On Biharmonic and Biminimal Curves in 3-dimensional f-Kenmotsu Manifolds

Selcen Yüksel Perktaş (D) ${ }^{1 *}$, Bilal Eftal Acet (D) ${ }^{2}$, Seddik Ouakkas (D) ${ }^{3}$
${ }^{1,2}$ Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics
Adıyaman, Türkiye, eacet@adiyaman.edu.tr
${ }^{3}$ University of Saida, Laboratory of Geometry, Analysis, Control and Applications
Algeria, seddik.ouakkas@univ-saida.dz

Received: 07 January 2020
Accepted: 20 January 2020

Abstract

In the present paper, we study biharmonicity and biminimality of the curves in 3-dimensional f-Kenmotsu manifolds. We investigate necessary and sufficient conditions for a slant curve in a 3dimensional f-Kenmotsu manifold to be biharmonic and biminimal, respectively. We give some related characterizations in case such curves are Legendre curves.

Key words: Biharmonic curves, Biminimal curves, f-Kenmotsu manifolds.

1. Introduction

Let $\Psi:(M, g) \rightarrow(N, h)$ be a smooth map between (pseudo-)Riemannian manifolds. The energy functional of Ψ is defined by $E(\Psi)=\frac{1}{2} \int_{M}|d \Psi|^{2} v_{g}$. Critical points of the energy functional are called harmonic maps and the Euler-Lagrange equation for the energy is $\tau(\Psi):=\operatorname{trace} \nabla d \Psi=0$, where ∇ denotes the Levi-Civita connection on M. Biharmonic maps, which can be considered a natural generalization of harmonic maps, are defined as critical points of the bienergy functional given by $E_{2}(\Psi)=\frac{1}{2} \int_{M}|\tau(\Psi)|^{2} v_{g}$. The first variation formula for the bienergy is derived by G. Y. Jiang $[11,12]$ and it is proved that the Euler-Lagrange equation for the bienergy is

$$
\tau_{2}(\Psi):=-J(\tau(\Psi))=-\Delta \tau(\Psi)-\operatorname{trace}^{N}(d \Psi, \tau(\Psi)) d \Psi=0
$$

where J is the Jacobi operator, $\Delta=-\operatorname{trace}\left(\nabla^{\Psi} \nabla^{\Psi}-\nabla_{\nabla}^{\Psi}\right)$ is the rough Laplacian on the sections of pull-back bundle $\Psi^{-1} T N, \nabla^{\Psi}$ is the pull-back connection [10] and R^{N} is the curvature operator on N. One can easily see that harmonic maps are always biharmonic. Biharmonic maps which are not harmonic are called proper biharmonic maps.

[^0]An immersion $\Psi:(M, g) \rightarrow(N, h)$ between (pseudo-)Riemannian manifolds (or its image) is called biminimal if it is a critical point of the bienergy functional for variations normal to the image $\Psi(M) \subset N$, with fixed energy. Equivalently, there exists a constant $\lambda \in \mathbb{R}$ such that Ψ is a critical point of the λ-bienergy

$$
E_{2, \lambda}(\Psi)=E_{2}(\Psi)+\lambda E(\Psi)
$$

for any smooth variation of the map $\Psi_{t}:(-\varepsilon, \varepsilon) \times M \rightarrow N, \Psi_{0}=\Psi$, such that $V=\left.\frac{d \Psi_{t}}{d t}\right|_{t=0}$ is normal to $\Psi(M)$ [13].

In this paper, we study biharmonic and biminimal curves in another important class of almost contact manifolds which can be viewed as the most general case of Kenmotsu geometry defined by a smooth strictly positive function on the given manifold. We obtain necessary and sufficient conditions for biharmonicity and biminimality of a differentiable curve in a 3-dimensional f-Kenmotsu manifold, respectively. Especially, we give some interpretations for slant and Legendre curves.

2. Preliminaries

A differentiable manifold M of dimension $(2 n+1)$ is called almost contact metric manifold with the almost contact metric structure (φ, ξ, η, g) if it admits a tensor field φ of type $(1,1)$, a vector field ξ, a 1 -form η and a metric (Riemannian) tensor field g satisfying the following conditions [2]:

$$
\begin{gather*}
\varphi^{2}=-I+\eta \otimes \xi, \tag{1}\\
\eta(\xi)=1, \quad \eta \circ \varphi=0, \quad \varphi \xi=0, \quad \eta(X)=g(X, \xi), \tag{2}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad X, Y \in \Gamma(T M), \tag{3}
\end{gather*}
$$

where I denotes the identity transformation. An almost contact metric manifold is said to be f-Kenmotsu manifold [3] if the Levi-Civita connection ∇ of g satisfies

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=f(g(\varphi X, Y) \xi-\eta(Y) \varphi X), \tag{4}
\end{equation*}
$$

where f is a strictly positive differentiable function on M and $d f \wedge \eta=0$ holds (for $n \geq 2$). If f is equal to a nonzero constant β, then the manifold is called an β-Kenmotsu manifold [4]. As a particular case a 1 -Kenmotsu manifold is usually known as a Kenmotsu manifold [5].

In an f-Kenmotsu manifold we have [6]

$$
\begin{equation*}
\nabla_{X} \xi=f(X-\eta(X) \xi) \tag{5}
\end{equation*}
$$

for all $X \in \Gamma(T M)$.

In a 3 -dimensional f-Kenmotsu manifold we have [7]

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\{g(Y, Z) X-g(X, Z) Y\} \tag{6}\\
& -\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left\{\begin{array}{c}
g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
-\eta(X) \eta(Z) Y+\eta(Y) \eta(Z) X
\end{array}\right\}, \\
S(X, Y)= & \left(\frac{r}{2}+f^{2}+f^{\prime}\right) g(X, Y)-\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(X) \eta(Y), \tag{7}
\end{align*}
$$

where $X, Y, Z \in \Gamma(T M), r$ is the scalar curvature of M and $f^{\prime}=\xi(f)$.
Now we recall the notion of Frenet curve. An arbitrary curve $\gamma: I \rightarrow M, \gamma=\gamma(s)$, parametrized by arclenght s is called an r-Frenet curve $(1 \leq r \leq m=\operatorname{dim} M)$ on M if there exist r orthonormal vector fields $E_{1}=\gamma^{\prime}, E_{2}, \ldots, E_{r}$ along γ such that there exist positive differentiable functions $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{r-1}$ of s such that

$$
\left\{\begin{array}{c}
\nabla{\gamma^{\prime}} E_{1}=\kappa_{1} E_{2} \tag{8}\\
\nabla_{\gamma^{\prime}} E_{2}=-\kappa_{1} E_{1}+\kappa_{2} E_{3} \\
\ldots \quad \ldots \quad \ldots \\
\nabla_{\gamma^{\prime}} E_{r}=-\kappa_{r-1} E_{r-1}
\end{array}\right.
$$

The function κ_{j} is called the j-th curvature of γ. The curve γ is known as
(1) a geodesic if $r=1$,
(2) a circle if $r=2$ and κ_{1} is a constant,
(3) a helix of order r if $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{r-1}$ are constants.

A Frenet curve γ is called non-geodesic if $\kappa_{1}>0$ on I.
Note that $\gamma: I \rightarrow M$ is called a slant curve if the contact angle $\theta: I \rightarrow[0,2 \pi)$ of γ given by

$$
\begin{equation*}
\cos \theta(s)=g(T(s), \xi) \tag{9}
\end{equation*}
$$

is a constant function [8]. In particular, if $\theta \equiv \frac{\pi}{2}$ (or $\frac{3 \pi}{2}$) then γ is called a Legendre curve [9].

Remark 2.1 The integral curves of the Reeb vector field ξ are slant curves with $\theta \equiv 0$. For a Legendre curve in f-Kenmotsu manifolds, we have

$$
\begin{equation*}
N=-\xi, \quad k_{1}=\left.f\right|_{\gamma}, \quad k_{2}=0 \tag{10}
\end{equation*}
$$

In particular, a Legendre curve in a β-Kenmotsu manifold is a circle [1].

We suppose that γ is a non-geodesic curve and in this case γ can not be an integral curve of ξ which means $\theta \neq 0, \pi$. Then we give following result [1] for later use:

Proposition 2.2 The Frenet curve γ is a slant curve if and only if

$$
\begin{equation*}
\eta(N)=-\frac{f}{k_{1}} \sin ^{2} \theta . \tag{11}
\end{equation*}
$$

Then a necessary condition for γ to be slant is

$$
\begin{equation*}
|\sin \theta| \leq \min \left\{\frac{k_{1}}{f}, 1\right\} . \tag{12}
\end{equation*}
$$

From the last proposition above for a slant Frenet curve γ, we have [1]

$$
\begin{equation*}
\eta(B)=-\frac{|\sin \theta|}{k_{1}} \sqrt{k_{1}^{2}-f^{2} \sin ^{2} \theta} . \tag{13}
\end{equation*}
$$

Let $\gamma: I \subset \mathbb{R} \rightarrow M$ be a differentiable curve parametrized by arclength immersed in a Riemannian manifold (M, g). Then $\tau(\gamma)=\nabla_{\frac{\partial}{\partial s}}^{\gamma} d \gamma\left(\frac{\partial}{\partial s}\right)=\nabla_{T} T$ and the biharmonic equation for γ reduces to $0=\tau_{2}(\gamma)=\nabla_{T}^{3} T-R\left(T, \nabla_{T} T\right) T$, that is, γ is called a biharmonic curve if it is a solution of this equation (see [14]). On the other hand, the biminimality equation for γ is given by $0=\tau_{2, \lambda}(\gamma)=\left[\tau_{2}(\gamma)\right]^{\perp}-\lambda[\tau(\gamma)]^{\perp}$, for a value of $\lambda \in \mathbb{R}$, where $[,]^{\perp}$ denotes the normal component of [,], that is, γ is called a biminimal curve if it is a solution of this equation. In particular, γ is called free biminimal if it is biminimal for $\lambda=0$ (see [13]).

3. Biharmonic Curves in 3-dimensional f-Kenmotsu Manifolds

Let $(M, \varphi, \xi, \eta, g)$ be a 3 -dimensional f-Kenmotsu manifold. Denote by $\{T, N, B\}$ the moving Frenet frame along the curve $\gamma: I \rightarrow M$ parametrized by arclenght s, where $T=\gamma^{\prime}(s), N, B$ are, respectively, the tangent, the principal normal, the binormal vector fields. Then for the curve γ the following Frenet equations are given by:

$$
\left[\begin{array}{c}
\nabla_{T} T \tag{14}\\
\nabla_{T} N \\
\nabla_{T} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa_{1} & 0 \\
-\kappa_{1} & 0 & \kappa_{2} \\
0 & -\kappa_{2} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right],
$$

where κ_{1} and κ_{2} are the curvature and the torsion of the curve, respectively.
By using the Frenet formulas given in (14), we have

$$
\begin{equation*}
\nabla_{T}^{2} T=-\kappa_{1}^{2} T+\kappa_{1}^{\prime} N+\kappa_{1} \kappa_{2} B \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
\nabla_{T}^{3} T= & \left(-3 k_{1} k_{1}^{\prime}\right) T+\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right) N \tag{16}\\
& +\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) B .
\end{align*}
$$

From (15), (16) and biharmonic equation, we write

$$
\begin{align*}
\tau_{2}(\gamma)= & \left(-3 k_{1} k_{1}^{\prime}\right) T+\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right) N \tag{17}\\
& +\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) B-k_{1} R(T, N) T
\end{align*}
$$

On the other hand, if we use (6), we get

$$
\begin{equation*}
R(T, N) T=-\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right) N-\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\binom{\eta(T) \eta(N) T}{-(\eta(T))^{2} N-\eta(N) \xi} . \tag{18}
\end{equation*}
$$

So one can see that bitension field of γ is as follows:

$$
\begin{align*}
\tau_{2}(\gamma)= & \left(-3 k_{1} k_{1}^{\prime}+k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(T) \eta(N)\right) T \\
& +\binom{k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+k_{1}\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)}{-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)(\eta(T))^{2}\right)} N \tag{19}\\
& +\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) B-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(N) \xi
\end{align*}
$$

In this case γ is a biharmonic curve if and only if

$$
\left\{\begin{array}{c}
k_{1} k_{1}^{\prime}=0, \tag{20}\\
\left\{\begin{array}{c}
k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+k_{1}\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right) \\
-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left((\eta(T))^{2}+(\eta(N))^{2}\right)
\end{array}=0,\right. \\
2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(N) \eta(B)=0 .
\end{array}\right.
$$

Hence we give

Theorem 3.1 Let $(M, \varphi, \xi, \eta, g)$ be a 3-dimensional f-Kenmotsu manifold and $\gamma: I \rightarrow M$ be a Frenet curve parametrized by arclenght s. Then γ is a proper biharmonic curve if and only

$$
\left\{\begin{array}{c}
k_{1}=\text { const. }>0 \tag{21}\\
\left\{\begin{array}{c}
\left(k_{1}^{2}+k_{2}^{2}-\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\right) \\
+\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left((\eta(T))^{2}+(\eta(N))^{2}\right) \\
k_{2}^{\prime}-\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(N) \eta(B)=0
\end{array}, 0\right.
\end{array}\right.
$$

Now assume that the Frenet curve $\gamma: I \rightarrow M$ is a slant curve. In this case, by using (9), (11) and (13) in (21) we get

Theorem 3.2 A slant Frenet curve γ in a 3-dimensional f-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$ is proper biharmonic if and only if

$$
\left\{\begin{array}{c}
k_{1}=\text { const. }>0, \tag{22}\\
\left\{\begin{array}{c}
\left(k_{1}^{2}+k_{2}^{2}-\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\right) \\
+\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\cos ^{2} \theta+\frac{f^{2}}{k_{1}^{2}} \sin ^{4} \theta\right)=0
\end{array}\right. \\
k_{2}^{\prime}+\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\frac{f}{k_{1}} \sin ^{2} \theta\right)\left(\frac{|\sin \theta|}{k_{1}} \sqrt{k_{1}^{2}-f^{2} \sin ^{2} \theta}\right)=0
\end{array}\right.
$$

In particular case if $\gamma: I \rightarrow M$ is a Legendre curve, from (10) and (22) we have

Corollary 3.3 A Legendre Frenet curve γ in a 3-dimensional f-Kenmotsu manifold is proper biharmonic if and only if it is a Legendre circle with

$$
\begin{equation*}
k_{1}=f=\text { const } . \tag{23}
\end{equation*}
$$

Now let us assume that $\gamma: I \rightarrow M$ is a slant curve in a 3 -dimensional f-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$ with $\theta>0$. It is proved in [1] that if the principal normal vector field N of γ is parallel to ξ then $\cos \theta=0$, i.e. γ is a Legendre curve. So we shall consider non-geodesic slant curves $\gamma: I \rightarrow M$ (with $\theta \neq 0, \pi)$ such that N is non-parallel to the Reeb vector field ξ.

Case I: If $k_{1}=$ const. >0 and $k_{2}=0$, then (22) reduces to

$$
\left\{\begin{array}{c}
k_{1}=\text { const. }>0, \tag{24}\\
\left(k_{1}^{2}-\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\right) \\
\left\{\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\cos ^{2} \theta+\frac{f^{2}}{k_{1}^{2}} \sin ^{4} \theta\right)=0\right. \\
\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\frac{f}{k_{1}} \sin ^{2} \theta\right)\left(\frac{|\sin \theta|}{k_{1}} \sqrt{k_{1}^{2}-f^{2} \sin ^{2} \theta}\right)=0
\end{array}\right.
$$

From the third equation of (24), we get

$$
\begin{equation*}
\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)=0 . \tag{25}
\end{equation*}
$$

By using the last equation in the second equation of (24), we conclude

Theorem 3.4 Let $\gamma: I \rightarrow M$ be a non-geodesic slant curve $(\theta \neq 0, \pi)$ with $k_{1}=$ const. >0 and $k_{2}=0$ such that N is non-parallel to ξ. Then γ is a proper biharmonic curve if and only if

$$
\begin{equation*}
f^{\prime}+f^{2}+k_{1}^{2}=0 \tag{26}
\end{equation*}
$$

Case II: If $k_{1}=$ const. >0 and $k_{2}=$ const. >0, then (22) reduces to

$$
\left\{\begin{array}{c}
k_{1}=\text { const. }>0 \tag{27}\\
\left\{\begin{array}{c}
\left(k_{1}^{2}+k_{2}^{2}-\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\right) \\
+\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\cos ^{2} \theta+\frac{f^{2}}{k_{1}^{2}} \sin ^{4} \theta\right)=0
\end{array}\right. \\
\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\frac{f}{k_{1}} \sin ^{2} \theta\right)\left(\frac{|\sin \theta|}{k_{1}} \sqrt{k_{1}^{2}-f^{2} \sin ^{2} \theta}\right)=0
\end{array}\right.
$$

From the third equation of (24), we get

$$
\begin{equation*}
\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)=0 \tag{28}
\end{equation*}
$$

By using the last equation in the second equation of (24), we conclude

Theorem 3.5 Let $\gamma: I \rightarrow M$ be a non-geodesic slant curve $(\theta \neq 0, \pi)$ with $k_{1}=$ const. >0 and $k_{2}=$ const. >0 such that N is non-parallel to ξ. Then γ is a proper biharmonic curve if and only if

$$
\begin{equation*}
f^{\prime}+f^{2}+k_{1}^{2}+k_{2}^{2}=0 . \tag{29}
\end{equation*}
$$

In particular, in a 3 -dimensional β-Kenmotsu manifold M, a non-geodesic slant curve with N is non-parallel to ξ and constant curvature k_{1} has a constant torsion k_{2} (see [1]). So, from (29) we have

Corollary 3.6 There does not exist a proper biharmonic slant curve with N is non-parallel to ξ and constant curvature k_{1} in a 3-dimensional β-Kenmotsu manifold.

4. Biminimal Curves in 3-dimensional f-Kenmotsu Manifolds

Let $(M, \varphi, \xi, \eta, g)$ be a 3 -dimensional f-Kenmotsu manifold. Denote by $\{T, N, B\}$ the moving Frenet frame along the curve $\gamma: I \rightarrow M$ parametrized by arclenght s, where $T=\dot{\gamma}(s), N, B$ are, respectively, the tangent, the principal normal, the binormal vector fields. From the tension field γ and (17) we have

$$
\begin{align*}
\tau_{2, \lambda}(\gamma)= & \binom{k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+k_{1}\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)}{-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)(\eta(T))^{2}\right)-\lambda k_{1}} N \tag{30}\\
& +\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) B-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(N) \xi
\end{align*}
$$

Then we obtain that γ is a biminimal curve if and only if

$$
\left\{\begin{array}{c}
\left\{\begin{array}{c}
k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+k_{1}\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right) \\
-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)(\eta(T))^{2}\right)-\lambda k_{1}=0 \\
-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)(\eta(N))^{2}
\end{array}\right. \tag{31}\\
2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(N) \eta(B)=0
\end{array}\right.
$$

So we have
Theorem 4.1 A non-geodesic curve $\gamma: I \rightarrow M$ parametrized by arclenght in a 3-dimensional f-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$ is biminimal if and only if

$$
\left\{\begin{array}{c}
\left\{\begin{array}{c}
k_{1}^{\prime \prime}-k_{1}^{2}-k_{2}^{2}+\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right) \\
-\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left((\eta(T))^{2}+(\eta(N))^{2}\right)
\end{array}=\lambda\right. \tag{32}\\
2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}-k_{1}\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right) \eta(N) \eta(B)=0
\end{array}\right.
$$

Let $\gamma: I \rightarrow M$ be a non-geodesic slant curve $(\theta \neq 0, \pi)$ such that N is non-parallel to ξ. Then from (32) we have

Theorem 4.2 Let $(M, \varphi, \xi, \eta, g)$ be a 3-dimensional f-Kenmotsu manifold and $\gamma: I \rightarrow M$ be a non-geodesic slant curve $(\theta \neq 0, \pi)$ such that N is non-parallel to ξ. Then γ is a biminimal curve if and only

$$
\left\{\begin{array}{c}
\left\{\begin{array}{c}
\left(k_{1}^{\prime \prime}-k_{1}^{2}-k_{2}^{2}+\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\right) \\
-\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\cos ^{2} \theta+\frac{f^{2}}{k_{1}^{2}} \sin ^{4} \theta\right)=\lambda \\
2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}
\end{array}\right. \tag{33}\\
\left\{\begin{array}{c}
\left\lvert\,\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\frac{f}{k_{1}} \sin ^{2} \theta\right)\left(\frac{|\sin \theta|}{k_{1}} \sqrt{k_{1}^{2}-f^{2} \sin ^{2} \theta}\right)=0\right.
\end{array}\right.
\end{array}\right.
$$

Now, we give the interpretations of (33)
Case I: If $k_{1}=$ const. >0 and $k_{2}=0$, then (33) reduces to

$$
\left\{\begin{array}{c}
\left\{\begin{array}{c}
\left(k_{1}^{2}-\left(\frac{r}{2}+2\left(f^{2}+f^{\prime}\right)\right)\right) \\
+\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\cos ^{2} \theta+\frac{f^{2}}{k_{1}^{2}} \sin ^{4} \theta\right)=\lambda,
\end{array}\right. \tag{34}\\
\left(\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)\right)\left(\frac{f}{k_{1}} \sin ^{2} \theta\right)\left(\frac{\sin \theta \mid}{k_{1}} \sqrt{k_{1}^{2}-f^{2} \sin ^{2} \theta}\right)=0
\end{array}\right.
$$

So we have

Theorem 4.3 Let $\gamma: I \rightarrow M$ be a non-geodesic slant curve $(\theta \neq 0, \pi)$ with $k_{1}=$ const. >0 and $k_{2}=0$ such that N is non-parallel to ξ. Then γ is a biminimal curve if and only if

$$
\begin{equation*}
f^{\prime}+f^{2}+k_{1}^{2}=\lambda \tag{35}
\end{equation*}
$$

Case II: If $k_{1}=$ const. >0 and $k_{2}=$ const. >0, then (33) reduces to

From the second equation of (36), we get

$$
\frac{r}{2}+3\left(f^{2}+f^{\prime}\right)=0
$$

By using the last equation in the first equation of (36), we conclude

Theorem 4.4 Let $\gamma: I \rightarrow M$ be a non-geodesic slant curve $(\theta \neq 0, \pi)$ with $k_{1}=$ const. >0 and $k_{2}=$ const. >0 such that N is non-parallel to ξ. Then γ is a biminimal curve if and only if

$$
\begin{equation*}
f^{\prime}+f^{2}+k_{1}^{2}+k_{2}^{2}=\lambda \tag{37}
\end{equation*}
$$

In particular, in a 3 -dimensional β-Kenmotsu manifold M, a non-geodesic slant curve with N is non-parallel to ξ and constant curvature k_{1} has a constant torsion k_{2} (see [1]). So, from (29) we have

Corollary 4.5 A non-geodesic slant curve $(\theta \neq 0, \pi)$ with N is non-parallel to ξ and constant curvature k_{1} in a 3-dimensional β-Kenmotsu manifold is a biminimal curve if and only if

$$
\begin{equation*}
k_{1}^{2}+k_{2}^{2}=\lambda-\beta^{2} . \tag{38}
\end{equation*}
$$

References

[1] Călin C., Crasmareanu M., Munteanu M.I., Slant curves in three-dimensional f-Kenmotsu manifolds, J. Math. Anal. Appl., 394, 400-407, 2012.
[2] Blair D.E., Contact Manifolds in Riemannian Geometry, Lect. Notes Math., 509, 1976.
[3] Olszak Z., Locally conformal almost cosymplectic manifolds, Colloq. Math., 57, 73-87, 1989.
[4] Janssens D., Vanhecke L., Almost contact structures and curvature tensors, Kodai Math. J., 4(1), 1-27, 1981.
[5] Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103, 1972.
[6] Mangione V., Harmonic maps and stability on f-Kenmotsu manifolds, Int. J. Math. Math. Sci., 7, Article ID798317, 2008.
[7] Olszak Z., Rosca R., Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39, 315-323, 1991.
[8] Cho J.T., Inoguchi J.-I., Lee J.-E., On slant curves in Sasakian 3-manifolds, Bull. Austral. Math. Soc., 74(3), 359-367, 2006.
[9] Baikoussis Ch., Blair D.E., On Legendre curves in contact 3-manifolds, Geom. Dedicata, 49(2), 135142, 1994.
[10] Eells J., Sampson J.H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86, 109-160, 1964.
[11] Jiang G.Y., 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A, 7, 130-144, 1986.
[12] Jiang G.Y., 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7, 389-402, 1986.
[13] Loubeau E., Montaldo S., Biminimal immersions, Proc. Edinb. Math. Soc., 51, 421-437, 2008.
[14] Montaldo S., Oniciuc C., A short survey on biharmonic maps between Riemannian manifolds, Rev. De La Union Math. Argentina, 47(2), 1-22, 2006.

[^0]: *Correspondence: sperktas@adiyaman.edu.tr 2010 AMS Mathematics Subject Classification: 53C25, 53C42, 53C50

