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Abstract
In this paper, by using a direct method based on the Jacobi elliptic functions, the exact solutions of the
space-time fractional symmetric regularized long wave (SRLW) equation have been obtained. The elliptic
function solutions of a nonlinear ordinary differential (auxiliary) equation (dF/dξ)

2
= PF 4(ξ)+QF 2(ξ)+

R have also been examined. Besides, the solutions have been found in general form including rational,
trigonometric and hyperbolic functions. Moreover, the complex valued solutions, periodic solutions, and
soliton solutions, have also been gained. Some solutions have been illustrated by the graphics.

Keywords: SRLW equation; Jacobi elliptic function; Nonlinear differential equation; Fractional partial differential equation.

AMS Subject Classification (2020): Primary: 33E05, Secondary: 35G20; 35L05; 35R11.

*Corresponding author

1. Introduction
The symmetric regularized long wave (SRLW) equation is in the form

utt + uxx + uuxt + uxut + uxxtt = 0

was first described by Seyler and Fenstermacher [1] in 1984 as a model of the weakly nonlinear ion acoustic and
space-charge waves. This equation emerges in various physical applications, such as solitary waves with shallow
water waves, ion-acoustic waves in plasma and shallow water waves [2]. The solutions of the SRLW equation has
been found by the finite difference method [3], exp-function method [4], (G′/G)-expansion method [5], simplest
equation method [6], conservative Crank-Nicolson finite difference scheme [7], generalized Jacobi elliptic function
method [8], and different version of finite difference method [9].

In recent years, investigation of the exact solutions for fractional differential equations has been popular in
the study of scientific research. An important one of these equations is the fractional SRLW equation. So far,
the solutions of the space-time fractional SRLW equation has been investigated by utilizing the sub-equation
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method [10], functional variable method [11], exp-function method [11], (G′/G)-expansion method [11], tanh-coth
method [2], tan-cot method [2], sech-csch method [2] and sec-csc method [2], a novel (G′/G)-expansion method
[12], Riccati equation method [13], rational (G′/G)-expansion method [14], improved F -expansion method [15],
the extended Jacobi elliptic function expansion method [16], the auxiliary equation method [17], new extended
direct algebraic method [18], improved Bernoulli sub-equation function method [19], modified extended tanh
method [20], rational exp(−Ω(η))-expansion method [21], (G′/G, 1/G)-expansion method [22], extended auxiliary
equation mapping method [23], (DαG/G)-expansion method [24], modified Kudryashov method [25], and the
fractional (Dα

ξG/G)-expansion method [26]. Among these methods, rational (G′/G)-expansion, new extended
direct algebraic, improved Bernoulli sub-equation function, and modified extended tanh methods include the
conformable derivatives. .

The aim of this paper is to obtain the largest set of exact solutions in the literature of space-time fractional SRLW
equation in the form

Dα
t D

α
t u+Dβ

xD
β
xu+ uDα

t

(
Dβ
xu
)

+ (Dα
t u)

(
Dβ
xu
)

+Dα
t D

α
t

(
Dβ
xD

β
xu
)

= 0, (1.1)

where 0 < α, β < 1, Dα
t and Dβ

x mean conformable fractional derivative of function u(x, t) with respect to t and x,
respectively.

2. Preliminaries
Twelve Jacobi elliptic functions are available in the literature. Basic Jacobi elliptic functions are expressed as

snξ = sn(ξ;m) = sn(ξ|m2),

cnξ = cn(ξ;m) = cn(ξ|m2),

dnξ = dn(ξ;m) = dn(ξ|m2)

where m is the modulus and is a complex number. When the m is real, it can always be arranged 0 < m2 < 1. In
addition to these functions, Glaisher found the other elliptic functions sd, cd, nd, sc, nc, dc, ns, cs, and ds by taking
reciprocals and quotients of basic Jacobi elliptic functions [27]. Besides, when m = 0 and m = 1, Jacobi elliptic
functions turn into trigonometric and hyperbolic functions [28].

In recent years, Khalil et al. [29] defined a new fractional derivative which is called conformable fractional
derivative. This definition is the simplest of other fractional derivatives because it is similar to the definition of the
usual derivative. Therefore, the space-time SRLW equation is considered in conformable sense. The definition and
the properties of the conformable derivative are given below.

Definition 2.1. [29] Let f : [0,∞) → R be a function. The α-th order conformable fractional derivative of f is
defined by

Dα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
, t > 0, α ∈ (0, 1).

If f is α-differentiable in some (0, α), α > 0 and limt→0+ f
(α)(t) exists, then we define f (α)(0) = limt→0+ f

(α)(t).

Theorem 2.1. [29] Let α ∈ (0, 1] and suppose f , g are α-differentiable at point t > 0. Then, the following are satisfied:

1. Dα(cf + dg) = cDα(f) + dDα(g) ∀c, d ∈ R.

2. Dα(tp) = ptp−α ∀p ∈ R.

3. Dα(λ) = 0 for all constant functions f(t) = λ.

4. Dα(fg) = fDα(g) + gDα(f).

5. Dα( fg ) = gDα(f)−fDα(g)
g2 .

6. If, in addition, f is differentiable, then Dα(f)(t) = t1−α dfdt .
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Theorem 2.2. [30] Assume f, g : (0,∞) → R be α-differentiable functions, where 0 < α ≤ 1. Let h(t) = f (g(t)). Then
h(t) is α-differentiable for all t with t 6= 0 and g(t) 6= 0 we have

Dα(h)(t) = Dα(f)(g(t)).Dα(g)(t).g(t)α−1.

If t = 0 we have
Dα(h)(0) = limt→0D

α(f)(g(t)).Dα(g)(t).g(t)α−1.

3. Solutions of the space-time fractional SRLW eqquation

In this section, utilizing a transformation

ξ = k
tα

α
+ l

xβ

β

such that k and l are constants and utilizing the chain rule, space-time fractional SRLW Eq. (1.1) turns into

k2l2
d4u

dξ4
+
(
k2 + l2

) d2u
dξ2

+ klu
d2u

dξ2
+ kl

(
du

dξ

)2

= 0. (3.1)

The main idea of proposed method is to obtain the largest exact solutions of Eq. (3.1) in the form

u(ξ) =

N∑
j=0

ajF
j(ξ).

Here, N and aj are unknown coefficients. F (ξ) is the solution of nonlinear ordinary differential equation(
F

′
)2

(ξ) = PF 4(ξ) +QF 2(ξ) +R (3.2)

where P , Q and R are constants. This equation has emerged as an auxiliary equation for the solution of many
partial differential equations. Differentiating Eq. (3.2), we get the Duffing equation as

F
′′

(ξ) = 2PF 3 (ξ) +QF (ξ)

which is used as a mathematical model of various physical systems [31]. The authors are investigated the exact
solutions of Eq. (3.2). Some of them are seen in Ref. [32–36]. The Jacobi elliptic function solutions of Eq. (3.2) are
presented by Table 1.

Table 1. The Jacobi elliptic function solutions of Eq. (3.2).
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Balancing the highest order linear term

O

(
d4u

dξ4

)
= N + 4

and the highest order nonlinear term

O

(
u
d2u

dξ2

)
= 2N + 2,

N = 2 is obtained. Therefore, the solution of Eq. (3.1) can be given as

u (ξ) =

2∑
j=0

ajF
j (ξ) = a0 + a1F + a2F

2.
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Differentiating this equation four times and then substituting the derivatives into Eq. (3.1), sixth order polynomial
in F is obtained. Setting its coefficients to be zero, the following equations system is gained,

8k2l2RQa2 + 2
(
k2 + l2

)
Ra2 + 2klRa0a2 + klRa21 = 0

k2l2Q2a1 + 12k2l2PRa1 +
(
k2 + l2

)
Qa1 + kla0Qa1 + 6klRa1a2 = 0

16k2l2Q2a2 + 72k2l2PRa2 + 4
(
k2 + l2

)
Qa2 + 4klQa0a2 + 2klQa21 + 6klRa22 = 0

20k2l2PQa1 + 2
(
k2 + l2

)
Pa1 + 2klPa0a1 + 9klQa1a2 = 0

120k2l2QPa2 + 6
(
k2 + l2

)
Pa2 + 6klPa0a2 + 3klPa21 + 8klQa22 = 0

24k2l2P 2a1 + 12klPa1a2 = 0

120k2l2P 2a2 + 10klPa22 = 0.

Solving this nonlinear system, the unknown coefficients are found

a0 = B + 4QA, a1 = 0, a2 = 12PA

such that A = −kl, B = −
(
k2 + l2

)
/ (kl). Hence, the solution of the Eq. (3.1) is

u = B + 4QA+ 12PAF 2. (3.3)

Substituting the P, Q and F given in Table 1 into expression (3.3), exact solutions of Eq. (3.1) are gained and also
illustrated by Table 2. Besides, the solutions of space-time fractional Eq. (1.1) can be also obtained by taking inverse
transformation.

Table 2. The Jacobi elliptic function solutions of Eq. (3.2).
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The elementary function solutions of Eq. (3.1) are also obtained in Table 3 by using the solutions in Table 2 and
the Jacobi elliptic functions for m = 0 and m = 1.

Table 3: The elementary function solutions of Eq. (3.2).

4. Demonstrations
In this section, three solutions of space-time fractional SRLW equation from Table 2 and Table 3 are given. These

solutions are demonstrated by the aid of Mathematica 11. 3.
In all figures, the solutions are investigated for k = l = 1, and utilizing these constants, A = −1 and B = −2.
Firstly, let us consider the periodic solution

u = −2− 4(2m2 − 1) + 12m2cn2ξ

in Table 2.
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Figure 1 illustrates this solution for −5 ≤ ξ ≤ 5 and 0 ≤ m ≤ 1. Besides, Figure 2 demonstrates 2D graph of
the same solution for −5 ≤ ξ ≤ 5 and different m values; namely, the line with dots represents the solution when
m = 0, the unitary line represents the solution when m = 0.5, the line with dashes represents the solution when
m = 0.8 and the line with dotdashes represents the solution when m = 1.

Clearly seen from Figure 2 that the wave amplitudes are constant for any chosen m value but the wave
amplitudes and the wavelengths are increasing while m goes from 0 to 1.

Figure 1. 3D graph of the solution u(ξ,m) when 0 ≤ m ≤ 1.

Figure 2. 2D graph of the solution u(ξ,m) when m = 0, m = 0.5, m = 0.8, m = 1.

Secondly, let us consider space-time fractional SRLW Eq. (1.1) for α = β = 0.5; that is

D
1/2
t D

1/2
t u+D1/2

x D1/2
x u+ uD

1/2
t

(
D1/2
x u

)
+
(
D

1/2
t u

)(
D1/2
x u

)
+D

1/2
t D

1/2
t

(
D1/2
x D1/2

x u
)

= 0. (4.1)

Utilizing the transformation ξ = 2
√
t+ 2

√
x, the solution u = B + 8A+ 12A tan2 ξ in Table 3 turns into

u(x, t) = −10− 12 tan2(2
√
t+ 2

√
x).

Figure 3 demonstrates this solution for 0 ≤ x ≤ 2 and 0 ≤ t ≤ 1.Besides, Figure 4 illustrates the same solution for
0 ≤ x ≤ 100 and t = 1. Here, the wave amplitudes are goes to infinity, and the wavelengths are increasing when x
increases for 0 ≤ x <∞.

Finally, let us consider space-time fractional SRLW Eq. (4.1). Using the transformation ξ = 2
√
t + 2

√
x, the

solution u = B − 8A+ 12A coth2 ξ in Table 3 turns into

u(x, t) = 6− 12 coth2(2
√
t+ 2

√
x).

Figure 5 illustrates this solution for 0 ≤ x ≤ 4 and 0 ≤ t ≤ 1.Moreover, Figure 6 demonstrates the same solution
for 0 ≤ x ≤ 4 and t = 1.
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Figure 3. 3D graph of the solution u(x, t) when m = 0.

Figure 4. 2D graph of the exact solution u(x, t) when m = 0 and t = 1.

Figure 5. 3D graph of the solution u(x, t) when m = 1.
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Figure 6. 2D graph of the exact solution u(x, t) when m = 1.

5. Conclusions
In this paper, a direct method based on the Jacobi elliptic functions is presented to gain the exact solutions of

space-time fractional SRLW equation. The suggested method has many advantages such that the solutions are
found in the form including the rational, trigonometric, hyperbolic functions. The complex valued solutions, soliton
solutions, and periodic solutions are also obtained. Some of these solutions are illustrated by two-dimensional
and three-dimensional graphics. The other advantage of the proposed method is not to require perturbation,
linearization, initial and boundary conditions. Besides, solutions of an auxiliary nonlinear ordinary differential
equation have been investigated, and given by table. Solving this auxiliary equation, solutions of Duffing equation
are also found. Moreover, using this equation, many partial differential equations can be solved.

In the literature, rational (G′/G)-expansion [14], new extended direct algebraic [18], improved Bernoulli sub-
equation function [19], and modified extended tanh [20] methods include the conformable derivatives. 3 solutions
which are trigonometric and hyperbolic are obtained by rational (G′/G)-expansion method, 37 solutions which
are rational, exponential, trigonometric and hyperbolic are obtained by new extended direct algebraic method, 3
solutions which are rational and exponential are obtained by improved Bernoulli sub-equation function method
and 12 solutions which are trigonometric and hyperbolic are obtained by modified extended tanh method. Besides,
8 solutions which are trigonometric, hyperbolic and Jacobi elliptic function by the extended Jacobi elliptic function
expansion method [16]. When compared with these methods, our method has the largest number of solutions.
Because there are 192 type linear independent solutions for 30 different cases in the presented method. The number
of the solutions are infinite depending on the parameters P, Q, R, K and m. When solving different differential
equations, the solutions given in Table 1 of auxiliary equation (3.2) can also be utilized. Moreover, these solutions
can be helpful for different solution methods. Therefore, these solutions contain the widest set of solutions in the
literature.

References
[1] Seyler, C. E., Fenstermacher, D. L.: A symmetric regularized-long-wave equation. Physics of Fluids. 27 (1), (1984).

[2] Ahmadian, S., Darvishi, M. T.: New exact traveling wave solutions for space-time fractional (1 + 1)-dimensional SRLW
equation. Optik. 127, 10697–10704 (2010).

[3] Wang, T., Zhang, L., Chen, F.: Conservative schemes for the symmetric regularized long wave equations. Appl. Math.
Comput. 190, 1063–1080 (2007).

[4] Xu, F.: Application of Exp-function method to symmetric regularized long wave (SRLW) equation. Phys. Lett. A. 372,
252–257 (2008).

[5] Abazari, R.: Application of (G′/G)-expansion method to traveling wave solutions of three nonlinear evolution equations.
Comput. Fluids., 39, 1957–1963 (2010).

[6] Jafari, H., Kadkhoda, N., Khalique, C.M.: Travelling wave solutions of nonlinear evolution equations using the
simplest equation method. Comput. Math. Appl., 64, 2084–2088 (2012).



62 S. Çulha Ünal, A. Daş̧cıoğlu & D. Varol
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[34] Çulha Ünal, S., Daşcıoğlu, A., Varol Bayram, D.: New exact solutions of space and time fractional modified Kawahara
equation. Phys. A, 551, 124550 (2020).
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