky 

reaction which is corresponding to our considered problems. For a more detailed discussion on the Brusselator 

system and its dynamics we refer the reader to the dissertation about that system, see [26]. An oscillating chemical 

reaction as the pendulum passes through its equilibrium point while oscillates. The mean of the equilibrium is 

the equilibrium concentration for all the components. Thus, from a point of mathematical view, as well as its 

convergence properties it is expected that a numerical scheme to obtain a solution should preserve its dynamics. 

That is, by the nature of chemical reactions all solutions should be positive. Additionally, due to entropy, the 

reactants should reach their equilibrium as time increases.  

Under the lights of the information above, we consider some test problems both one- and two- dimensional cases 

to check the accuracy and efficiency of the LSM. 

3.1. Example 1 

To check the efficiency of the method we first start with a one-dimensional Brusselator system, which is  

 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 𝐵 + 𝑢2𝑣 − (𝐴 + 1)𝑢 

𝜕𝑣

𝜕𝑡
= 𝛼

𝜕2𝑣

𝜕𝑥2
+ 𝐴𝑢 − 𝑢2𝑣, 

 

subject to  

 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 𝐵;      𝑣(0, 𝑡) = 𝑣(1, 𝑡) = 𝐴
𝐵⁄   

𝑢(𝑥, 0) = 𝐵 + 𝑥(1 − 𝑥);           𝑣(𝑥, 0) = 𝐴
𝐵⁄ + 𝑥2(1 − 𝑥)  

 

By taking parameters given as in [27] we have obtained the approximated solutions which are illustrated in Figure  

1.  

 

 
Figure 1. The physical behavior of the approximated solutions for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡).  The numerical solutions are 

obtained by taking 𝐵 = 0.6, 𝐴 = 0.2, 𝛼 =
1

40
, where 𝑥 ∈ [0,1] and 𝑡 ∈ [0,1]. 
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It is important to say Table 2 emphasizes that the LSM remains stable and preserves the positivity of the 

solutions for both 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) for different final times. 

 

Table 2. Maximum and Minimum values of numerical solutions for the parameters  𝐵 = 0.6, 𝐴 = 0.2, 𝛼 =
1

40
, 

𝑡𝑒𝑛𝑑 

max
𝑥∈[0,1]

𝑡∈[0,𝑡𝑒𝑛𝑑]

𝑢(𝑥, 𝑡) min
𝑥∈[0,1]

𝑡∈[0,𝑡𝑒𝑛𝑑]

𝑢(𝑥, 𝑡) max
𝑥∈[0,1]

𝑡∈[0,𝑡𝑒𝑛𝑑]

𝑣(𝑥, 𝑡) min
𝑥∈[0,1]

𝑡∈[0,𝑡𝑒𝑛𝑑]

𝑣(𝑥, 𝑡) 

1 0.8500 0.60 0.4812 0.3301 

10 0.8500 0.60 0.4812 0.3301 

20 0.8500 0.5998 0.4812 0.3302 

 

Furthermore, the theoretical results which are given in [9] state that the limit cycles do not exist for the Brusselator 

model when 1 − 𝐴 + 𝐵2 < 0. Figure 2.a illustrates such a case. However, limit cycles occur for the case of 1 −
𝐴 + 𝐵2 ≥ 0 and Figure 2.b presents that case. To validate if the proposed method is compatible with the specified 

system the parameters have been taken from [9].  

 

            
a. A=2.5,  B= 0.5,  1 − 𝐴 + 𝐵2 = −1.25 b. A=1.2,  B= 0.5; 1 − 𝐴 + 𝐵2 = 0.05 

Figure 2. The limit cycles of the diffusion-free Brusselator system for different choices of parameters.    
 
Figure 2 is evidence that the proposed method preserves the limit cycles which is the physical dynamics of the 

Brusselator system. The obtained results are consistent with the results that of [9]. 

 

3.2. Example 2 

As our second test problem, we consider a benchmark problem in the literature. The corresponding equation is 

the two-dimensional Brusselator system given in Equation 1-2 with parameters 𝛼 = 0.25, 𝐴 = 1 and 𝐵 = 0 in 

the region Ω = [0,1]2. By the particular choices of parameters, the exact equations of Equation 1-2 are 

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑥−𝑦−0.5𝑡,

𝑣(𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦+0.5𝑡.
 

 

All necessary conditions are extracted from the exact solution. Table 3 lists the numerical solution generated by 

LSM by comparing it with those in [7] and [14] for the case of M=10 (denotes the notation for the spatial 

discretization for their studies).  
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Table 3. Comparison of the results of LSM with the other methods in the literature and exact solution. 

𝑡𝑒𝑛𝑑 

𝑢(0.4,0.6, 𝑡𝑒𝑛𝑑) 𝑣(0.4,0.6, 𝑡𝑒𝑛𝑑) 

LSM [7] [14] Exact LSM [7] [14] Exact 

0.3 0.31667  0.3168    0.3174  0.31665 3.15834 3.1530  3.1580  3.15804 

0.6 0.27257  0.2724    0.2732  0.27255 3.66956 3.6600  3.6680  3.66911 

0.9 0.23459  0.2345    0.2351  0.23457 4.26365 4.2500   4.2620 4.26311 

1.2 0.20192  0.2016   0.2024  0.20191 4.95342  4.9390   4.9520 4.95278 

1.5 0.17379  0.1739    0.1742  0.17377 5.75535 5.7350   5.7540 5.75460 

1.8 0.14958  0.1489     0.1499 0.14957 6.68676  6.6700   6.6850 6.68589 

 

The given table verifies that the proposed method, LSM, in very good agreement with the exact solution for 

both 𝑢 and 𝑣. Moreover, it can be easily seen that the LSM is better over time.  

 

Furthermore, Figure 3 and Figure 4 depict the comparison of the physical behaviors of the numerical solutions 

computed by the LSM and the exact solution. The exhibited figures, Figure 3-4, are obtained by taking  ∆𝑡 =
0.01 over [0, 4] where the spatial domain, Ω = [0,1] × [0,1], is divided into 10 equal intervals.  

 

 
a. Surface plot of  𝑢(𝑥, 𝑦, 𝑡𝑒𝑛𝑑). b. Phase plot of  𝑢(𝑥, 𝑦, 𝑡𝑒𝑛𝑑). 

Figure 3. The physical behavior of the solutions of 𝑢(𝑥, 𝑦, 𝑡). The parameters are taken as 𝐴 = 1, 𝐵 = 0,  𝛼 = 0.25 for 

Equation 1-2.  

 

 
a. Surface plot of 𝑣(𝑥, 𝑦, 𝑡𝑒𝑛𝑑). b. Phase plot of 𝑣(𝑥, 𝑦, 𝑡𝑒𝑛𝑑). 

Figure 4. The physical behavior of the solutions of 𝑣(𝑥, 𝑦, 𝑡). The parameters are taken as 𝐴 = 1, 𝐵 = 0, 𝛼 = 0.25 for 

Equation 1-2. 

 

Table 3 and Figure 3-4 are evidence of the validity, compatibility and accuracy of the proposed method for 

Equation 1-2.   
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3.3. Example 3 

 

As our final test problem, we consider the two-dimensional Brusselator system which is given in Equation 1-2 

for 𝛼 = 0.002, 𝐴 =
1

2
 and 𝐵 = 1 in the region Ω = [0,1]2 with the initial and Neumann’s boundary conditions 

are given as follows: 

 

𝑢(𝑥, 𝑦, 0) =
1

2
𝑥2 −

1

3
𝑥3 and  𝑣(𝑥, 𝑦, 0) =

1

2
𝑦2 −

1

3
𝑦3, 

 
𝜕𝑢(𝑥, 𝑦, 0)

𝜕𝑥
|𝑥=0 =

𝜕𝑢(𝑥, 𝑦, 0)

𝜕𝑥
|𝑥=1 =

𝜕𝑢(𝑥, 𝑦, 0)

𝜕𝑦
|𝑦=0 =

𝜕𝑢(𝑥, 𝑦, 0)

𝜕𝑦
|𝑦=1 = 0, 

𝜕𝑣(𝑥, 𝑦, 0)

𝜕𝑥
|𝑥=0 =

𝜕𝑣(𝑥, 𝑦, 0)

𝜕𝑥
|𝑥=1 =

𝜕𝑣(𝑥, 𝑦, 0)

𝜕𝑦
|𝑦=0 =

𝜕𝑣(𝑥, 𝑦, 0)

𝜕𝑦
|𝑦=1 = 0, 

 

  

All parameters for this example are taken from the study of [13]. We have checked the convergence of the method 

to the equilibria point for the two-dimensional Brusselator system. Table 4 guarantees that the numerical solutions 

converge to their equilibrium points as t increases. 

 
Table 4. The values of 𝑢(𝑥, 𝑦, 𝑡) and  𝑣(𝑥, 𝑦, 𝑡) at the specified 𝑥, 𝑦  and 𝑡. 

 (0.2,0.2, 𝑡𝑒𝑛𝑑) (0.4,0.6, 𝑡𝑒𝑛𝑑) (0.5,0.5, 𝑡𝑒𝑛𝑑) (0.8,0.9, 𝑡𝑒𝑛𝑑) 

𝑡𝑒𝑛𝑑 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 

1 0.5303 0.1632 0.5602 0.2538 0.5511 0.2278 0.5832 0.3148 

2 0.7020 0.3676 0.7312 0.4283 0.7224 0.4113 0.7536 0.4664 

3 0.8167 0.4930 0.8474 0.5202 0.8382 0.5129 0.8696 0.5348 

4 0.9097 0.5356 0.9342 0.5396 0.9271 0.5389 0.9506 0.5398 

5 

6 

7 

8 

9 

10 

0.9715 

0.9997 

1.0063        

1.0047 

1.0021 

1.0005 

0.5307 

0.5146 

0.5038 

0.4996 

0.4989 

0.4993 

0.9849 

1.0041 

1.0065 

1.0039 

1.0015 

1.0002 

0.5261 

0.5103 

0.5017 

0.4990 

0.4989 

0.4994 

0.9812 

1.0029 

1.0065 

1.0042 

1.0016 

1.0003 

0.5275 

0.5115 

0.5023 

0.4992 

0.4989 

0.4993 

0.9930 

1.0064 

1.0064 

1.0033 

1.0011 

1.0001 

0.5223 

0.5005 

0.5005 

0.4987 

0.4989 

0.4995 

 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

∞ 1 0.5 1 0.5 1 0.5 1 0.5 

 

The values of Table 4 have been obtained by dividing the spatial domain into 20 equally divided intervals whereas 

the number of intervals varies for the time domain. That is, 𝑁𝑥 = 𝑁𝑦 = 20 and Δ𝑡 = 0.01. The relative errors 

and the rate of convergence of the LSM method are presented in Table 5 and Table 6. To do this, the relative 

errors are defined by the following equations, 

 

||𝑒𝑢||𝑹 =
||𝑢(∆𝑡)−𝑢(∆𝑡/2)||∞

||𝑢(∆𝑡/2)||∞
,   and    ||𝑒𝑣||𝑹 =

||𝑣(∆𝑡)−𝑣(∆𝑡/2)||∞

||𝑣(∆𝑡/2)||∞
,   

 
Table 5. Relative errors and orders at 𝑡𝑒𝑛𝑑 = 1 with different time step ∆𝒕. 

𝑡𝑒𝑛𝑑 = 1 Relative Error                    Order 

∆𝑡 ||𝑒𝑢||𝑅 ||𝑒𝑣||𝑅 𝑢 𝑣 

0.1 9.1737𝑥10−4 3.8232𝑥10−4 2.0934 2.0969 

0.05 2.1495𝑥10−4 8.9365𝑥10−5 2.0422 2.0164 

0.025 5.2187𝑥10−5 2.2087𝑥10−5 2.0140 1.9490 

0.0125 1.2920𝑥10−5 5.7205𝑥10−6 1.9933 1.8669 

0.00625 3.2449𝑥10−6 1.5683𝑥10−6 1.9701 1.7510 
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and 

 
Table 6. Relative errors and orders at 𝑡𝑒𝑛𝑑 = 10 with different time step ∆𝑡. 

𝑡𝑒𝑛𝑑 = 10 Relative Error                    Order  

∆𝑡 ||𝑒𝑢||𝑅 ||𝑒𝑣||𝑅 𝑢 𝑣 

0.1 5.4600𝑥10−6 5.8788𝑥10−6 1.9864 2.1264 

0.05 1.3779𝑥10−6 1.3463𝑥10−6 2.0056 2.0652 

0.025 3.4314𝑥10−7 3.2171𝑥10−7 2.0197 2.0355 

0.0125 8.4618𝑥10−8 7.8472𝑥10−8 2.0428 2.0235 

0.00625 

 
2.0536𝑥10−8 1.9300𝑥10−8 2.0903 2.0234 

 

To see the validity of the solutions over time, computations are carried out for a different final time, 𝑡 = 1 and  

𝑡 = 10 in Table 5 and Table 6, respectively. For both tables, we take 𝑁𝑥 = 𝑁𝑦 = 20. Even though the proposed 

method is a first-order method, the results of Table 5 and Table 6 are evidence that the method has second-order 

accuracy. It is crucial to say that this situation is mainly because of the usage of the exact solution on the diffusion 

part. Moreover, Table 5 and Table 6 guarantee that the method remains stable which also confirms the theoretical 

results. 

In addition, Table 7 exhibits the comparison of the relative errors obtained by the Meshless Local Petrov-Galerkin 

(MLPG) method which is studied in [13], and the proposed method, LSM. Although it is a first-order method, it 

is seen from Table 7 that the LSM achieves good results for a different choice of ∆𝑡. It is important to note that 

this study deals with the time splitting algorithms whereas the compared study has mainly focused on the space 

discretization technique.  
Table 7. Comparison of the relative errors at 𝑡𝑒𝑛𝑑 = 4 with different time step ∆𝑡 produced by LSM with the results of [13]. 

𝑡𝑒𝑛𝑑 = 4 LSM                    MLPG [13] 

∆𝑡 ||𝑒𝑢||𝑅 ||𝑒𝑣||𝑅 ||𝑒𝑢||𝑅 ||𝑒𝑣||𝑅 

0.1 5.4604𝑥10−5 1.4324𝑥10−4 1.7883𝑥10−6 6.0686𝑥10−7 

0.05 1.7669𝑥10−5 4.3478𝑥10−5 1.7565𝑥10−6 5.5350𝑥10−7 

0.01 5.2534𝑥10−7 1.1857𝑥10−6 1.7331𝑥10−6 5.2272𝑥10−7 

0.005 1.4540𝑥10−7 2.8553𝑥10−7 1.7301𝑥10−6 5.1900𝑥10−7 

0.001 
 

2.2007𝑥10−9 1.1446𝑥10−8 1.7278𝑥10−6 5.1605𝑥10−7 

               

Furthermore, the exhibited figure, Figure 5, illustrates the numerical solution of 𝑢 and 𝑣 for the two-dimensional 

Brusselator system for the parameters 𝛼 = 0.002, 𝐴 =
1

2
 and 𝐵 = 1 on 𝑡 ∈ [0,3]. To show the compatibility of 

the solution, the proposed method has been compared by a well-known Crank-Nicolson method without applying 

any splitting process. It can be easily seen that values of  𝑢 and 𝑣 approach the values 1 and 0.5 respectively.  

 

Figure 5. Graphs of 𝑢 (
1

3
,

1

3
, 𝑡) and 𝑣 (

1

3
,

1

3
, 𝑡) against time 𝑡 for Example 3. 
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The graphs of the numerical solutions obtained for 𝑢 and 𝑣 at 𝑡 = 10 with 𝑁𝑥 = 𝑁𝑦 = 20 and Δ𝑡 = 0.01 are 

presented in Figure 6. Initial profiles of 𝑢 and 𝑣 are given in Figure 7.  

 

 
 
Figure 6. The solutions of  𝑢 and 𝑣 at 𝑡 = 10. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Initial concentration profiles of reactants 𝑢 and 𝑣. 

 

Figure 6 and Figure 7 present that the concentrations tend to approach their equilibrium points. From a 

mathematical point of view, the proposed method preserves the physical behavior of the initial profiles. 

 

4. Conclusion and Comment 
 

A kind of operator splitting method, the LSM, has been applied to solve the nonlinear reaction-diffusion 

Brusselator system. The system has been divided into two equations which are solved iteratively. The main 

contribution of this process is solving the diffusion part exactly which leads to getting high accuracy. Second-

order Heun’s method has been used for the nonlinear part. By the concepts of stability and consistency analyses, 

the convergence of the proposed method has been discussed. Additionally, it is shown that the method preserves 

the positivity of the solutions which plays a key role in chemical reaction-diffusion systems theoretically. In 

addition to these theoretical results, the current study has been also enriched computationally by applying the 

proposed method on several Brusselator systems. After generating an accuracy table the convergence rate of the 

method has been shown. It is important to emphasize that by virtue of the exact solution on the linear part the 

method performed as a second-order method even though it is a first-order method theoretically.  Moreover, one 

can be seen on the tables and simulations the system reaches its equilibrium point for both one- and two-

dimensional versions. All these results are evidence that the method is a very compatible and accurate method 

both physically and mathematically for the specified system.  
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