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Abstract  
Chen is suggested a two-parameter distribution. This distribution can have increasing failure 

rate function or a bathtub-shaped that allows it to fit real lifetime data sets. The ML (Maximum 

Likelihood) and Bayes estimates of the parameters of Chen’s distribution are constituted in 

this paper. The approximate values of Bayesian estimates are obtained by using the Tierney-

Kadane approach. Two-parameter bathtub-shaped distribution's estimations are derived using 

Jeffrey's extension prior under General entropy, Squared and Linex loss functions. Besides, 

performances of ML and Bayes estimates are compared concerning MSE's (Mean Square 

Error) by using Monte Carlo simulation. As a result, it has been seen that approximate Bayes 

estimates obtained under linex loss function are better than others. Moreover, real data analysis 

for his distribution is presented.  
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1. Introduction  

In this study, we have studied parameter estimation for a two-parameter lifetime distribution with either bathtub-

shaped or increasing failure rate investigated by Chen [1]. Moreover, some distributions have been proposed with 

models for bathtub-shaped failure rates, such as Hjorth [2] and Mudholkar and Srivastava [3]. This distribution 

has been studied by many authors such as Sarhan et al. [4], Selim [5], Jung and Yung [6] Javadkhani et al. [7] 

and Faizan and Sana [8]. The new two-parameter lifetime distribution with increasing failure rate function 

bathtub-shaped compared with other models has some desirable properties, which has two parameters. For more 

details, see Lee et al. [9], Chen [1] and Wang [10]. In this paper, the cumulative distribution function (CDF), 

probability density function (pdf), reliability and hazard function of an X random variable having Chen  α,β  are 

as follows. 

  1( ) exp 1 expf x x x x       
                                      (1) 

  ( ) 1 exp 1 expF x x   
 

                                       (2) 

  ( ) exp 1 expR x x  
 

  ,                                    (3) 

 1( ) exph x x x  
,                                    (4) 

and where 
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   1,if    h(t) is bathtub function, 

and 

   1,if    h(t) is increasing function.  

  

The distribution has increasing failure rate function when 1  and   1  . Figure 1 present the failure rate 

functions for different values 2, 0.5,1,1.5    

 

 

Figure 1. Failure rate functions of different parameters. 

 

The primary objective of this study is to obtain the approximate Bayes estimators’ samples under linex, general 

entropy and squared loss functions, following compare them in term of MSE’s. The remaining text is arranged 

as follows. In Section 2, MLs for Chen distribution is given and the approximate Bayes estimators under different 

loss functions are derived by using Tierney’s Kadane approximations. In section 4, using Monte Carlo simulation, 

Bayes estimations are compared with the ML in terms of MSE, and results are tabulated. A real data application 

is performed in Section 5. Finally, conclusion is given in the last section. 

 

2. Methodology 

2.1. Maximum likelihood estimation  

Let 1 2, ,..., nX X X  be the complete sample from independent random variables having Chen distribution with 

unknown  ,   parameters. Then the log-likelihood function is given by, 
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      1

1

, exp exp 1
i

n x

i i
i

L x x e x


     

 

       
             (5) 

      
 

1 1 1

, ln , ln ln 1 ln 1
i

n n n
x

i i

i i i

l L x n n x x e


       


  

         
 

  
                          (6)

 

Differentiating the log-likelihood function  , x 


 partially about unknown ,β  parameters and after non-

linear equations is attained. Newton-Raphson algorithm is one of the standard methods to determine the ML 

estimates of the two unknown parameters. 

   

1

,
0 1 0

i

n
x

i

l n
e



       
 


 

 
                                         (7) 

 
      

1 1 1

,
0 ln ln exp ln 0

n n n

i i i i i i

i i i

l n
x x x x x x   


    


     


  

                          (8) 

2.2. Bayesian estimation 

For estimation of the parameters, prior distributions for these parameters is needed. In this study, as the prior 

distributions, Jeffrey's extension prior is used, and these are as follows [11]. 

 1

1
( )d 



                    (9)

 

 2

1
( )d 




                            (10)

 

The joint priors and posterior distributions of ,    parameters are        

 
1

, ( )d  




                   (11) 

 
  
 
, ;

, /    
f x

x
f x

 
   







      

              

  

1

1 1 1

1

1 1 10 0

1
exp exp 1 exp

1
exp exp 1 exp

d
nn n

n n

i i i

i i i

d
nn n

n n

i i i

i i i

x x x

x x x d d

  

  

  


    




  

 



  

    
     

     
    

     
     

  

  

             (12)

 

Squared error loss function is a symmetric function and introduced by Legendre [12] and Gauss [13]. Let any 

function of α and   be  ,s s   . 

The SLF is as follows:  

2

1 Squared Squared
ˆ ˆLoss ( s ,s ) ( s s ) 

                          (13) 

The value which is minimize the expected value of SLF is expressed as, 

   ˆ , ,Squareds E s x                                   (14) 

In this case, Bayes estimator of  ,s   under SLF is expressed as follows. 



 

605 

 

Gencer, Gencer / Cumhuriyet Sci. J., 41(x) (2020) 602-611 
 

   

     

   

, / ,

0 0

, / ,

0 0

ˆ , ,

,

               

/

Squared

x

x

s E s x

s x e d d

e d d

    

    

   

   

 





   
  



   
  

   


 

 
                 (15)

 

where  , x 


 is a log-likelihood function,  , x  


 is the logarithm of joint prior distribution. The Linex 

loss function (LLF), which is an asymmetric function organized by Varian [14] and Zellner [15]. Let any function 

of α and 
 
be  ,s   . LLF is defined as follows. 

2 ( )  exp(k )-k -1;   k 0,Loss    
                                                               (16)

 

where,    , ,s s   


   . Then, posterior mean of the linex loss function is given as: 

 

   2 exp [exp ] 1E Loss s s k s E ks k s E s  

        
           

                                  (17)

 

where  ,s s  
 

 and  ,s s   . ˆLinexs , which minimizes this posterior mean, is Bayes estimator of s and is 

expressed as, 

 

    

  
 

 

, ,

0 0

, ,

0 0

1
ˆ , ln exp ,

exp ,
1

ln

 

Linex

x

x

s E ks x
k

ks e d d

k
e d d

    

    

   

   

 





    
    

    
    

    

 
 

  
 
 
 
 

 

 

                              (18)

General entropy loss function (GLF) is an asymmetric function and suggested by Calabria and Pulcini [16]. Dey 

and Liao [17] studied with Bayes estimation under GLF. Let any function of α and   be  ,s   . GLF is denoted 

as, 

3 1

a

s s
Loss ( s,s ) a ln

s s

 
    

     
   
                                                  (19)

 

Then, posterior mean of GLF is given as: 

   3

ˆ
ˆ, ln ln 1

a
s

E Loss s s E aE s s
s



    
          

                                     (20) 

where  ,s s  
 

 and  ,s s   . Then, ˆ
BGEs , which minimizes this posterior mean, is Bayes estimator of s and is 

expressed as follows.                                                                                                         
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   

 





 


    

     

    
    

   

 
   

 
  
 
 
 

 

 

                  (21)

 

It is complicated to solve the equations (15), (18) and (21) in closed-form. Due to this reason, the Bayes 

Estimators of  ,s    can be attained using Tierney-Kadane’s approximation.  

2.3. Tierney Kadane’ s approximation 

Tierney and Kadane [18] are one of the most popular methods to find the approximate value of the mathematical 

explanations as to the odd of two integrals given in Equations (15), (18) and (21). This methods can be written 

as follows for a case with two parameters.  

 

1
( , ) { ( , ) ( , )}l

n
                                (22) 

* 1
( , ) log ( , ) ( , )l s l

n
                                (23) 

where ( , )s    is any function of α and  ,   , x 


 is defined in Eq., (6),  ,    is logarithm joint prior 

distribution and defined as follows. 

    , ln , ln( ) ln( )m m          
                 (24) 

 

    
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( , )
^

( , )
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e d
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e d

n l l

 
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   
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
 

         





                 (25)

 

Where  * *
ˆˆ ,

l l
 

 
and  ˆˆ ,l l   maximize  * ,l  

 
and  ,l   , respectively. 

* And  are minus the inverse 

Hessians of  * ,l    and  ,l   at  * *
ˆˆ ,

l l
   and  ˆˆ ,l l  .   is defined as, 
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                (26) 

where l  and partial derivatives are given as,   
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Bayes estimators for ,  parameters using Eq. (25) are found as follows. 
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3. Simulation study 

In this section, simulation study (based on 10000 replications) is performed to investigate the performance of the 

ML and Bayes estimators under loss functions in that their estimated risks. ML and approximate Bayes Estimators 

by Tierney-Kadane’s approximation are attained under linex, general, and squared loss functions for Chen 

distribution. Finally, we obtained results to use Monte Carlo Simulation in the simulation study. It has been taken 

samples of size n=30, 50, and 100 from Chen Distribution. MSE is defined at follows: 

Let   be the true parameter value and 
i̂ be the estimation value in 

thi replication. Then the MSE can be written 

as, 

 
10000 2

1

1

10000
i

i

ˆMSE


                       (40) 

The simulation steps are as follows. 

Step 1 : It is generated data from Chen Distribution with α=0.3,β=0.6,d=1.5, α=0.5,β=0.7,d=0.5 parameters for the 

sample size n=30,50,100. 

Step 2: ML estimates for ,   are computed by solution of non-linear Eqs.(7-8) by using Newton Raphson 

Method. 

Step 3 : Tierney-Kadane Bayes estimates for ,   parameters under different loss functions. 

Step 4 : MSE are computed over 10000 replications by using Eq.(40). 

4. Real Data Application 

Here we consider the real data of the amount of annual rainfall (in inches) recorded at the Los Angeles Civic 

Center for the 50 years, from 1959 to 2009. (see the website of Los Angeles Almanac: www.laalmanac.com/ 

weather/we08aa.htm). This data set has been studied by [16]. This data set has been analyzed to compare the 

Chen distribution with other distributions such as, Exponential Poisson (EP) [17], ALT-Exponential [18]. 

Probability density functions of these distributions are given by, 

   

 

exp

,      0, 0

log 1 1 1 exp

1
                      exp                         ,     0

                  

R

ALT Exp

x

I x
x

f x

x




 

  



 



  
  
   

              
   

  
   
  

                 (41)

 
 

  exp exp
1 expEP

f x x x


   


    
 

                (42) 

The data is given in Table 1: 

Table 1. Real data of the amount of annual rainfall (in inches) recorded at the Los Angeles Civic Center 

8.180 4.850 18.790 8.380 7.930 13.680 20.440 22.000 16.580 27.470 7.740 12.320 7.170 21.260 14.920 14.350 

7.210 12.300 33.440 19.670 26.980 8.960 10.710 31.280 10.430 12.820 17.860 7.660 2.480 8.081 7.350 11.990 

21.000 7.360 8.110 24.350 12.440 12.400 31.010 9.090 11.570 17.940 4.420 16.420 9.250 37.960 13.190 3.210 

13.530 9.080 
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AIC values and parameter estimates are given in Table 2. 

 

Furthermore, fitted cdfs plots are presented Figure 2. 

 

 

Figure 2. Fitted cdfs plots for amount of annual rainfall 

5. Conclusion 

As seen from Table 3-4, the performances of Bayes estimates for parameters for linex loss function are better 

than others regarding MSE's. Also, MSE's of ML and approximate Bayes estimates obtained under different loss 

functions are decreased when n is increased. Approximate Bayes estimators under LLF, GEL and SEL functions, 

obtained using the Tierney-Kadane method and ML's for Chen distribution with parameters are investigated. We 

found that Bayes estimates are superior to the corresponding ML's. The ML's of the unknown two parameters are 

computed by using the Newton Raphson method. The approximate estimators are compared with the ML's 

regarding MSE by using Monte Carlo simulation method. As a result, it has been seen that approximate Bayes 

estimates obtained under linex loss function are better than others. Moreover, a real data application is performed. 

We have concluded that the Chen distribution has to best fit other distributions according to AIC and 2 . 

 

 

Table 2. Parameter estimates and AIC values for amount of annual rainfall 
Distributions Parameter Estimations AIC 2  

EP 

ˆ 5.6391
ˆ 0.0139

 376.6237 372.6237 

ALT-Exp 
ˆ 0.9659

ˆ 6.1265
 354.7464 350.7464 

Chen 
ˆ 0.0228
ˆ 0.4716

 352.2795 348.2795 
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Table 3. Mean Estimates and Mean Risk of ML’s and Bayes Estimates for Chen Distribution (α=0.3,β=0.6,d=1.5)  

 

 

 

 

 

 

 

 

 

 

Table 4. Mean Estimates and Mean Risk of ML’s and Bayes Estimates for Chen Distribution (α=0.5,β=0.7,d=0.5) 

 

 

 

 

 

 

 

 

ML:Maximum likelihood estimation. Sq:Bayes estimation under squared error loss function, Ent:Bayes estimation under general 

entropy loss function, Lin:Bayes estimation under linex loss function, 

    ,:MSE MSEs for parameter  :     MSE MSEs for parameter
 

:      ME Mean estimate for parameter , :      ME Mean estimate for parameter  
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