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Abstract: In the present paper, we study biharmonicity and biminimality of the curves in 3-dimensional

f -Kenmotsu manifolds. We investigate necessary and sufficient conditions for a slant curve in a 3-

dimensional f -Kenmotsu manifold to be biharmonic and biminimal, respectively. We give some related

characterizations in case such curves are Legendre curves.
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1. Introduction

Let Ψ ∶ (M,g) → (N,h) be a smooth map between (pseudo-)Riemannian manifolds. The energy

functional of Ψ is defined by E(Ψ) = 1
2 ∫M ∣dΨ∣

2vg. Critical points of the energy functional are

called harmonic maps and the Euler-Lagrange equation for the energy is τ(Ψ) ∶= trace∇dΨ = 0 ,

where ∇ denotes the Levi-Civita connection on M . Biharmonic maps, which can be considered a

natural generalization of harmonic maps, are defined as critical points of the bienergy functional

given by E2(Ψ) = 1
2 ∫M ∣τ(Ψ)∣

2vg. The first variation formula for the bienergy is derived by G. Y.

Jiang [11, 12] and it is proved that the Euler-Lagrange equation for the bienergy is

τ2(Ψ) ∶= −J(τ(Ψ)) = −∆τ(Ψ) − traceRN(dΨ, τ(Ψ))dΨ = 0,

where J is the Jacobi operator, ∆ = −trace(∇Ψ∇Ψ−∇Ψ
∇) is the rough Laplacian on the sections of

pull-back bundle Ψ−1TN, ∇Ψ is the pull-back connection [10] and RN is the curvature operator

on N . One can easily see that harmonic maps are always biharmonic. Biharmonic maps which

are not harmonic are called proper biharmonic maps.
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An immersion Ψ ∶ (M,g) → (N,h) between (pseudo-)Riemannian manifolds (or its image)

is called biminimal if it is a critical point of the bienergy functional for variations normal to the

image Ψ(M) ⊂ N, with fixed energy. Equivalently, there exists a constant λ ∈ R such that Ψ is a

critical point of the λ -bienergy

E2,λ(Ψ) = E2(Ψ) + λE(Ψ)

for any smooth variation of the map Ψt ∶ (−ε, ε) ×M → N, Ψ0 = Ψ , such that V = dΨt

dt
∣t=0 is

normal to Ψ(M) [13] .

In this paper, we study biharmonic and biminimal curves in another important class of

almost contact manifolds which can be viewed as the most general case of Kenmotsu geometry

defined by a smooth strictly positive function on the given manifold. We obtain necessary and

sufficient conditions for biharmonicity and biminimality of a differentiable curve in a 3-dimensional

f -Kenmotsu manifold, respectively. Especially, we give some interpretations for slant and Legendre
curves.

2. Preliminaries

A differentiable manifold M of dimension (2n + 1) is called almost contact metric manifold with

the almost contact metric structure (φ, ξ, η, g) if it admits a tensor field φ of type (1,1) , a vector

field ξ , a 1 -form η and a metric (Riemannian) tensor field g satisfying the following conditions

[2]:

φ2 = −I + η ⊗ ξ, (1)

η(ξ) = 1, η ○ φ = 0, φξ = 0, η(X) = g(X, ξ), (2)

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), X, Y ∈ Γ(TM), (3)

where I denotes the identity transformation. An almost contact metric manifold is said to be

f -Kenmotsu manifold [3] if the Levi-Civita connection ∇ of g satisfies

(∇X φ)Y = f (g(φX,Y )ξ − η(Y )φX) , (4)

where f is a strictly positive differentiable function on M and df ∧ η = 0 holds (for n ≥ 2). If f

is equal to a nonzero constant β , then the manifold is called an β -Kenmotsu manifold [4]. As a

particular case a 1 -Kenmotsu manifold is usually known as a Kenmotsu manifold [5].

In an f -Kenmotsu manifold we have [6]

∇X ξ = f (X − η(X)ξ) (5)

for all X ∈ Γ(TM).
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In a 3-dimensional f -Kenmotsu manifold we have [7]

R(X,Y )Z = (r
2
+ 2 (f 2 + f ′)){g(Y,Z)X − g(X,Z)Y } (6)

−(r
2
+ 3 (f 2 + f ′)){ g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

−η(X)η(Z)Y + η(Y )η(Z)X } ,

S(X,Y ) = (r
2
+ f 2 + f ′) g(X,Y ) − (r

2
+ 3 (f 2 + f ′))η(X)η(Y ), (7)

where X,Y,Z ∈ Γ(TM) , r is the scalar curvature of M and f ′ = ξ(f).

Now we recall the notion of Frenet curve. An arbitrary curve γ ∶ I → M, γ = γ(s) ,

parametrized by arclenght s is called an r -Frenet curve (1 ≤ r ≤m = dimM ) on M if there exist

r orthonormal vector fields E1 = γ′,E2, ...,Er along γ such that there exist positive differentiable

functions κ1, κ2, ..., κr−1 of s such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇γ′E1 = κ1E2,
∇γ′E2 = −κ1E1 + κ2E3,

... ... ...
∇γ′Er = −κr−1Er−1.

(8)

The function κj is called the j -th curvature of γ . The curve γ is known as

(1) a geodesic if r = 1,

(2) a circle if r = 2 and κ1 is a constant,

(3) a helix of order r if κ1, κ2, ..., κr−1 are constants.

A Frenet curve γ is called non-geodesic if κ1 > 0 on I.

Note that γ ∶ I →M is called a slant curve if the contact angle θ ∶ I → [0,2π) of γ given by

cos θ(s) = g(T (s), ξ) (9)

is a constant function [8]. In particular, if θ ≡ π
2

(or 3π
2

) then γ is called a Legendre curve [9].

Remark 2.1 The integral curves of the Reeb vector field ξ are slant curves with θ ≡ 0. For a

Legendre curve in f -Kenmotsu manifolds, we have

N = −ξ, k1 = f ∣γ , k2 = 0. (10)

In particular, a Legendre curve in a β -Kenmotsu manifold is a circle [1].

We suppose that γ is a non-geodesic curve and in this case γ can not be an integral curve

of ξ which means θ ≠ 0, π. Then we give following result [1] for later use:
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Proposition 2.2 The Frenet curve γ is a slant curve if and only if

η(N) = − f

k1
sin2 θ. (11)

Then a necessary condition for γ to be slant is

∣sin θ∣ ≤min{k1
f
,1} . (12)

From the last proposition above for a slant Frenet curve γ , we have [1]

η(B) = − ∣sin θ∣
k1

√
k21 − f 2 sin2 θ. (13)

Let γ ∶ I ⊂ R → M be a differentiable curve parametrized by arclength immersed in a

Riemannian manifold (M,g) . Then τ(γ) = ∇γ
∂
∂s

dγ( ∂
∂s
) = ∇TT and the biharmonic equation for

γ reduces to 0 = τ2(γ) = ∇3
TT − R(T,∇TT )T , that is, γ is called a biharmonic curve if it is a

solution of this equation (see [14]). On the other hand, the biminimality equation for γ is given by

0 = τ2,λ(γ) = [τ2(γ)]⊥ − λ [τ(γ)]⊥ , for a value of λ ∈ R , where [, ]⊥ denotes the normal component

of [, ] , that is, γ is called a biminimal curve if it is a solution of this equation. In particular, γ is

called free biminimal if it is biminimal for λ = 0 (see [13]).

3. Biharmonic Curves in 3-dimensional f -Kenmotsu Manifolds

Let (M,φ, ξ, η, g) be a 3-dimensional f -Kenmotsu manifold. Denote by {T,N,B} the moving

Frenet frame along the curve γ ∶ I →M parametrized by arclenght s , where T = γ′(s),N,B are,

respectively, the tangent, the principal normal, the binormal vector fields. Then for the curve γ

the following Frenet equations are given by:

⎡⎢⎢⎢⎢⎢⎣

∇TT
∇TN
∇TB

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 κ1 0
−κ1 0 κ2

0 −κ2 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

T
N
B

⎤⎥⎥⎥⎥⎥⎦
, (14)

where κ1 and κ2 are the curvature and the torsion of the curve, respectively .

By using the Frenet formulas given in (14), we have

∇2
TT = −κ2

1T + κ′1N + κ1κ2B (15)

and

∇3
TT = (−3k1k′1)T + (k′′1 − k31 − k1k22)N (16)

+ (2k′1k2 + k1k′2)B.
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From (15), (16) and biharmonic equation, we write

τ2(γ) = (−3k1k′1)T + (k′′1 − k31 − k1k22)N (17)

+ (2k′1k2 + k1k′2)B − k1R(T,N)T.

On the other hand, if we use (6), we get

R(T,N)T = −(r
2
+ 2 (f 2 + f ′))N − (r

2
+ 3 (f 2 + f ′))( η(T )η(N)T

− (η(T ))2N − η(N)ξ ) . (18)

So one can see that bitension field of γ is as follows:

τ2(γ) = (−3k1k′1 + k1 (
r

2
+ 3 (f 2 + f ′))η(T )η(N))T

+
⎛
⎝

k′′1 − k31 − k1k22 + k1 ( r2 + 2 (f
2 + f ′))

−k1 ( r2 + 3 (f
2 + f ′) (η(T ))2)

⎞
⎠
N (19)

+ (2k′1k2 + k1k′2)B − k1 (
r

2
+ 3 (f 2 + f ′))η(N)ξ.

In this case γ is a biharmonic curve if and only if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k1k
′
1 = 0,⎧⎪⎪⎨⎪⎪⎩

k′′1 − k31 − k1k22 + k1 ( r2 + 2 (f
2 + f ′))

−k1 ( r2 + 3 (f
2 + f ′)) ((η(T ))2 + (η(N))2) = 0,

2k′1k2 + k1k′2 − k1 ( r2 + 3 (f
2 + f ′))η(N)η(B) = 0.

(20)

Hence we give

Theorem 3.1 Let (M,φ, ξ, η, g) be a 3-dimensional f -Kenmotsu manifold and γ ∶ I → M be a

Frenet curve parametrized by arclenght s. Then γ is a proper biharmonic curve if and only

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k1 = const. > 0,
⎧⎪⎪⎨⎪⎪⎩

(k21 + k22 − ( r2 + 2 (f
2 + f ′)))

+ ( r
2
+ 3 (f 2 + f ′)) ((η(T ))2 + (η(N))2) = 0 ,

k′2 − ( r2 + 3 (f
2 + f ′))η(N)η(B) = 0.

(21)

Now assume that the Frenet curve γ ∶ I → M is a slant curve. In this case, by using (9),

(11) and (13) in (21) we get

Theorem 3.2 A slant Frenet curve γ in a 3-dimensional f -Kenmotsu manifold (M,φ, ξ, η, g) is

proper biharmonic if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = const. > 0,
⎧⎪⎪⎨⎪⎪⎩

(k21 + k22 − ( r2 + 2 (f
2 + f ′)))

+ ( r
2
+ 3 (f 2 + f ′)) (cos2 θ + f 2

k2
1
sin4 θ) = 0 ,

k′2 + ( r2 + 3 (f
2 + f ′)) ( f

k1
sin2 θ)( ∣sin θ∣

k1

√
k21 − f 2 sin2 θ) = 0.

(22)
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In particular case if γ ∶ I →M is a Legendre curve, from (10) and (22) we have

Corollary 3.3 A Legendre Frenet curve γ in a 3-dimensional f -Kenmotsu manifold is proper

biharmonic if and only if it is a Legendre circle with

k1 = f = const. (23)

Now let us assume that γ ∶ I →M is a slant curve in a 3-dimensional f -Kenmotsu manifold

(M,φ, ξ, η, g) with θ > 0 . It is proved in [1] that if the principal normal vector field N of γ is

parallel to ξ then cos θ = 0 , i.e. γ is a Legendre curve. So we shall consider non-geodesic slant

curves γ ∶ I →M (with θ ≠ 0, π ) such that N is non-parallel to the Reeb vector field ξ .

Case I: If k1 = const. > 0 and k2 = 0 , then (22) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = const. > 0,
⎧⎪⎪⎨⎪⎪⎩

(k21 − ( r2 + 2 (f
2 + f ′)))

+ ( r
2
+ 3 (f 2 + f ′)) (cos2 θ + f 2

k2
1
sin4 θ) = 0,

( r
2
+ 3 (f 2 + f ′)) ( f

k1
sin2 θ)( ∣sin θ∣

k1

√
k21 − f 2 sin2 θ) = 0.

(24)

From the third equation of (24), we get

r

2
+ 3 (f 2 + f ′) = 0. (25)

By using the last equation in the second equation of (24), we conclude

Theorem 3.4 Let γ ∶ I → M be a non-geodesic slant curve ( θ ≠ 0, π ) with k1 = const. > 0 and

k2 = 0 such that N is non-parallel to ξ . Then γ is a proper biharmonic curve if and only if

f ′ + f 2 + k21 = 0. (26)

Case II: If k1 = const. > 0 and k2 = const. > 0 , then (22) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = const. > 0,
⎧⎪⎪⎨⎪⎪⎩

(k21 + k22 − ( r2 + 2 (f
2 + f ′)))

+ ( r
2
+ 3 (f 2 + f ′)) (cos2 θ + f 2

k2
1
sin4 θ) = 0,

( r
2
+ 3 (f 2 + f ′)) ( f

k1
sin2 θ)( ∣sin θ∣

k1

√
k21 − f 2 sin2 θ) = 0.

(27)

From the third equation of (24), we get

r

2
+ 3 (f 2 + f ′) = 0. (28)

By using the last equation in the second equation of (24), we conclude
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Theorem 3.5 Let γ ∶ I → M be a non-geodesic slant curve ( θ ≠ 0, π ) with k1 = const. > 0 and

k2 = const. > 0 such that N is non-parallel to ξ . Then γ is a proper biharmonic curve if and only

if

f ′ + f 2 + k21 + k22 = 0. (29)

In particular, in a 3-dimensional β -Kenmotsu manifold M , a non-geodesic slant curve with

N is non-parallel to ξ and constant curvature k1 has a constant torsion k2 (see [1]). So, from

(29) we have

Corollary 3.6 There does not exist a proper biharmonic slant curve with N is non-parallel to ξ

and constant curvature k1 in a 3-dimensional β -Kenmotsu manifold.

4. Biminimal Curves in 3-dimensional f-Kenmotsu Manifolds

Let (M,φ, ξ, η, g) be a 3-dimensional f -Kenmotsu manifold. Denote by {T,N,B} the moving

Frenet frame along the curve γ ∶ I →M parametrized by arclenght s , where T = γ̇(s),N,B are,

respectively, the tangent, the principal normal, the binormal vector fields. From the tension field

γ and (17) we have

τ2,λ(γ) =
⎛
⎝

k′′1 − k31 − k1k22 + k1 ( r2 + 2 (f
2 + f ′))

−k1 ( r2 + 3 (f
2 + f ′) (η(T ))2) − λk1

⎞
⎠
N (30)

+ (2k′1k2 + k1k′2)B − k1 (
r

2
+ 3 (f 2 + f ′))η(N)ξ.

Then we obtain that γ is a biminimal curve if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k′′1 − k31 − k1k22 + k1 ( r2 + 2 (f
2 + f ′))

−k1 ( r2 + 3 (f
2 + f ′) (η(T ))2) − λk1

−k1 ( r2 + 3 (f
2 + f ′)) (η(N))2

= 0,

2k′1k2 + k1k′2 − k1 ( r2 + 3 (f
2 + f ′))η(N)η(B) = 0.

(31)

So we have

Theorem 4.1 A non-geodesic curve γ ∶ I → M parametrized by arclenght in a 3-dimensional

f -Kenmotsu manifold (M,φ, ξ, η, g) is biminimal if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

k′′1 − k21 − k22 + ( r2 + 2 (f
2 + f ′))

− ( r
2
+ 3 (f 2 + f ′)) ((η(T ))2 + (η(N))2) = λ,

2k′1k2 + k1k′2 − k1 ( r2 + 3 (f
2 + f ′))η(N)η(B) = 0.

(32)

Let γ ∶ I → M be a non-geodesic slant curve ( θ ≠ 0, π ) such that N is non-parallel to ξ .

Then from (32) we have
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Theorem 4.2 Let (M,φ, ξ, η, g) be a 3-dimensional f -Kenmotsu manifold and γ ∶ I → M be a

non-geodesic slant curve ( θ ≠ 0, π ) such that N is non-parallel to ξ. Then γ is a biminimal curve

if and only

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

(k′′1 − k21 − k22 + ( r2 + 2 (f
2 + f ′)))

− ( r
2
+ 3 (f 2 + f ′)) (cos2 θ + f 2

k2
1
sin4 θ) = λ,

⎧⎪⎪⎨⎪⎪⎩

2k′1k2 + k1k′2
+ ( r

2
+ 3 (f 2 + f ′)) ( f

k1
sin2 θ)( ∣sin θ∣

k1

√
k21 − f 2 sin2 θ) = 0.

(33)

Now, we give the interpretations of (33)

Case I: If k1 = const. > 0 and k2 = 0 , then (33) reduces to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

(k21 − ( r2 + 2 (f
2 + f ′)))

+ ( r
2
+ 3 (f 2 + f ′)) (cos2 θ + f 2

k2
1
sin4 θ) = λ,

( r
2
+ 3 (f 2 + f ′)) ( f

k1
sin2 θ)( ∣sin θ∣

k1

√
k21 − f 2 sin2 θ) = 0.

(34)

So we have

Theorem 4.3 Let γ ∶ I → M be a non-geodesic slant curve ( θ ≠ 0, π ) with k1 = const. > 0 and

k2 = 0 such that N is non-parallel to ξ . Then γ is a biminimal curve if and only if

f ′ + f 2 + k21 = λ. (35)

Case II: If k1 = const. > 0 and k2 = const. > 0 , then (33) reduces to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

(k21 + k22 − ( r2 + 2 (f
2 + f ′)))

+ ( r
2
+ 3 (f 2 + f ′)) (cos2 θ + f 2

k2
1
sin4 θ) = λ,

( r
2
+ 3 (f 2 + f ′)) ( f

k1
sin2 θ)( ∣sin θ∣

k1

√
k21 − f 2 sin2 θ) = 0.

(36)

From the second equation of (36), we get

r

2
+ 3 (f 2 + f ′) = 0.

By using the last equation in the first equation of (36), we conclude

Theorem 4.4 Let γ ∶ I → M be a non-geodesic slant curve ( θ ≠ 0, π ) with k1 = const. > 0 and

k2 = const. > 0 such that N is non-parallel to ξ . Then γ is a biminimal curve if and only if

f ′ + f 2 + k21 + k22 = λ. (37)

In particular, in a 3-dimensional β -Kenmotsu manifold M , a non-geodesic slant curve with

N is non-parallel to ξ and constant curvature k1 has a constant torsion k2 (see [1]). So, from

(29) we have
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Corollary 4.5 A non-geodesic slant curve ( θ ≠ 0, π ) with N is non-parallel to ξ and constant

curvature k1 in a 3-dimensional β -Kenmotsu manifold is a biminimal curve if and only if

k21 + k22 = λ − β2. (38)
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