Fundamentals of Contemporary Mathematical Sciences
FCMS[)/ (2020) 1(1) 14 2

On Biharmonic and Biminimal Curves in 3-dimensional f-Kenmotsu

Manifolds

Selcen Yiiksel Perktag (2!} Bilal Eftal Acet (92, Seddik Ouakkas (2°
12 Adiyaman University, Faculty of Arts and Sciences, Department of Mathematics
Adiyaman, Tiirkiye, eacet@adiyaman.edu.tr
3 University of Saida, Laboratory of Geometry, Analysis, Control and Applications
Algeria, seddik.ouakkas@univ-saida.dz

Received: 07 January 2020 Accepted: 20 January 2020

Abstract: In the present paper, we study biharmonicity and biminimality of the curves in 3-dimensional
f-Kenmotsu manifolds. We investigate necessary and sufficient conditions for a slant curve in a 3-
dimensional f-Kenmotsu manifold to be biharmonic and biminimal, respectively. We give some related

characterizations in case such curves are Legendre curves.
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1. Introduction
Let U:(M,g) - (N,h) be a smooth map between (pseudo-)Riemannian manifolds. The energy
functional of ¥ is defined by E(¥) = 1 [, |d¥[?v,. Critical points of the energy functional are

called harmonic maps and the Euler-Lagrange equation for the energy is 7(¥) := tracevd¥ = 0,
where V denotes the Levi-Civita connection on M . Biharmonic maps, which can be considered a

natural generalization of harmonic maps, are defined as critical points of the bienergy functional
given by Eo (V) = %]M |7(¥)[*v,. The first variation formula for the bienergy is derived by G. Y.

Jiang [11, 12] and it is proved that the Euler-Lagrange equation for the bienergy is
7o(¥) == =J(7(¥)) = —A7(¥) - traceRY (d¥, 7(¥))d¥ = 0,

where J is the Jacobi operator, A = ~trace(vYv¥ - V%’) is the rough Laplacian on the sections of

pull-back bundle W1TN, v¥ is the pull-back connection [10] and RY is the curvature operator
on N. One can easily see that harmonic maps are always biharmonic. Biharmonic maps which

are not harmonic are called proper biharmonic maps.
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An immersion ¥ : (M, g) - (N,h) between (pseudo-)Riemannian manifolds (or its image)
is called biminimal if it is a critical point of the bienergy functional for variations normal to the
image V(M) c N, with fixed energy. Equivalently, there exists a constant A € R such that ¥ is a

critical point of the A-bienergy
EaA(T) = E5(¥) + AE(T)

for any smooth variation of the map ¥, : (-g,) x M - N, ¥y = ¥, such that V = d{zth:o is

normal to ¥(M) [13].

In this paper, we study biharmonic and biminimal curves in another important class of
almost contact manifolds which can be viewed as the most general case of Kenmotsu geometry
defined by a smooth strictly positive function on the given manifold. We obtain necessary and
sufficient conditions for biharmonicity and biminimality of a differentiable curve in a 3-dimensional
f-Kenmotsu manifold, respectively. Especially, we give some interpretations for slant and Legendre
curves.

2. Preliminaries
A differentiable manifold M of dimension (2n + 1) is called almost contact metric manifold with
the almost contact metric structure (¢,&,n,g) if it admits a tensor field ¢ of type (1,1), a vector

field £, a 1-form 7 and a metric (Riemannian) tensor field g satisfying the following conditions

[2]:
o’ =-I+7®¢, (1)
n(€)=1, nop=0, @{=0, n(X)=g(X9), (2)
g(@X7 (PY) = g(XaY) —U(X)U(Y)7 X7 Ye F(TM)v (3)

where I denotes the identity transformation. An almost contact metric manifold is said to be

f-Kenmotsu manifold [3] if the Levi-Civita connection V of g satisfies

(Vxp)Y =f (9(pX,Y)E-n(Y)pX), (4)

where f is a strictly positive differentiable function on M and df An =0 holds (for n >2). If f
is equal to a nonzero constant 3, then the manifold is called an §-Kenmotsu manifold [4]. As a
particular case a 1-Kenmotsu manifold is usually known as a Kenmotsu manifold [5].

In an f-Kenmotsu manifold we have [6]
Vx§=f (X -n(X)¢§) (5)
for all X e T(TM).
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In a 3-dimensional f-Kenmotsu manifold we have [7]

REXYV)Z = (G+2(7%+ 1)) oV, D)X - g(X.2)Y) ()
r 1 Q(YaZ)W(X)g—g(XaZ)U(Y)f
(5ratres >){ n(X(2)Y + (Y )n(2)X }
SOLY) = (5824 1) 90 Y) = (5 +3(F2+ £7) ) n(m(y), ™

where XY, Z e T'(TM), r is the scalar curvature of M and f'=£(f).

Now we recall the notion of Frenet curve. An arbitrary curve v : I - M, ~v = ~(s),
parametrized by arclenght s is called an r-Frenet curve (1 <r <m=dim M) on M if there exist
r orthonormal vector fields E; =/, Fs, ..., E,. along ~ such that there exist positive differentiable

functions k1, k2, ..., Kr—1 of s such that

V'y’El = H1E27
Vo B2 = —k1Ey + ko B3,

Vi Ey = 1 Eyy.
The function &; is called the j-th curvature of . The curve v is known as
(1) a geodesic if r =1,
(2) acircle if =2 and s, is a constant,

(3) a helix of order r if k1,kK2,...,kr—1 are constants.

A Frenet curve « is called non-geodesic if k1 >0 on 1.

Note that ~v: I — M is called a slant curve if the contact angle 6 : I — [0,27) of v given by

cos0(s) = g(T(s),¢) (9)

is a constant function [8]. In particular, if =% (or 27) then v is called a Legendre curve [9).

Remark 2.1 The integral curves of the Reeb vector field & are slant curves with 6 = 0. For a

Legendre curve in f-Kenmotsu manifolds, we have
N:_§7 kl :f"w k2:0' (10)
In particular, a Legendre curve in a -Kenmotsu manifold is a circle [1].

We suppose that v is a non-geodesic curve and in this case 7y can not be an integral curve

of £ which means 0 # 0, 7. Then we give following result [1] for later use:
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Proposition 2.2 The Frenet curve 7y is a slant curve if and only if

f

n(N) =—Esin29. (11)
Then a necessary condition for -y to be slant is
k
|sinf| < min{ —, 1. (12)
f

From the last proposition above for a slant Frenet curve v, we have [1]

B) = —|S‘;9| k? - f2sin? 0. (13)
1

Let v : I c R - M be a differentiable curve parametrized by arclength immersed in a

Riemannian manifold (M,g). Then 7(y) = V7, dv(%) = V7T and the biharmonic equation for
ds

v reduces to 0 = 7o(y) = V&.T — R(T,VrT)T, that is, v is called a biharmonic curve if it is a
solution of this equation (see [14]). On the other hand, the biminimality equation for v is given by
0="22(7) = [(N] = A[7(7)]", for a value of A € R, where [,]* denotes the normal component
of [,], that is, v is called a biminimal curve if it is a solution of this equation. In particular, v is

called free biminimal if it is biminimal for A =0 (see [13]).

3. Biharmonic Curves in 3-dimensional f-Kenmotsu Manifolds

Let (M,¢,£,m,9) be a 3-dimensional f-Kenmotsu manifold. Denote by {7, N, B} the moving
Frenet frame along the curve «: I — M parametrized by arclenght s, where T =+'(s), N, B are,
respectively, the tangent, the principal normal, the binormal vector fields. Then for the curve ~

the following Frenet equations are given by:

vrT 0 k1 0 T
VTN = —K1 0 K9 N y (14)
vrB 0 -k O B

where k1 and ko are the curvature and the torsion of the curve, respectively .

By using the Frenet formulas given in (14), we have
VaT = k3T + KN + k1Ko B (15)
and
VAT = (=3kik)) T+ (k{ -k} —k1k3) N (16)

+ (2]{33162 + klké) B.
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From (15), (16) and biharmonic equation, we write
(7)) = (BRk) T+ (kY - k7 —kik3) N (17)
(2K, ke + k1 kb) B — k1 R(T, N)T.
On the other hand, if we use (6), we get

n(T)n(N)T

R(T,N>T:—(§+2(f2+f’))N—(2*3(f2+f'))( -(1(T))* N =n(N)¢

) s
So one can see that bitension field of «y is as follows:

) = (-3 eh (53 (% 1)) o)) T

kY -k —kikd + ki (L +2(f2+ 1))
( ki (ge8(2 e ) @y?) Y (%)
+ (2K, ko + ki) B - Ky (g +3(f? +f’))77(N)§.
In this case v is a biharmonic curve if and only if
kK| =0,
WYk =k k(54202 07) 0
—kr (5+3(F2+ ) (D) + (n(N))?)

2k ko + kikh — ki (5 +3(f2+ f7))n(N)n(B) =0.

Hence we give

Theorem 3.1 Let (M,p,£,1n,9) be a 3-dimensional f-Kenmotsu manifold and v:1 - M be a

Frenet curve parametrized by arclenght s. Then v is a proper biharmonic curve if and only

k1 = const. > 0,
(ki +k3 - (5+2(f2+ "))
+(5+3(£2+ 1) (D)) + ((N))?)
k= (5+3(f2+f"))n(N)n(B) =0.

0, (21)

Now assume that the Frenet curve 7 : I — M is a slant curve. In this case, by using (9),

(11) and (13) in (21) we get

Theorem 3.2 A slant Frenet curve v in a 3-dimensional f-Kenmotsu manifold (M, p,&,n,9) is

proper biharmonic if and only if

k1 = const. > 0,
(k%+kg—(g+2(f2+f'2))) o
+(§+3(f2+f’))(cos20+%sin‘l@) T (22)

b (5 +3(72 1) ({ sin®0) (S - 725in6) =0
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In particular case if v:I — M is a Legendre curve, from (10) and (22) we have

Corollary 3.3 A Legendre Frenet curve v in a 3-dimensional f-Kenmotsu manifold is proper

biharmonic if and only if it is a Legendre circle with
k1 = f = const. (23)

Now let us assume that v:I — M is a slant curve in a 3-dimensional f-Kenmotsu manifold
(M,¢,&,m,9) with 8 > 0. It is proved in [1] that if the principal normal vector field N of v is
parallel to & then cosf =0, i.e.  is a Legendre curve. So we shall consider non-geodesic slant
curves v: I - M (with 6 #0,7) such that N is non-parallel to the Reeb vector field &.

Case I: If k1 = const. >0 and kg =0, then (22) reduces to
k1 = const. > 0,

{ (ki - (5 +2(f*+1")))

+(g+3(f2+f’))(cos20+{—;sin‘l&) =0, (24)

(%+3(f2+f’))(%sin26‘)(%\/m) =0.
From the third equation of (24), we get
g+3(f2+f’):0. (25)
By using the last equation in the second equation of (24), we conclude

Theorem 3.4 Let v: I - M be a non-geodesic slant curve ( 6 + 0,7 ) with ki = const. >0 and

ko =0 such that N is non-parallel to &. Then v is a proper biharmonic curve if and only if
fr+f2+k2=0. (26)
Case II: If k; = const. >0 and ks = const. > 0, then (22) reduces to
k1 = const. > 0,

(k%+k§—(g+2(f2+f'2))) o
+(g+3(f2+f’))(00829+{—fsin40) o (27)

(5+3(F2+ 7)) (£ sin®0) (%\/lﬁ - f251n29) -0,
From the third equation of (24), we get
g+3(f2+f’):0. (28)
By using the last equation in the second equation of (24), we conclude
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Theorem 3.5 Let v: I — M be a non-geodesic slant curve ( 0 + 0,7 ) with ki = const. >0 and
ko = const. > 0 such that N is non-parallel to £. Then v is a proper biharmonic curve if and only
if

fl+f2+kl+k3=0. (29)

In particular, in a 3-dimensional f-Kenmotsu manifold M , a non-geodesic slant curve with
N is non-parallel to £ and constant curvature k; has a constant torsion k2 (see [1]). So, from

(29) we have

Corollary 3.6 There does not exist a proper biharmonic slant curve with N is non-parallel to &

and constant curvature ki in a 3-dimensional B -Kenmotsu manifold.

4. Biminimal Curves in 3-dimensional f~-Kenmotsu Manifolds

Let (M,p,£,m,9) be a 3-dimensional f-Kenmotsu manifold. Denote by {7, N, B} the moving
Frenet frame along the curve v : I — M parametrized by arclenght s, where T = 4(s), N, B are,
respectively, the tangent, the principal normal, the binormal vector fields. From the tension field

~ and (17) we have

kY =k —kik3 + k(2 +2(f2+ 1)) )N (30)

TQ,A(V) = ( Ky (g +3(f2 +f’) (U(T))2) ~ Moy
/ / r 2 /
+(2k1k2+kzlk2)B—kzl(§+3(f +f ))n(N)g.
Then we obtain that v is a biminimal curve if and only if
kY =k —kakd + k(5 +2(f2+ f1))

ki (5+3(f2+ £ N(T)) - M =0,

k1 (543 (F2+ 7)) (n(N))
2k ko + kikh — ki (5 +3(f2+ f7))n(N)n(B) =0.

(31)

So we have

Theorem 4.1 A non-geodesic curve v : I - M parametrized by arclenght in a 3-dimensional

f-Kenmotsu manifold (M,p,&,m,q) is biminimal if and only if

:>\’

~(5+3(2+ 1)) (1)) + (n(N))?) (32)

{ K -k -3+ (L +2(f2+f"))
2k ko + Kk — k1 (5 +3(f2+ £7))n(N)n(B) = 0.

Let v : 1 — M be a non-geodesic slant curve ( 6 # 0,7) such that N is non-parallel to &.

Then from (32) we have
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Theorem 4.2 Let (M,p,£,1n,9) be a 3-dimensional f-Kenmotsu manifold and v: 1 - M be a
non-geodesic slant curve (0 + 0,7 ) such that N is non-parallel to £&. Then v is a biminimal curve
if and only

{ (K -k K3+ (5 +2(f2+ 1)) _,

(L+3(f2+f")) (cos20+ i—jsin49)
2! by + ke K

{ (5302 1) (L o) (£~ eea) <O

Now, we give the interpretations of (33)

Case I: If k1 = const. >0 and kg =0, then (33) reduces to

I () I

543(f2+ ") (cos? 0+ Lz sin0) (34)
(5+3(r2+ ")) (Lsin?0) (%\/kf —f2sin20) =0.
So we have

Theorem 4.3 Let v: I - M be a non-geodesic slant curve ( 0 # 0,7 ) with ki = const. >0 and

ko =0 such that N is non-parallel to &. Then v is a biminimal curve if and only if
fl+ Pk = (35)

Case II: If k; = const. >0 and ks = const. > 0, then (33) reduces to

2

g+3(f2+f’))(cos20+£—%sin49) = (36)

(503(7+ ) ({rsn0) (S5~ 750) =0

From the second equation of (36), we get

{ : (ki +k5 = (5+2(f*+ 1))

g+3(f2+f’) = 0.
By using the last equation in the first equation of (36), we conclude

Theorem 4.4 Let v: I - M be a non-geodesic slant curve ( 6 + 0,7 ) with ki = const. >0 and

ko = const. >0 such that N is non-parallel to €. Then 7y is a biminimal curve if and only if
Fl+fP+ki+ks=N (37)

In particular, in a 3-dimensional S-Kenmotsu manifold M , a non-geodesic slant curve with
N is non-parallel to £ and constant curvature k; has a constant torsion k2 (see [1]). So, from

(29) we have
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Corollary 4.5 A non-geodesic slant curve ( 0 + 0,7 ) with N is non-parallel to & and constant

curvature k1 in a 3-dimensional (B -Kenmotsu manifold is a biminimal curve if and only if

(1]

8]

(4]

(5]

(7l

(8]

[10]

(11]

[12]

(13]

(14]

22

k2 +k2=X-p% (38)
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