MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES

https://doi.org/10.36753/mathenot.685624 10 (2) 63-71 (2022) - Research Article

ISSN: 2147-6268 ©MSAEN

(m_1, m_2) -Geometric Arithmetically Convex Functions and Related Inequalities

Mahir Kadakal

Abstract

In this manuscript, we introduce and study the concept of (m_1, m_2) -geometric arithmetically (GA) convex functions and their some algebric properties. In addition, we obtain Hermite-Hadamard type inequalities for the newly introduced this type of functions whose derivatives in absolute value are the class of (m_1, m_2) -GA-convex functions by using both well-known power mean and Hölder's integral inequalities.

Keywords: Convex function; m-convex function; (m_1, m_2) -GA convex function; Hermite-Hadamard inequality. **AMS Subject Classification (2020):** 26A51; 26D10; 26D15.

1. Preliminaries and fundamentals

Convexity theory provides powerful principles and techniques to study a wide class of problems in both pure and applied mathematics. Hermite-Hadamard integral inequality is very important in the convexity theory. Readers can find more informations in [1–6, 8, 9, 12, 13, 16] and references therein regarding both convexity theory and H-H integral inequalities.

Definition 1.1 ([10, 11]). $f: I \subseteq \mathbb{R}_+ = (0, \infty) \to \mathbb{R}$ is called *GA*-convex on *I* if

$$f(a^{\xi}b^{1-\xi}) \le \xi f(a) + (1-\xi) f(b)$$

holds for all $a, b \in I$ and $\xi \in [0, 1]$.

Definition 1.2 ([14]). $f:[0,b] \to \mathbb{R}$ is called m-convex for $m \in (0,1]$ if the following inequality

$$f(\xi x_1 + m(1 - \xi)x_2) \le \xi f(x_1) + m(1 - \xi)f(x_2)$$

holds for all $x_1, x_2 \in [0, b]$ and $\xi \in [0, 1]$.

Definition 1.3 ([7]). $f:[0,b]\to\mathbb{R}, b>0$, is called (m_1,m_2) -convex function, if

$$f(m_1 \xi \theta + m_2 (1 - \xi) \vartheta) < m_1 \xi f(\theta) + m_2 (1 - \xi) f(\vartheta)$$

for all $\theta, \vartheta \in I, \xi \in [0, 1]$ and $(m_1, m_2) \in (0, 1]^2$.

The purpose of this manuscript is to give the concept of (m_1, m_2) -geometric arithmetically (GA) convex functions and find some results connected with new inequalities similar to the well-known H-H inequality for these classes of functions.

2. Some properties of (m_1, m_2) -GA convex functions

Here, we will definite a new concept, which is called (m_1, m_2) -GA convex functions and we give by setting some algebraic properties for the (m_1, m_2) -GA convex functions.

Definition 2.1. Let the function $f:[0,b]\to\mathbb{R}$ and $(m_1,m_2)\in(0,1]^2$. If

$$f\left(a^{m_1t}b^{m_2(1-t)}\right) \le m_1tf(a) + m_2(1-t)f(b).$$
 (2.1)

for all $[a,b] \subset [0,b]$ and $t \in [0,1]$, then the function f is called (m_1,m_2) -GA convex function, if this inequality reversed, then the function f is called (m_1,m_2) -GA concave function.

We discuss some connections between the class of the (m_1, m_2) -GA convex functions and other classes of generalized convex functions.

Remark 2.1. When $m_1 = m_2 = 1$, the (m_1, m_2) -GA convex (concave) function becomes a GA convex (concave) function in defined [10, 11].

Remark 2.2. When $m_1 = 1$, $m_2 = m$, the (m_1, m_2) -GA convex (concave) function becomes the (α, m) -GA convex (concave) function defined in [15].

Proposition 2.1. $f: I \subset (0,\infty) \to \mathbb{R}$ is (m_1, m_2) -GA convex on $I \iff f \circ \exp: \ln I \to \mathbb{R}$ is (m_1, m_2) -convex on the interval $\ln I = \{ \ln x | x \in I \}$.

Proof. (\Rightarrow) Suppose $f: I \subset (0, \infty) \to \mathbb{R}$ is (m_1, m_2) -GA convex function. Then, we get

$$(f \circ \exp) (m_1 t \ln a + m_2 (1 - t) \ln b) \le m_1 t (f \circ \exp) (\ln a) + m_2 (1 - t) (f \circ \exp) (\ln b)$$

 $f \left(a^{m_1 t} b^{m_2 (1 - t)} \right) \le m_1 t f(a) + m_2 (1 - t) f(b).$

Therefore, the function $f \circ \exp$ is (m_1, m_2) -convex function on $\ln I$.

 (\Leftarrow) Let $f \circ \exp : \ln I \to \mathbb{R}$, (m_1, m_2) -convex function on $\ln I$. Then, we get

$$f\left(a^{m_1t}b^{m_2(1-t)}\right) = f\left(e^{m_1t\ln a + m_2(1-t)\ln b}\right)$$

$$= (f\circ\exp)\left(m_1t\ln a + m_2(1-t)\ln b\right)$$

$$\leq m_1tf\left(e^{\ln a}\right) + m_2\left(1-t\right)f\left(e^{\ln b}\right)$$

$$= m_1tf(a) + m_2\left(1-t\right)f(b).$$

Theorem 2.1. Let $f, g: I \subset \mathbb{R} \to \mathbb{R}$. If f and g are (m_1, m_2) -geometric arithmetically convex functions, then

- (i) f + g is an (m_1, m_2) -geometric arithmetically convex function,
- (ii) For $c \in \mathbb{R}$ ($c \geq 0$) cf is an (m_1, m_2) -geometric arithmetically convex function.

Proof. (i) Let f, g be (m_1, m_2) -geometric arithmetically convex functions, then

$$(f+g)\left(a^{m_1t}b^{m_2(1-t)}\right) = f\left(a^{m_1t}b^{m_2(1-t)}\right) + g\left(a^{m_1t}b^{m_2(1-t)}\right)$$

$$\leq m_1tf(a) + m_2(1-t)f(b) + m_1tg(a) + m_2(1-t)g(b)$$

$$= m_1t(f+g)(a) + m_2(1-t)(f+g)(b)$$

(ii) Let f be (m_1, m_2) -GA convex function and $c \in \mathbb{R}$ ($c \ge 0$), then

$$(cf)\left(a^{m_1t}b^{m_2(1-t)}\right) \leq c\left[m_1tf(x) + m_2(1-t)f(y)\right] = m_1t\left(cf\right)(x) + m_2(1-t)\left(cf\right)(y).$$

Theorem 2.2. Let $f, g: I \to \mathbb{R}$ are nonnegative and monotone increasing. If f and g are (m_1, m_2) -GA convex functions, then fg is (m_1, m_2) -GA convex function.

Proof. If $\vartheta_1 \leq \vartheta_2$ ($\vartheta_2 \leq \vartheta_1$ is similar) then

$$f(\vartheta_1)g(\vartheta_2) + f(\vartheta_2)g(\vartheta_1) \le f(\vartheta_1)g(\vartheta_1) + f(\vartheta_2)g(\vartheta_2). \tag{2.2}$$

Therefore, for $a, b \in I$ and $t \in [0, 1]$,

$$(fg)\left(a^{m_1t}b^{m_2(1-t)}\right) = f\left(a^{m_1t}b^{m_2(1-t)}\right)g\left(a^{m_1t}b^{m_2(1-t)}\right)$$

$$\leq [m_1tf(a) + m_2(1-t)f(a)][m_1tg(a) + m_2(1-t)g(b)]$$

$$= m_1m_1t^2f(a)g(a) + m_1m_2t(1-t)f(a)g(b) + m_2m_1t(1-t)f(b)g(a)$$

$$+ m_2m_2(1-t)^2f(b)g(b)$$

$$= m_1^2t^2f(a)g(a) + m_1m_2t(1-t)[f(b)g(a) + f(a)g(b)] + m_2^2(1-t)^2f(b)g(b).$$

Using now the inequality (2.2), we obtain,

$$(fg) (m_1 t a + m_2 (1 - t)b) \leq m_1^2 t^2 f(a) g(a) + m_1 m_2 t (1 - t) [f(a) g(a) + f(b) g(b)] + m_2^2 (1 - t)^2 f(b) g(b) = m_1 t [m_1 t + m_2 (1 - t)] f(a) g(a) + m_2 (1 - t) [m_1 t + m_2 (1 - t)] f(b) g(b).$$

Since $m_1t + m_2(1-t) \le m \le 1$, where $m = \max\{m_1, m_2\}$. Therefore, we get

$$(fg)(m_1ta + m_2(1-t)b) \le m_1tf(a)g(a) + m_2(1-t)f(b)g(b)$$

= $m_1t(fg)(a) + m_2(1-t)(fg)(b)$.

Theorem 2.3. Let b > 0 and $f_{\alpha} : [a, b] \to \mathbb{R}$ be an arbitrary family of (m_1, m_2) -geometric arithmetically convex functions and let $f(x) = \sup_{\alpha} f_{\alpha}(x)$. If $J = \{u \in [a, b] : f(u) < \infty\}$ is nonempty, then J is an interval and f is an (m_1, m_2) -geometric arithmetically convex function on J.

Proof. Let $t \in [0,1]$ and $x,y \in J$ be arbitrary. Then

$$f\left(a^{m_1t}b^{m_2(1-t)}\right) = \sup_{\alpha} f_{\alpha}\left(a^{m_1t}b^{m_2(1-t)}\right)$$

$$\leq \sup_{\alpha} \left[m_1tf_{\alpha}(a) + m_2(1-t)f_{\alpha}(b)\right]$$

$$\leq m_1t\sup_{\alpha} f_{\alpha}\left(a\right) + m_2(1-t)\sup_{\alpha} f_{\alpha}\left(b\right)$$

$$= m_1tf\left(a\right) + m_2(1-t)f\left(b\right) < \infty.$$

This shows simultaneously that J is an interval, since it contains every point between any two of its points, and that f is an (m_1, m_2) -GA convex on J.

Theorem 2.4. If the function $f:[a^{m_1},b^{m_2}]\to\mathbb{R}$ is an (m_1,m_2) -GA, then f is bounded on the interval $[a^{m_1},b^{m_2}]$.

Proof. Let $M = \max\{m_1f(a), m_2f(b)\}$ and $x \in [a^{m_1}, b^{m_2}]$ is an arbitrary point. Then there exist a $t \in [0, 1]$ such that $x = a^{m_1t}b^{m_2(1-t)}$. Thus, since $m_1t \le 1$ and $m_2(1-t) \le 1$ we have

$$f(x) = f\left(a^{m_1 t} b^{m_2(1-t)}\right) \le m_1 t f(a) + m_2(1-t) f(b) \le M.$$

Also, for every $x \in [a^{m_1}, b^{m_2}]$ there exist a $\lambda \in \left[\sqrt{\frac{a^{m_1}}{b^{m_2}}}, 1\right]$ such that $x = \lambda \sqrt{a^{m_1}b^{m_2}}$ and $x = \frac{\sqrt{a^{m_1}b^{m_2}}}{\lambda}$. Without loss of generality we can suppose $x = \lambda \sqrt{a^{m_1}b^{m_2}}$. So, we get

$$f\left(\sqrt{a^{m_1}b^{m_2}}\right) = f\left(\sqrt{\left[\lambda\sqrt{a^{m_1}b^{m_2}}\right]\left[\frac{\sqrt{a^{m_1}b^{m_2}}}{\lambda}\right]}\right) \le \frac{1}{2}\left[f\left(x\right) + f\left(\frac{\sqrt{a^{m_1}b^{m_2}}}{\lambda}\right)\right].$$

Using M as the upper bound, we get

$$f(x) \ge 2f\left(\sqrt{a^{m_1}b^{m_2}}\right) - f\left(\frac{\sqrt{a^{m_1}b^{m_2}}}{\lambda}\right) \ge 2f\left(\sqrt{a^{m_1}b^{m_2}}\right) - M = m.$$

3. Hermite-Hadamard inequality for (m_1, m_2) -GA-convex function

In this section, we will obtain some inequalities of similar to the H-H type integral inequalities for (m_1, m_2) -GA-convex.

Theorem 3.1. Let $f : [a,b] \to \mathbb{R}$ be an (m_1, m_2) -GA-convex function. If a < b and $f \in L[a,b]$, then the following H-H type integral inequalities hold:

$$f\left(\sqrt{a^{m_1}b^{m_2}}\right) \le \frac{1}{\ln b^{m_2} - \ln a^{m_1}} \int_{a^{m_1}}^{b^{m_2}} \frac{f(u)}{u} du \le \frac{m_1 f(a)}{2} + \frac{m_2 f(b)}{2}. \tag{3.1}$$

Proof. Firstly, from the property of the (m_1, m_2) -GA convex function of f, we get

$$f\left(\sqrt{a^{m_1}b^{m_2}}\right) = f\left(\sqrt{a^{m_1t}b^{m_2(1-t)}a^{m_1(1-t)}b^{m_2t}}\right)$$

$$\leq \frac{f\left(a^{m_1t}b^{m_2(1-t)}\right) + f\left(a^{m_1(1-t)}b^{m_2t}\right)}{2}.$$

Now, if we take integral in the above inequality with respect to $t \in [0, 1]$, we deduce that

$$f\left(\sqrt{a^{m_1}b^{m_2}}\right) \leq \frac{1}{2} \int_0^1 f\left(a^{m_1t}b^{m_2(1-t)}\right) dt + \frac{1}{2} \int_0^1 \left(a^{m_1(1-t)}b^{m_2t}\right) dt$$

$$= \frac{1}{2} \left[\frac{1}{\ln b^{m_2} - \ln a^{m_1}} \int_{a^{m_1}}^{b^{m_2}} \frac{f(u)}{u} du + \frac{1}{\ln b^{m_2} - \ln a^{m_1}} \int_{a^{m_1}}^{b^{m_2}} \frac{f(u)}{u} du\right]$$

$$= \frac{1}{\ln b^{m_2} - \ln a^{m_1}} \int_{a^{m_1}}^{b^{m_2}} \frac{f(u)}{u} du.$$

Secondly, from the property of the (m_1, m_2) -GA convex function of f, if the variable is changed as $u = a^{m_1 t} b^{m_2 (1-t)}$, then

$$\begin{split} \frac{1}{\ln b^{m_2} - \ln a^{m_1}} \int_{a^{m_1}}^{b^{m_2}} \frac{f(u)}{u} du &= \int_0^1 f\left(a^{m_1 t} b^{m_2(1-t)}\right) dt \\ &\leq \int_0^1 \left[m_1 t f(a) + m_2(1-t) f(b)\right] dt \\ &= m_1 f(a) \int_0^1 t dt + m_2 f(b) \int_0^1 (1-t) dt \\ &= \frac{m_1 f(a)}{2} + \frac{m_2 f(b)}{2}. \end{split}$$

4. Some new inequalities for (m_1, m_2) -GA convex functions

The aim of this section is to establish new estimates that refine Hermite-Hadamard integral inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is (m_1, m_2) -GA convex function. Ji et al. [15] used the following lemma:

Lemma 4.1 ([15]). Let $f: I \subseteq \mathbb{R}_+ = (0, \infty) \to \mathbb{R}$ be differentiable function and $a, b \in I$ with a < b. If $f' \in L([a, b])$, then

$$\frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx = \frac{\ln b - \ln a}{2} \int_0^1 a^{3(1-t)} b^{3t} f'\left(a^{1-t}b^t\right) dt.$$

Theorem 4.1. Let the function $f: \mathbb{R}_0 = [0, \infty) \to \mathbb{R}$ be a differentiable function and $f' \in L([a, b])$ for $0 < a < b < \infty$. If |f'| is (m_1, m_2) -GA convex on $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$ for $[m_1, m_2] \in (0, 1]^2$, then the following integral inequalities hold

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \leq \frac{m_1}{6} \left| f'\left(a^{\frac{1}{m_1}}\right) \right| \left[L\left(a^3, b^3\right) - a^3 \right] + \frac{m_2}{6} \left| f'\left(b^{\frac{1}{m_2}}\right) \right| \left[b^3 - L\left(a^3, b^3\right) \right], (4.1)$$

where L is the logarithmic mean.

Proof. By using Lemma 4.1 and the inequality

$$\left| f'\left(a^{1-t}b^{t}\right) \right| = \left| f'\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2}t}\right) \right| \leq m_{1}(1-t)\left| f'\left(a^{\frac{1}{m_{1}}}\right) \right| + m_{2}t\left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|,$$

we get

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right|$$

$$\leq \frac{\ln(b/a)}{2} \int_0^1 a^{3(1-t)} b^{3t} \left| f'\left(a^{1-t}b^t\right) \right| dt$$

$$\leq \frac{\ln(b/a)}{2} \int_0^1 a^{3(1-t)} b^{3t} \left[m_1(1-t) \left| f'\left(a^{\frac{1}{m_1}}\right) \right| + m_2 t \left| f'\left(b^{\frac{1}{m_2}}\right) \right| \right] dt$$

$$= m_1 \left| f'\left(a^{\frac{1}{m_1}}\right) \left| \frac{\ln(b/a)}{2} \int_0^1 (1-t) a^{3(1-t)} b^{3t} dt + m_2 \left| f'\left(b^{\frac{1}{m_2}}\right) \right| \frac{\ln(b/a)}{2} \int_0^1 t a^{3(1-t)} b^{3t} dt$$

$$= m_1 \left| f'\left(a^{\frac{1}{m_1}}\right) \left| \frac{\ln(b/a)}{2} \left[\frac{b^3 - a^3 - a^3 \left(\ln b^3 - \ln a^3\right)}{\left(\ln b^3 - \ln a^3\right)^2} \right] + m_2 \left| f'\left(b^{\frac{1}{m_2}}\right) \right| \frac{\ln(b/a)}{2} \left[\frac{b^3 \left(\ln b^3 - \ln a^3\right) - \left(b^3 - a^3\right)}{\left(\ln b^3 - \ln a^3\right)^2} \right]$$

$$= \frac{m_1}{6} \left| f'\left(a^{\frac{1}{m_1}}\right) \right| \left[L\left(a^3, b^3\right) - a^3 \right] + \frac{m_2}{6} \left| f'\left(b^{\frac{1}{m_2}}\right) \right| \left[b^3 - L\left(a^3, b^3\right) \right] .$$

Corollary 4.1. By considering the conditions of Theorem 4.1, If we take $m_1 = m$ and $m_2 = 1$, then,

$$\left|\frac{b^2f(a)-a^2f(b)}{2}-\int_a^bxf(x)dx\right| \leq \frac{m}{6}\left|f'\left(a^{\frac{1}{m}}\right)\right|\left[L\left(a^3,b^3\right)-a^3\right]+\frac{1}{6}\left|f'\left(b\right)\right|\left[b^3-L\left(a^3,b^3\right)\right].$$

Corollary 4.2. By considering the conditions of Theorem 4.1, If we take $m_1 = m_2 = 1$, then,

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \le \frac{|f'(a)|}{6} \left[L\left(a^3, b^3\right) - a^3 \right] + \frac{|f'(b)|}{6} \left[b^3 - L\left(a^3, b^3\right) \right].$$

Theorem 4.2. Let the function $f: \mathbb{R}_0 = [0, \infty) \to \mathbb{R}$ be a differentiable function and $f' \in L([a, b])$ for $0 < a < b < \infty$. If $|f'|^q$ is (m_1, m_2) -GA convex on $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$ for $[m_1, m_2] \in (0, 1]^2$ and $q \ge 1$ then,

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \leq \frac{\left(b^3 - a^3\right)^{1 - \frac{1}{q}}}{6} \left[m_1 \left| f'\left(a^{\frac{1}{m_1}}\right) \right|^q \left(L\left(a^3, b^3\right) - a^3\right) + m_2 \left| f'\left(b^{\frac{1}{m_2}}\right) \right|^q \left(b^3 - L\left(a^3, b^3\right)\right) \right]^{\frac{1}{q}},$$

where L is the logarithmic mean.

Proof. By using Lemma 4.1, power mean inequality and the (m_1, m_2) -GA convexity of $|f'|^q$ on $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$, that is, the inequality

$$\left| f'\left(a^{1-t}b^{t}\right) \right| = \left| f'\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2}t}\right) \right|^{q} \leq m_{1}(1-t)\left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} + m_{2}t\left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q},$$

we get

$$\left| \frac{b^{2}f(a) - a^{2}f(b)}{2} - \int_{a}^{b} x f(x) dx \right|$$

$$\leq \frac{\ln(b/a)}{2} \left[\int_{0}^{1} a^{3(1-t)} b^{3t} dt \right]^{1-\frac{1}{q}} \left[\int_{0}^{1} a^{3(1-t)} b^{3t} \left| f'\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)} \left(b^{\frac{1}{m_{2}}}\right)^{m_{2}t}\right) \right|^{q} dt \right]^{\frac{1}{q}}$$

$$\leq \frac{\ln(b/a)}{2} \left[\int_{0}^{1} a^{3(1-t)} b^{3t} dt \right]^{1-\frac{1}{q}} \left[\int_{0}^{1} a^{3(1-t)} b^{3t} \left[m_{1}(1-t) \left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} + m_{2}t \left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q} \right] dt \right]^{\frac{1}{q}}$$

$$= \frac{\ln(b/a)}{2} \left[\int_{0}^{1} a^{3(1-t)} b^{3t} dt \right]^{1-\frac{1}{q}} \left[m_{1} \left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} \int_{0}^{1} (1-t) a^{3(1-t)} b^{3t} dt + m_{2} \left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q} \int_{0}^{1} t a^{3(1-t)} b^{3t} dt \right]^{\frac{1}{q}}$$

$$= \frac{\left(b^{3} - a^{3}\right)^{1-\frac{1}{q}}}{6} \left[m_{1} \left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} \left(L\left(a^{3}, b^{3}\right) - a^{3}\right) + m_{2} \left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q} \left(b^{3} - L\left(a^{3}, b^{3}\right)\right) \right]^{\frac{1}{q}} .$$

Corollary 4.3. By considering the conditions of Theorem 4.2, If we take q = 1, then,

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \leq \left| \left[\frac{m_1}{6} \left| f'\left(a^{\frac{1}{m_1}}\right) \right| \left(L\left(a^3, b^3\right) - a^3\right) + \frac{m_2}{6} \left| f'\left(b^{\frac{1}{m_2}}\right) \right| \left(b^3 - L\left(a^3, b^3\right)\right) \right| \right|.$$

This inequality coincides with the inequality (4.1).

Corollary 4.4. By considering the conditions of Theorem 4.2, If we take $m_1 = m$ and $m_2 = 1$, then,

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \leq \frac{\left(b^3 - a^3\right)^{1 - \frac{1}{q}}}{6} \left[m \left| f'\left(a^{\frac{1}{m}}\right) \right|^q \left(L\left(a^3, b^3\right) - a^3\right) + \left| f'\left(b\right) \right|^q \left(b^3 - L\left(a^3, b^3\right) \right) \right]^{\frac{1}{q}}.$$

This inequality coincides with the inequality in [15].

Theorem 4.3. Let the function $f: \mathbb{R}_0 = [0, \infty) \to \mathbb{R}$ be a differentiable function and $f' \in L([a, b])$ for $0 < a < b < \infty$. If $|f'|^q$ is (m_1, m_2) -GA convex on $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$ for $[m_1, m_2] \in (0, 1]^2$ and q > 1, then,

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \leq \frac{\ln(b/a)}{2} L^{\frac{1}{p}} \left(a^{3p}, b^{3p} \right) A^{\frac{1}{q}} \left(m_1 \left| f' \left(a^{\frac{1}{m_1}} \right) \right|^q, m_2 \left| f' \left(b^{\frac{1}{m_2}} \right) \right|^q \right)$$

where L is the logarithmic mean, A is the arithmetic mean and $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By using Lemma 4.1, Hölder inequality and the (m_1, m_2) -GA-convexity of the function $|f'|^q$ on the interval $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$, that is, the inequality

$$\left| f'\left(a^{1-t}b^{t}\right) \right| = \left| f'\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)}\left(b^{\frac{1}{m_{2}}}\right)^{m_{2}t}\right) \right|^{q} \leq m_{1}(1-t)\left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} + m_{2}t\left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q},$$

we get

$$\left| \frac{b^{2}f(a) - a^{2}f(b)}{2} - \int_{a}^{b} x f(x) dx \right|$$

$$\leq \frac{\ln(b/a)}{2} \left[\int_{0}^{1} \left(a^{3(1-t)}b^{3t} \right)^{p} dt \right]^{\frac{1}{p}} \left[\int_{0}^{1} \left| f'\left(\left(a^{\frac{1}{m_{1}}} \right)^{m_{1}(1-t)} \left(b^{\frac{1}{m_{2}}} \right)^{m_{2}t} \right) \right|^{q} dt \right]^{\frac{1}{q}}$$

$$\leq \frac{\ln(b/a)}{2} \left[\int_{0}^{1} \left(a^{3(1-t)}b^{3t} \right)^{p} dt \right]^{\frac{1}{p}} \left[\int_{0}^{1} \left[m_{1}(1-t) \left| f'\left(a^{\frac{1}{m_{1}}} \right) \right|^{q} + m_{2}t \left| f'\left(b^{\frac{1}{m_{2}}} \right) \right|^{q} \right] dt \right]^{\frac{1}{q}}$$

$$= \frac{\ln(b/a)}{2} \left[\int_{0}^{1} a^{3p(1-t)}b^{3pt} dt \right]^{\frac{1}{p}} \left[m_{1} \left| f'\left(a^{\frac{1}{m_{1}}} \right) \right|^{q} \int_{0}^{1} (1-t) dt + m_{2} \left| f'\left(b^{\frac{1}{m_{2}}} \right) \right|^{q} \int_{0}^{1} t dt \right]^{\frac{1}{q}}$$

$$= \frac{\ln(b/a)}{2} L^{\frac{1}{p}} \left(a^{3p}, b^{3p} \right) A^{\frac{1}{q}} \left(m_{1} \left| f'\left(a^{\frac{1}{m_{1}}} \right) \right|^{q}, m_{2} \left| f'\left(b^{\frac{1}{m_{2}}} \right) \right|^{q} \right).$$

Corollary 4.5. By considering the conditions of Theorem 4.3, If we take $m_1 = m$ and $m_2 = 1$, then,

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \le \frac{\ln(b/a)}{2} L^{\frac{1}{p}} \left(a^{3p}, b^{3p} \right) A^{\frac{1}{q}} \left(m \left| f' \left(a^{\frac{1}{m}} \right) \right|^q, \left| f' \left(b \right) \right|^q \right)$$

Corollary 4.6. By considering the conditions of Theorem 4.3, If we take $m_1 = m_2 = 1$, then,

$$\left| \frac{b^{2}f(a) - a^{2}f(b)}{2} - \int_{a}^{b} x f(x) dx \right| \leq \frac{\ln(b/a)}{2} L^{\frac{1}{p}} \left(a^{3p}, b^{3p} \right) A^{\frac{1}{q}} \left(\left| f'(a) \right|^{q}, \left| f'(b) \right|^{q} \right)$$

Theorem 4.4. Let the function $f: \mathbb{R}_0 = [0, \infty) \to \mathbb{R}$ be a differentiable function and $f' \in L([a, b])$ for $0 < a < b < \infty$. If $|f'|^q$ is (m_1, m_2) -GA convex on $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$ for $[m_1, m_2] \in (0, 1]^2$ and q > 1, then the following integral inequalities hold

$$\left| \frac{b^2 f(a) - a^2 f(b)}{2} - \int_a^b x f(x) dx \right| \le \frac{\ln^{1 - \frac{1}{q}} (b/a)}{2} \left(\frac{1}{3q} \right)^{\frac{1}{q}}$$

$$\times \left[m_1 \left| f' \left(a^{\frac{1}{m_1}} \right) \right|^q \left(L \left(a^{3q}, b^{3q} \right) - a^{3q} \right) + m_2 \left| f' \left(b^{\frac{1}{m_2}} \right) \right|^q \left(b^{3q} - L \left(a^{3q}, b^{3q} \right) \right) \right]^{\frac{1}{q}},$$

where L is the logarithmic mean and $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By using Lemma 4.1, Hölder inequality and the (m_1, m_2) -GA-convexity of the function $|f'|^q$ on the interval $\left[0, \max\left\{a^{\frac{1}{m_1}}, b^{\frac{1}{m_2}}\right\}\right]$, we get

$$\left| \frac{b^{2}f(a) - a^{2}f(b)}{2} - \int_{a}^{b} x f(x) dx \right|$$

$$\leq \frac{\ln(b/a)}{2} \left(\int_{0}^{1} 1 dt \right)^{\frac{1}{p}} \left[\int_{0}^{1} a^{3q(1-t)} b^{3qt} \left| f'\left(\left(a^{\frac{1}{m_{1}}}\right)^{m_{1}(1-t)} \left(b^{\frac{1}{m_{2}}}\right)^{m_{2}t}\right) \right|^{q} dt \right]^{\frac{1}{q}}$$

$$\leq \frac{\ln(b/a)}{2} \left[\int_{0}^{1} a^{3(1-t)q} b^{3tq} \left[m_{1}(1-t) \left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} + m_{2}t \left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q} \right] dt \right]^{\frac{1}{q}}$$

$$= \frac{\ln(b/a)}{2} \left[m_{1} \left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} \int_{0}^{1} (1-t) a^{3q(1-t)} b^{3qt} dt + m_{2} \left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q} \int_{0}^{1} t a^{3q(1-t)} b^{3qt} dt \right]^{\frac{1}{q}}$$

$$= \frac{\ln^{1-\frac{1}{q}}(b/a)}{2} \left(\frac{1}{3q} \right)^{\frac{1}{q}} \left[m_{1} \left| f'\left(a^{\frac{1}{m_{1}}}\right) \right|^{q} \left(L\left(a^{3q}, b^{3q}\right) - a^{3q} \right) + m_{2} \left| f'\left(b^{\frac{1}{m_{2}}}\right) \right|^{q} \left(b^{3q} - L\left(a^{3q}, b^{3q}\right) \right) \right]^{\frac{1}{q}}.$$

Corollary 4.7. By considering the conditions of Theorem 4.4, If we take $m_1 = m$ and $m_2 = 1$, then,

$$\left| \frac{b^{2}f(a) - a^{2}f(b)}{2} - \int_{a}^{b} x f(x) dx \right| \leq \frac{\ln^{1 - \frac{1}{q}} (b/a)}{2} \left(\frac{1}{3q} \right)^{\frac{1}{q}} \times \left[m \left| f'\left(a^{\frac{1}{m}}\right) \right|^{q} \left(L\left(a^{3q}, b^{3q}\right) - a^{3q} \right) + \left| f'\left(b\right) \right|^{q} \left(b^{3q} - L\left(a^{3q}, b^{3q}\right) \right) \right]^{\frac{1}{q}}.$$

Corollary 4.8. By considering the conditions of Theorem 4.3, If we take $m_1 = m_2 = 1$, then,

$$\left| \frac{b^{2}f(a) - a^{2}f(b)}{2} - \int_{a}^{b} x f(x) dx \right|$$

$$\leq \frac{\ln^{1 - \frac{1}{q}} (b/a)}{2} \left(\frac{1}{3q} \right)^{\frac{1}{q}} \left[\left| f'(a) \right|^{q} \left(L\left(a^{3q}, b^{3q}\right) - a^{3q} \right) + \left| f'(b) \right|^{q} \left(b^{3q} - L\left(a^{3q}, b^{3q}\right) \right) \right]^{\frac{1}{q}}.$$

Acknowledgment.

We thank the reviewer for their insightful comments and suggestions that helped us improve the paper.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] Bakula, MK., Özdemir, ME. and Pečarić, J., Hadamard type inequalities for m-convex and (α, m) -convex functions, J. Inequal. Pure Appl. Math. 9 (4) (2008), Art. 96, 12 pages.
- [2] Dragomir SS. and Pearce, CEM., Selected Topics on Hermite-Hadamard Inequalities and Its Applications, *RGMIA Monograph*, 2002.
- [3] Dragomir, SS. Pečarić, J. and Persson, LE., Some inequalities of Hadamard Type, *Soochow Journal of Mathematics*, 21(3) (2001), pp. 335-341.
- [4] Hadamard, J., Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58(1893), 171-215.
- [5] Kadakal, H., Hermite-Hadamard type inequalities for trigonometrically convex functions, *Scientific Studies and Research*. *Series Mathematics and Informatics*, 28(2) (2018), 19-28.
- [6] Kadakal, H., New Inequalities for Strongly *r*-Convex Functions, *Journal of Function Spaces*, Volume 2019, Article ID 1219237, 10 pages, 2019.
- [7] Kadakal, H., (m_1, m_2) -convexity and some new Hermite-Hadamard type inequalities, *International Journal of Mathematical Modelling & Computations*, 9(4) (Fall) (2019): 297-309.
- [8] Kadakal, M. Kadakal, H. and İşcan, İ., Some new integral inequalities for *n*-times differentiable *s*-convex functions in the first sense, *Turkish Journal of Analysis and Number Theory*, 5(2) (2017), 63-68.
- [9] Maden, S. Kadakal, H., Kadakal, M. and İşcan, İ., Some new integral inequalities for *n*-times differentiable convex and concave functions, *Journal of Nonlinear Sciences and Applications*, 10(12) (2017), 6141-6148.
- [10] Niculescu, CP., Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2) (2000), 155-167.
- [11] Niculescu, CP., Convexity according to means, Math. Inequal. Appl. 6 (4) (2003), 571-579.
- [12] Özcan, S., Some Integral Inequalities for Harmonically (α , s)-Convex Functions, *Journal of Function Spaces*, Volume 2019, Article ID 2394021, 8 pages (2019).
- [13] Özcan, S. and İşcan, İ., Some new Hermite-Hadamard type inequalities for *s*-convex functions and their applications, *Journal of Inequalities and Applications*, Article number: 2019:201 (2019).
- [14] Toader, G., Some generalizations of the convexity, *Proc. Colloq. Approx. Optim., Univ. Cluj Napoca, Cluj-Napoca,* 1985, 329-338.

- [15] Ji, AP. Zhang, TY. Qi, F., Integral inequalities of Hermite-Hadamard type for (α, m) -GA-convex functions, *arXiv* preprint *arXiv*:1306.0852, 4 June 2013.
- [16] Varošanec, V., On *h*-convexity, *J. Math. Anal. Appl.* 326 (2007) 303-311.

Affiliations

Mahir Kadakal

ADDRESS: Bayburt University, Faculty of Applied Sciences, Department of Customs Management, Baberti Campus, 69000 Bayburt-TÜRKİYE.

E-MAIL: mahirkadakal@gmail.com ORCID ID:0000-0002-0240-918X