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Abstract

In this manuscript, we introduce and study the concept of (m;, ms)-geometric arithmetically (GA) convex
functions and their some algebric properties. In addition, we obtain Hermite-Hadamard type inequalities
for the newly introduced this type of functions whose derivatives in absolute value are the class of
(m1, mg)-GA-convex functions by using both well-known power mean and Holder’s integral inequalities.
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1. Preliminaries and fundamentals

Convexity theory provides powerful principles and techniques to study a wide class of problems in both pure
and applied mathematics. Hermite-Hadamard integral inequality is very important in the convexity theory. Readers
can find more informations in [1-6, 8, 9, 12, 13, 16] and references therein regarding both convexity theory and H-H
integral inequalities.

Definition 1.1 ([10, 11]). f: I C R4 = (0,00) — Riis called G A-convex on [ if
F(af0'76) <&f(a)+ (1 =€) [ (b)
holds for all a,b € I and £ € [0, 1].
Definition 1.2 ([14]). f : [0,b] — R is called m-convex for m € (0, 1] if the following inequality
f&ar+m(l = &az) < &f (1) +m(1l = &) f(a2)
holds for all z1,z5 € [0,b] and € € [0,1].
Definition 1.3 ([7]). f:[0,b] — R, b > 0, is caled (m1, ms)-convex function, if
[ (mai€0 +ma(1 — &)I) <mi&f(0) +ma(l — &) f(V)
forall 0,9 € I, & € [0,1] and (mq,m2) € (0,1]2.
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The purpose of this manuscript is to give the concept of (m1, m2)-geometric arithmetically (GA) convex functions
and find some results connected with new inequalities similar to the well-known H-H inequality for these classes of
functions.

2. Some properties of (m;,m)-GA convex functions

Here, we will definite a new concept, which is called (m1, m2)-GA convex functions and we give by setting
some algebraic properties for the (my, m2)-GA convex functions.

Definition 2.1. Let the function £ : [0,b] — R and (my,ms) € (0,1]2. If

£ (@ ym=0=0) < matf(a) +ma (1) £(0). 1)
for all [a,b] C [0,b] and ¢ € [0,1], then the function f is called (m1,m2)-GA convex function, if this inequality
reversed, then the function f is called (mq, m2)-GA concave function.

We discuss some connections between the class of the (mq,m2)-GA convex functions and other classes of
generalized convex functions.

Remark 2.1. When m; = ms = 1, the (m1, m2)-GA convex (concave) function becomes a GA convex (concave)
function in defined [10, 11].

Remark 2.2. When my = 1, mg = m, the (m, m2)-GA convex (concave) function becomes the («, m)-GA convex
(concave) function defined in [15].

Proposition 2.1. f: I C (0,00) — R is (m1, m2)-GA convex on I <= foexp : Inl — Ris (my, ma)-convex on the
interval InI = {Inz|z € I}.

Proof. (=) Suppose f : I C (0,00) = Ris (my, m2)-GA convex function. Then, we get
(foexp) (mitlna+mo(l —t)Ind) < mqt(foexp)(Ina)+ma(l —t)(f oexp) (Ind)
f (am1tbm2(1—t)> < matf(a) +mq (1 —1t) f(b).

Therefore, the function f o exp is (my, ma)-convex function on In I.
(<) Let foexp:InI — R, (m1, mg)-convex function on In I. Then, we get

f (amltbmg(l—t)) — f (emltlna+m.2(1—t) lnb)

(f oexp) (mitlna + mo(l —t)Inbd)
matf (elna) +mo(1—1t)f (elnb)
mitf(a) +ma (1 —1t) f(b).

IN

Theorem 2.1. Let f,g: I C R — R. If f and g are (m1, ms)-geometric arithmetically convex functions, then
(i) f + g is an (m1, mg)-geometric arithmetically convex function,
(ii) For ¢ € R (¢ > 0) cf is an (mq, mo)-geometric arithmetically convex function.

Proof. (i) Let f, g be (m1, m2)-geometric arithmetically convex functions, then
(f+g) (amltbmg(l—t)) — f (amltbmg(l—t)> +g (amltbmz(l—t))

matf(a) +ma(1 =) f(b) + matg(a) +ma(1l - t)g(b)
mat (f +9) (@) +mz(1 =) (f +9) (b)

(ii) Let f be (m1, m2)-GA convex function and ¢ € R (¢ > 0), then

() (amtyra0-0)

IN

IN

clmatf(z) +ma(1—1)f(y)]
mat (cf) (z) + ma(1 —1t) (cf) (y).
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Theorem 2.2. Let f,g : I — R are nonnegative and monotone increasing. If f and g are (mq, ma)-GA convex functions,
then fg is (m1, ma)-GA convex function.

Proof. If 91 < ¥ (¥ < ¥ is similar) then

f(01)g(02) + f(92)g(V1) < f(P1)g(¥1) + f(D2)g(D2). (2.2)

Therefore, for a,b € I and ¢t € [0,1],

(fg) (amltbmg(l—t)) — f (amltbm'z(l—t)) g (amltbmg(l—t))

[matf(a) +mao(1 1) f(a)] [matg(a) +ma(1 —t)g(b)]

mamat® f(a)g(a) + mumat(1 — t) f(a)g(b) + mamat(1 — ) f(b)g(a)
+moma(1 — )2 f(b)g(b)

= mit*f(a)g(a) + mimat(1 — ) [f(b)g(a) + f(a)g(b)] +m3(1 — £)* £ (b)g(b).

Using now the inequality (2.2), we obtain,
(fg) (mata +ma(1—1)b) < mit*f(a)g(a) +mamat(1 —1t) [f(a)g(a) + f(b)g(b)]

+m3 (1 —1)*£(b)g(b)
= mut[myt +ma(1 —1)] f(a)g(a) + ma(1 — 1) mat +ma(1 = 1)] f(b)g(b)-

IN

Since m1t + ma(1 —t) < m < 1, where m = max {mq, ma}. Therefore, we get

(fg) (mita+ma(1—1)b) < matf(a)g(a) +ma(l—1t)f(b)g(b)
= mat(fg)(a) +mz(1—1)(fg) (b).

O

Theorem 2.3. Letb > Oand f, : [a,b] — R be an arbitrary family of (m1, ms)-geometric arithmetically convex functions and
let f(xz) =sup,, fo(z). If J = {u € [a,b] : f(u) < oo} is nonempty, then J is an interval and f is an (mq, ma)-geometric
arithmetically convex function on J.

Proof. Lett € [0,1] and z,y € J be arbitrary. Then

f (amltbmg(l—t)) = sup fa (amltbmg(l—t))
sup [mat fo(a) +ma(1 — 1) fa(b)]
< matsup fa (a)+m2(1_t)supfa (b)

matf (a) + ma(1 —1t)f (b) < cc.

VAN VAN

This shows simultaneously that J is an interval, since it contains every point between any two of its points, and that
fis an (mq,m2)-GA convex on J. O

Theorem 2.4. If the function f : [a™,b™2] — Ris an (mq, ms2)-GA, then f is bounded on the interval [a™*, b™2].

Proof. Let M = max {m1 f(a), maf(b)} and x € [a™*,b™2] is an arbitrary point. Then there exist a ¢t € [0, 1] such that
x = a™*'"2(1=1) Thus, since mit < 1 and my(1 —t) < 1 we have

fa) = £ (@™m0 ) < matf(a) +ma(l =) (6) < M.

R

Also, for every x € [a™*,b™?] there exista \ € [ e 1} such that z = AVa™1b™ and z = Y422 Without loss
of generality we can suppose z = Ava™1b™2. So, we get

() s (| o] [ <4 e (5]

A A
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Using M as the upper bound, we get

f@)zﬁ(W)-f(@) > 2f (Vambm) - M =m.

3. Hermite-Hadamard inequality for (m;, m,)-GA-convex function

In this section, we will obtain some inequalities of similar to the H-H type integral inequalities for (mq, m2)-GA-
convex.

Theorem 3.1. Let f : [a,b] — R be an (mq, ma)-GA-convex function. If a < band f € L[a,b], then the following H-H
type integral inequalities hold:

pm2
f ( /7am1bm2> < 1 / f(u) b, < Mmafla) | maf(b) 3.1)

“ Inbm2 —Ilna™ J om, u - 2 2

Proof. Firstly, from the property of the (m;, m2)-GA convex function of f, we get

f(\/m) = f(\/amltbma(lft)aml(17t)bm2t)

f (amltme(l—t)) + f (aml(l—t)bmgt)
5 .

Now, if we take integral in the above inequality with respect to ¢ € [0, 1], we deduce that

f (W) < 1/01f (amﬂbmﬂl*t)) dt + ;/01 (amlu—obmzt) i@t

<

2

1 1 " fw) 1 ()
= - |— d d
2 lln bm2 — Ina™ /am,l w + Inbm2 — Ina™ /aml u

_ 1 /b fw,

Inbm2 —Ina™ J m, u

Secondly, from the property of the (m1, m2)-GA convex function of f, if the variable is changed as u = a™1*p2(1=%),

then
1 b f(/u) ! 1t 2
— m mo(1—t)
Inb™2 — Ina™ /aml U du /0 ! (a b ) dt

< /o [matf(a) +ma(1—1t)f(b)]dt

1 1
mlf(a)/o tdtergf(b)/O (1 —t)dt

mif(a) | maf(b)
2 + 22 ’

4. Some new inequalities for (m, m;)-GA convex functions

The aim of this section is to establish new estimates that refine Hermite-Hadamard integral inequality for
functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively
at least one, is (m1, m2)-GA convex function. Ji et al. [15] used the following lemma:

Lemma 4.1 ([15]). Let f : I C R4 = (0,00) — R be differentiable function and a,b € I with a < b. If f' € L ([a, b)), then

b 1
b2 f(a) ; a?f(b) _/a (@) = Inb ; lna/o =3 1 (a1t dt.
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Theorem 4.1. Let the function f : Ry = [0,00) — R be a differentiable function and f' € L ([a,b]) for 0 < a < b < oo. If

|f'] is (m1, ma)-GA convex on {O, max {am% , bz H for [my, mg] € (0,1)%, then the following integral inequalities hold

b f(a) — a®f(b) /¢
——~ 2 — | zf(x)dx

m
< 2t
6

f (am%ﬂ [L(a®b%) —a®] + %

2 ! (bm%)’ [b* — L (a®,0%)], (4.1)

where L is the logarithmic mean.

Proof. By using Lemma 4.1 and the inequality

() o))

7 (@) =

we get

b2 fla) —a’f(b) ("
fﬁ/a zf(x)dx

M ! 3(1—t) 7.3t | 7 [ 1—tpt
< 2O [ @) ar
1
< %/ G313t {ml(l—t) f (a’%l)‘—kmzt 7 (bﬁz)H dt
0
) 1

= m + mgy

) ()| nb/a) b —a® —a® (Inb® — Ina?)
f(” )‘ 2 [ (Inb3 — Ina3)?

7 (7)) [2 (@ 0%) - a®] + =

s (| In(b/a) [0° (Inb® —Ina®) — (0° —a?)
! (b )‘ 2 [ (Inb3 — Ina?)?

my
6

f (bT)‘ [0° — L (a®,0%)].

Corollary 4.1. By considering the conditions of Theorem 4.1, If we take m; = m and my = 1, then,
b*f(a) — a®f(b)

5 —/abq:f(x)dac f (aﬁ)

Corollary 4.2. By considering the conditions of Theorem 4.1, If we take my = mg = 1, then,

b2 f(a) —a’f(b) ("
fﬁ/a xf(x)dx

[L(a®,0%) — a®] + % | (0)| [0° — L (a®,0%)] .

m
6

< |fléa)‘ L (a,5%) —a®] + |f/6(b)| b — L (a®, )] .

1

{ m ,bﬁ” for [ma, ma] € (0, 1]2 and q > 1 then,

o)

Theorem 4.2. Let the function f : Ry = [0, 00) — R be a differentiable function and f' € L ([a,b]) for 0 < a < b < o0. If
|f/|*is (m1, ma)-GA convex on [O,max a

f(a) —a*f(b) [
f—/a xf(x)dx

q

(b — a?) 1-3

<
- 6

(0 - L (a%07)]

(L (a®0%) = a®) + ma | (677

where L is the logarithmic mean.
Proof. By using Lemma 4.1, power mean inequality and the (m1, m2)-GA convexity of | f'|? on {O, max {aﬁll ,bma H ,
that is, the inequality

q
S m1(1 —t)

q
)

7 ) = (@)t (175)

() )

Q=
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we get
IO O [ sy
< (Z/“) _/la?’(l_t)b“dt- o _/1a3(1_t)b3t f ((amll)ml(”) (bwiz)mzt) thr
L/ O J - 0
< B [l [ oo (el ()1 |
ln(g/a) :/01a3(1t)b3tdt: ey m1‘f am ‘ / (#)’q/ 3(1— t)bStdt:|1

Q=

q

M [ml (L (ag, b3) — a3) + mo

6

()

Corollary 4.3. By considering the conditions of Theorem 4.2, If we take ¢ = 1, then,

b*f(a) — a®f(b ’ 1
f(a)zaf()—/l'f(x)d(b ’(am)’(L(a?’,bg)—ag)—i—%

This inequality coincides with the inequality (4.1).

'(b%)\q(th(aab?)))}

m
g[—l

7 (67)] 0 - L (a®0%))].

Corollary 4.4. By considering the conditions of Theorem 4.2, If we take m; = m and my = 1, then,
. 1—1
b f(a) —a’f(b) (" (v —a’) " (2
_ <X T ™
5 /a xf(z)dx| < 5 [m f (a )
This inequality coincides with the inequality in [15].
Theorem 4.3. Let the function f : Ry = [0, 00) — R be a differentiable function and f' € L ([a,b]) for 0 < a < b < 0. If
|f/|*is (m1, ma)-GA convex on [O,max {a"%l,b"%zH for [mq, ma] € (0, 1]2 and q > 1, then,

b f(a) —a’f(b) [
f—/a zf(x)dx

where L is the logarithmic mean, A is the arithmetic mean and % + % =1

Q=

q

(L (a®,0%) — a®) + |f' ()" (v* — L (a, b3))}

< (g/a) v (a®,b%) A% (m1 £ (am%)

q

(7))

Proof. By using Lemma 4.1, Holder inequality and the (m1, m2)-GA-convexity of the function | f/|? on the interval
{O, max {aﬁ ) b7z H , that is, the inequality

() o))

b’ f(a) —a’f(b) [
f—/a xf(z)dx

in ) / (a3(1t)b3t)pdtr { / Uy ((amh)”l“‘“ (bm:)"”t) thr

G [ @) ][ [ =l (s2) ] 1)

_ In(b/a) -/1 a3p(1—t)b3ptdtr [m1 % ‘ / (1—t)dt +mq |f
LJ O

2
ol (%)),

q

| (o' ") | = <mi(1—1t)

)

(&}

2\ 19
(aml)‘ + mot

we get

IN

IN

q} dt} '
1\ |4 1 %
7 (bmz ) ‘ /0 tdt}

= %L% (a,5%) A% (my |17 (77)["
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Corollary 4.5. By considering the conditions of Theorem 4.3, If we take m; = m and mqy = 1, then,

W_/ab - ln(b/a)L%( W 57) A ( ’f (am)

xf (x)dx 5

1ol

Corollary 4.6. By considering the conditions of Theorem 4.3, If we take m1 = mqy = 1, then,

0 f(a) — a®f(b) /b
——— 2 — | zf(x)dx

< WO 3 g ) 4% (17 @)1 B))%)

2 2

Theorem 4.4. Let the function f : Ry = [0,00) — R be a differentiable function and f' € L ([a,b]) for 0 < a < b < 0.
If | f'|* is (m1, m2)-GA convex on {O, max {aﬁl,b% H for [m1,mq] € (0, 11* and q > 1, then the following integral

inequalities hold
_n'"4 (b/a) (1)3
- 2 3q

1

7 (bw)‘q G (a?’q,b?’q))} :

f(a) —a*f(b) "
f—/a xf(x)dx

Q=

s [ [ (a70) [ (2 (a20,%0) — a®) 4

where L is the logarithmic mean and L + L = 1.

Proof. By using Lemma 4.1, Holder inequality and the (m1, m2)-GA-convexity of the function |f/|? on the interval
{O, max {aﬁ , bz H , we get

b2 f(a) —a’f(b) ("
f—/{l zf(x)dx

1 % 1 my(1— m q
c b ()] (02" ) o]
2 0 0
1
In(b/a) [ [ 3(1—t)qp3t Tl (s )| '
< 29 qp3tq — m m
< . {/0 a b {m1(1 t) (a 1)‘ +mat (b 2)‘ ]dt

1
1 q
In (g/a) { ’ / g3a(l=1) bSqtdt+m2 ‘f (bmz)‘Q/ tagq(1t)b3qtdt]
0

: <>[

Corollary 4.7. By considering the conditions of Theorem 4.4, If we take m; = m and mg = 1, then,
b f(a) —a®f(b b In'"7 (b/a) [ 1\7
MOS0 [ oy < W00 (1)

x [ £ (a7) | (L (a%0,0%0) — a®1) 1 (8))7 (6% — L (a1,5°1))]

Corollary 4.8. By considering the conditions of Theorem 4.3, If we take m1 = mqy = 1, then,

b2 f(a) —a’f(b)  [°
f—/a xf(x)dx

Q=

1

: <m>r<L<asq,bSq>-a3q>+m2\ff () - )

Q=

< w <31Q> 5 [ ()" (L (a®®,6%7) —a®®) + [f (b)|* (b*? — L (agqvbgq))]% '
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