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Abstract. In this paper, half-inverse problem is considered for Dirac equations with boundary and finite number
of transmission conditions depending polynomially on the spectral parameter, if the potential is given over the
half of the considered interval and if one spectrum is known then, potential function Q.(x) on the whole interval
and the other coefficients of the considered problem can be determined uniquely.
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Sinir ve Siireksizlik Kosullar1 Spektral Parametreye Polinom Olarak
Bagh Dirac Operatorii icin Yari-Ters Problem

Ozet. Bu makalede, sinir kosullar1 ve sonlu sayida siireksizlik kosullar1 spektral parametreye polinom olarak
baglh Dirac denklemleri i¢in yari-ters problem ele alinmis olup, yar1 aralikta Q(x) potansiyel fonksiyonu
biliniyorken, bir spektruma gore, araligin tamaminda Q(x) potansiyel fonksiyonu ile ele alinan problemin
katsayilarinin tek olarak belirlendigi gosterilmistir.

Anahtar Kelimeler: Dirac denklemler, Siireksizlik kosullar1, Spektral parametre.

1. INTRODUCTION

Inverse problems of spectral analysis compose of retrieving operators from their spectral characteristics.
For this reason, inverse spectral theory is so significant research subject in mathematics, physics,

mechanics, electronics, geophysics and other branches of natural sciences.

Half-inverse problem for a Dirac operator consists in reconstruction of the operator from its spectrum and
known potential in the half-interval. Half inverse problem was first studied by Hochstadt and Lieberman
in 1978[1]. In study of [2],by one boundary condition and potential which is known on half the interval,
the potential and other boundary condition are uniquely determined. After that, these results have been

used to lots of works[3-12].

On the other hand, in 1973 Walter [13] and in 1977 Fulton [14] studied the Sturm-Liouville problem with
boundary conditions dependent on spectral parameter linearly. Then, inverse problems for some classes
of differential operators depending on the eigenvalue-parameter linearly or nonlinearly on boundary and

also transmission conditions were studied in various papers[15-33].

The main result of this paper is that if the potential function Q(x) is known over the half the interval

and one spectrum is given, then coefficients of the following problem can be uniquely determined.
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In this study, we concern the boundary value problem L generated by the following system of Dirac
equations

Y ()] = BY'(x) + QX)Y(x) = AY (x) Q)
with the boundary conditions
Ly = a;(Dyz(a) = a;(Dyi(a) = 0 (2)
Ly = by(D)y2(b) — b (D)y1(b) = 0 @)
and the transmission conditions
Ui(y) = y1§i +0) = 0iy1(§; = 0) =0 =17 4)

Vi) = y,(&+0)—0;y,(6 —0) —y;(Dy1(§; —0) =0

where B = (_01 (1)) Qx) = (583 383) Y(x) = @;g;) p(x), q(x) and r(x) are real valued

functions in L,(a,b), 4 is a spectral parameter, a;(1), b;(1), (i =1,2) and y;(1) (i =1,n) are
polynomial with real cofficients and no common zeros, &;e(a, b) (i = 1,n), 6;eR*,

a1 () = Lo aia 2, a; (D) = T2 are A, by (D) = T2 bia A, bp(A) = Tt by A and

; by ()
Vi D=ZLo Vil F) = 28 mg = max(my, my}, my, = max{ms, my}

r = max;<isnideg yi()}.
2. UNIQUENESS THEOREM

Theorem: Suppose

Ao =T, a2 = &;(2) (i = 1,2), () = 8(x) on [a, 2| and U; = T, V; = 7, for all i = T,7 with
a+b

¢ < Tfor dega, (1) > dega,; (1)

if degb, (1) > degbhi (1) my, >my + YL 7

if degbh, (1) > degb,(1) my, >mg+ Y 7

if deghy(1) = degb,(1) my>my+ Yk 7.

Then Q(x) = Q(x) almost everywhere on [a, b], f(1) = f(1) and 6; = 6;, v;(1) = 7;(1), & = &, for
i=1n

We need the following lemma, before we prove this theorem.

Lemma: If A* is the zero of the polynomial a, (1) with multiplicities m,« then A* is also the zero of the
entire function

CY1(a,2) = P1(a, 1)

with at least multiplicities m,+.

Proof: A) = a;(DY1(a, D) — a;(Dp2(a, D) and 4(A) = a;(DY1(a, D) — a; (D2 (a, ).



Arslantas, Giildii | Cumhuriyet Sci. J., Vol.40-4 (2019) 902-908

If 1* is the zero of the polynomial a, (1) with multiplicities m;- at that time we attain

AAY) = a;(A)1(a, 1) and A(2*) = a; (X1 (a, 1Y).
On the other hand, since A(1) and A(1) are both entire in A, by Hadamard's factorization theorem we
can A(2) = CA(A). Then

0= CAQ) — ()= a,(A)[C1(a, 1) — P4 (a, A7)].
Since a4 (1) and a, (1) do not have common zeros, we have

C1(a, 1) — P, (a,2%) = 0.

Now, inductively, if forall 0 < s < k < my« — 1 there holds
das =

@D ~i@n)| =

then we will prove that

axlew@n-h@a]|,_ =

dk k

aix A = dik [ay (D1(a, 1) — a;(D)P2(a, )]

= 20 (V) [ ) S (@ D) — @, (D S 2(a,2)

k k (k) dt k-t
s =Y (M paw| =@
dik P dat 1e dxlk t Py
k k t k-t
~ k\ d d -
=8| =) () ma®| =D
dak A=2* t:O( )dlt A=2* Akt A=1*

From the last two equations we have

Ll -1 _ =3k () Haw| _ s=ltnen-dhed)|
Since

CA(A) — A(1)=0

=0.

Ma-

a1 @) ‘

[Cl/)l(a, A) - 1/)~1(a, A)]

d/'lf L dak—t

t=0 A=1"

Sinceforall 0 <s <k

wlev@n -dh@o)| _ =

we have
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() Zx[Cvi@ ) —da@ ]| _ =0

Since a4 (1*) we obtain

dk =
—lCvia ) = P1(a D] |H*:o.
Lemma is proved.

If a; (1) = 0 and a, (1) = 1 are taken in the boundary condition, since M(1) = — % and

A = a;(DY1(a,2) — az(DP,(a, 1) = —Py(a, 1)

— 1/’1(61, /1)
M) =y @D

obtained.

Remark 1: For the problem L given by the conditions a; (1) = 0 and a,(1) = 1 if My(1) = M, (1)
then Q(x) = Q(x) almost everywhere on [a, b], f(1) = f(A) and foreachi = 1,n 6; = 6,

Yi) = 7:(2), & = & applies.

Remark 2: For the Dirac operator given in the interval [aTH’ b] with equation (1), y, (QTH’) = 0 and the
transmission conditions (4), from the above Remark 1; M, (1) determines the function Q(x) and 8;,
yi(Q), & fori =1,n asoneon [aTer,b].

Proof of Theorem : We only prove the case when &; # aTH’ for all i. The argument of the case when

& = azib for some i is similar. Using Lagrange identity we have

[ (B2 0) (@6 - 809) (10077

a+b

+ [’751 (x, Do (x, 1) — 1/72 (x, D (%, /1)] |aT
a+b

For all i satisfying &; < —

&i+0

[1/;1(95' Dy (x, 1) — 1/72 (x, D (x, /1)] |Ei-0 =0

Together with Q(x) = Q(x) for a.e. [a, aTH’] we have

- +b +b ~ +b +b

¥ (a 2 'A)wz (a 2 "1) & (a 2 ”1)‘/’1 (a 2 ”1)

= ’751(61, MDy(a, 1) — ’ﬁz(a, D4(a, ).

Since
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A = CAM), AD) = a;(DY1(a, D) — a;(D2(a, D) and A(A) = a; (Vs (a, D) — a2 (D, (a, D)

we get

D 7 C ,A) —Pq(a, A
B @ D> (@, ) — o, s (a, ) = A 1@ D) — ¥a (@)

a,(A)
Denote
T(A): = %
B () v (42.2) = 6 (42.2) 9 (452.2)

A(4)

The function T(4) is entire in C. From the assumption that 1,, = A,, and the term of the characteristic
function A(A) it is easy to infer that

if degb,(1) > degbh,(1) m, =M,

if degb, (1) > degb,(1) m5 = s

if degb, (1) = degb,(1) my = M,

From the following inequalities

|AQD)| = Cs|A|M2tMatAexp{|ImA|(b — a)}, degb, (1) > degb, ()
|A(A)| = Cs| A2t exp{|ImA|(b — @)}, degbi(1) > degb, (1)
|A(R)| = Cs| A2t exp{|ImA|(b — )}, degbi (1) = degb, (1)

and the asymptotic formulas of the functions y;(x, 1), (i = 1,2) for all intervals (&;,&;,1), (i = 0,n)
and Phragmen-Lindelof theorem, for all A we get T(1) = 0.

Because of G(1) = 0 it yields

LR WETREFACER WL

which is equivalent to

vi(5) 9 (504)
va(550) (574

From Remark 1 and Remark 2, proof of this theorem is finished.
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