

Cumhuriyet Science Journal

CSJ

e-ISSN: 2587-246X

 ISSN: 2587-2680
Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

* Corresponding author. Email address: umut.tosun@alanya.edu.tr

http://dergipark.gov.tr/csj ©2016 Faculty of Science, Sivas Cumhuriyet University

Comparative Analysis of the Feature Extraction Performance of

Augmented Reality Algorithms

Umut TOSUN1*

1 Alanya Alaaddin Keykubat University, Faculty of Engineering, Department of Computer Engineering, Alanya,

TURKEY

Received: 25.10.2019; Accepted: 21.11.2019 http://dx.doi.org/10.17776/csj.638297

Abstract. The algorithms that extract keypoints and descriptors in augmented reality applications are getting

more and more important in terms of performance. Criterions like time and correct matching of points gain

more impact according to the type of application. In this paper, the performance of the algorithms used to

identify an image using keypoint and descriptor extraction is studied. In the context of this research, main

criterion like the number of keypoints and descriptors that the algorithms extract, algorithm execution time, and

the quality of keypoints and descriptors extracted are considered as the performance metrics. Same data stacks

were used for obtaining comparison results. In addition to comparisons for a group of well-known augmented

reality applications, the best performing algorithms for varying applications were also suggested. C++ language

and OpenCV library were used for the implementation of the augmented reality algorithms compared.

Keywords: Augmented Reality, Image Processing, Key Point, Descriptor.

Artırılmış Gerçeklik Algoritmalarının Öznitelik Çıkarma

Performanslarının Karşılaştırmalı Analizi

Özet. Artırılmış gerçeklik uygulamalarında kullanılan anahtar nokta ve öznitelik çıkaran algoritmalar

performansları açısından önem teşkil etmektedirler. Uygulamanın türüne göre zaman, noktaların doğru

eşleşmesi gibi kriterler önem kazanmaktadır. Bu makalede artırılmış gerçeklik uygulamalarında kullanılan ve

bir resmi tanımak amacı ile resim üzerinde anahtar nokta ve öznitelik bulunması için uygulanan algoritmaların

performansları incelenmiştir. Çalışma kapsamında, algoritmaların çıkarabildiği anahtar nokta sayısı, öznitelik

sayısı, algoritmanın çalışması sırasında geçen süre, iki resmin eşleştirilmesi sırasında çıkartılan anahtar nokta

ve özniteliklerin kaliteleri gibi ana kriterler incelenmiştir. Karşılaştırma sonuçlarının elde edilmesinde, aynı

veri kümeleri kullanılmıştır. Bu çalışmada, iyi bilinen bir grup artırılmış gerçeklik algoritması incelenerek

performanslarının karşılaştırılmasının yanında, farklı uygulamalar için kullanılabilecek algoritmalar hakkında

da önerilerde bulunulmuştur. Artırılmış gerçeklik algoritmalarının karşılaştırılması için C++ dili ve OpenCV

kütüphaneleri kullanılmıştır.

Anahtar Kelimeler Artırılmış Gerçeklik, Görüntü İşleme, Anahtar Nokta, Öznitelik.

1. INTRODUCTION

Augmented reality is the result of combining real

data and computer generated sound, images,

graphics and location information in the world

we live in. [1]. In other words, it is the

enrichment of reality with virtual data in

computer environment [2, 3]. Various methods

https://orcid.org/0000-0003-1465-5043

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

are used to recognize the actual images in the

virtual environment. In order to recognize an

image from the real world, there are qualified

points on the image.

Descriptors of a feature are extracted with

respect to some of the basic properties of this

point (pixels) and other points around it. The dots

on the image that have the feature value for that

image are then used for virtual recognition of this

image. Thus, in the virtual environment, a person

has the values of the picture that they want to be

recognized. The user can compare the picture

that he has previously extracted and wanted to

recognize with the other pictures taken from the

camera. A “threshold" value should be

determined during the matching phase.

Otherwise, if the features taken from the camera

and extracted from a picture that we do not want

to recognize actually match the features of the

picture that is intended to be recognized, a wrong

match will be made. After setting the threshold

value, it is possible to match the image to be

recognized with the images taken from the

camera. One of the methods used to extract key

points and features on the image is the Oriented

Fast and Rotated Brief (ORB) algorithm [4].

ORB is a binary algorithm. Within the scope of

this paper, one of the reasons why ORB

algorithm is compared with other methods is the

opinion that it is faster than basic algorithms in

the literature which extract some key points and

features. The fact that ORB is based on binary

descriptor and that pairing between two pictures

happens while performing matching, supports

the idea that it is faster than other methods.

In the literature, fps (frame per second), the

number of key points extracted on one image, the

number of features extracted on one image and

the number of features matched correctly

between the two images are used to compare the

algorithms used in the extraction of key points

and features [5-10]. This work will be based on

the criteria mentioned. At the end of this study,

the algorithms used for augmented reality an

developed for the recognition of an image will be

compared and their performance will be

benchmarked. At the end of the study, the

algorithms used for augmented reality and

developed for the recognition of an image will be

compared and their performance will be

benchmarked. Moreover, some suggestions on

the usage areas will be made.

2. COMPARED ALGORITHMS

Keypoint is a pixel that has a specific meaning on

an image. In calculating the key point, various

algorithms can be applied depending on the type

of application. The ORB algorithm [4] uses the

FAST [11, 12] algorithm in the background when

calculating the key points on the image. The

FAST algorithm basically calculates the key

points by targeting the corners on the image.

There may be many meaningless pixels on the

picture. These insignificant pixels cause loss of

performance within augmented reality.

Therefore, it is important to identify and process

key points. However, in some cases, key points

may not make sense alone. Feature values should

be calculated while matching the key points on

the picture taken from the real world with the

picture that is required to be recognized within

the context of augmented reality. Thus, when

pairing the two images, more accurate matches

can be made with the feature values of the key

points extracted from the objects to be

recognized.

Feature can be defined as scalable and observable

information obtained from the image [13, 14].

Feature extraction removes a significant set of

features by discarding unnecessary information

[15]. Feature extraction aims to reduce

processing time by reducing the size of high-

dimensional data. Using this data as it is in image

processing applications increases processing

complexity. Feature extraction is an important

part of augmented reality applications in terms of

application performance [16]. It aims to increase

the recognition success by expressing the

information of the pattern in the smallest

dimension with the most prominent features [17].

Dimension reduction is performed by extracting

unnecessary information that is irrelevant to the

pattern and obtaining specific properties. This

process aims to create a more selective set by

959

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

obtaining a subset of the feature set using

different methods. The algorithms to be

compared in this study will perform feature

extraction. As a result of feature extraction,

algorithms will be compared according to criteria

such as time, correct matching, number of

features.

2.1. Method Oriented Fast & Rotated BRIEF

Oriented Fast and Rotated Brief (ORB) [4],

proposed by Ethan Rublee, Vincent Rabaud,

Kurt Konolige, and Gary R. Bradski, is an

effective algorithm alternative for SIFT [18] or

SURF [19]. ORB is basically a combination of

the FAST [11, 12] key point and BRIEF [20]

descriptor, but it also incorporates many

performance-enhancing modifications. Oriented

FAST and rotated BRIEF techniques are

interesting because of their good performance

and low costs. ORB first finds key points using

FAST, then applies the Harris corner measure to

find the top N points between them [21]. ORB

also uses the pyramid to produce multi-scale

features. With the method called rBRIEF [22], it

searches for all possible binary tests to find high

variance, as well as averages close to 0.5, as well

as non-correlated ones.

2.2. Scale-Invariant Feature Transform

Scale-Invariant Feature Transform (SIFT) [18] is

an algorithm proposed by David Lowe for

identifying and describing regional features in an

image. The key points are extracted by the SIFT

sensor and their descriptors are calculated by the

SIFT descriptor. The SIFT sensor or SIFT

descriptor can also be used independently of each

other (such as calculating key points without

descriptors or calculating descriptors without

special key points) [23]. Along with linked

descriptors, SIFT has created a new field of

research on image-based matching and

recognition with many application areas. Multi-

image matching, object recognition, object

category classification and robotics are among

the known uses of this algorithm [24].

2.3. Speeded Up Robust Feature

The Speed Up Robust Feature (SURF) is a

powerful regional feature sensor presented by

Herbert Bay and friends, which can be used in

computer image tasks such as object recognition

or 3D reconstruction [19]. SURF is partly

inspired by the SIFT [18] descriptor, but the

standard versions of SURF work much faster

than SIFT. It is also stated that SURF is more

powerful than SIFT against different image

transformations. SURF is based on the sum of 2D

Haar small wave elements and enables the

effective use of integral images [19]. In addition,

SURF was advanced over SIFT by applying box

filter approximation to the convolution kernel of

the Gaussian derivative operator. Experiments

on camera calibration and object identification

also reveal that SURF has a large potential for

computer vision applications [25].

2.4. Fast Retina Keypoint

Fast Retina Keypoint (FREAK) is a key point

descriptor presented by Alexandre Alahi and

friends. [26]. The creation of FREAK was

inspired by the human visual system and the

retina. The cascading of binary sequences is

calculated by effective comparison of image

densities on the retinal sampling pattern. In their

experiments, Alexander Alahi and colleagues

showed that FREAK was generally more

powerful and faster in computing with lower

memory load than SIFT [18], SURF [19] or

BRISK [27]. FREAK is therefore considered to

be a competitive alternative to existing

algorithms, especially for embedded applications

[27].

3. EXPERIMENTS AND RESULTS

In order to analyze the performance of the

algorithms, a framework has been developed in

Visual Studio 2012 using C ++ language and

OpenCV library. This application can run the

algorithms ORB [4], SURF [19], SIFT [18] and

FREAK [26]. The application first reads a fixed

image and extracts key points and features from

that image. The key values and features of this

image will then be used for comparison for each

image (frame) taken from a video taken with the

camera. In the next step, the application reads a

video for use in comparing algorithms. The

prepared video is a video of the first fixed picture

taken from different heights and angles.

960

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

The prepared video is used separately for each

algorithm. Thus, it was considered to obtain the

correct values. After reading the prepared video,

the application takes individual pictures

(frames). The key points and feature values are

extracted from these images (frames) as in the

fixed image. These extracted feature values are

then assigned to a matching function with the

feature values extracted from the fixed image.

This allows you to see if the features match

correctly. The application calculates the duration

of each function for all algorithms.

Figure 1. Fixed Image with Key Points Features

Used in Testing

The image to be used as a fixed image is shown

in Figure 1 and it is taken to video to be used in

augmented reality subjects. In the testing phase

and taken into the video is an image used in

augmented reality subjects. The number of edges

on the image, the plurality of curves, the richness

of key points and features are the main reasons

for the selection of said image.

Figure 2. Screen Shot Taken During Application Run

During the operation of the application, key

points and features are extracted from the fixed

picture (Figure 1) and the pictures are taken from

the video (frame) to be given to the matching

function. In addition, key points that provide the

threshold value are shown (Figure 2). Moreover,

the number of the picture (frame) taken from the

video, the number of key points and features that

the algorithm generates for that picture (frame),

and the number of features matching the

threshold value are shown. There are 576 images

(frames) in the video used to compare the

algorithms. The threshold values 50, 100, 120

and 150 were used in the test procedures. The bit-

based features are included in the comparison

process, and as a result, the fs below the threshold

value are calculated. Features below the

threshold value correspond to a more accurate

comparison result. As the threshold value

increases, the number of matching features

increases for algorithms.

As can be seen from the results in Table 1, the

SIFT algorithm is the longest-running algorithm

when the threshold is 50. However, the SIFT

algorithm also provides the most accurate

matchings. ORB algorithm is the fastest working

algorithm according to the results. However, in

the matching of features, SIFT and SURF

algorithms gave worse results. From the results,

the FREAK algorithm is both relatively slow and

has poor results in the feature matching phase.

One of the main reasons why the SIFT and SURF

algorithms are slower than the ORB algorithm is

the time it takes to extract key points and

features. In Figure 3, the application algorithm is

run for threshold 50 and the slowest running

algorithm is observed as SIFT. ORB is the fastest

completing algorithm. While the SIFT algorithm

takes 1.182 seconds, the ORB algorithm

performs key point and feature extraction in an

average of 0.016 seconds, or the SURF algorithm

it is 0.172 seconds and for the FREAK algorithm

it is 0.655 seconds. Figure 4 shows the key and

feature extraction times of the algorithms for

threshold 50. According to the results, while the

fastest running algorithm is ORB, the slowest

running algorithm is SIFT. Figure 5 shows that

the SIFT algorithm is most prominent with

matching. The SURF algorithm has the most

features matching after SIFT. Because the

threshold value is 50; while the ORB algorithm

performed 0.458 matching in an average picture

(frame), the FREAK algorithm performed 0

matching. As can be seen from the results in

Table 2, when the threshold value is given 120,

the algorithm that runs the slowest and performs

the highest number of matches, such as the

961

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

results obtained at the threshold value 50, is

SIFT.

Figure 3: Total Execution Time for Threshold Value 50.

Figure 5: Average Number of Feature Matches for

Threshold Value 50.

The ORB has more number of matches than

SURF, according to the results observed at the

threshold 50. ORB is seen to run faster than the

other three algorithms. When matching numbers

are compared, SURF has more feature matching

numbers than other algorithms. FREAK was

unable to match the feature in addition to running

slowly. According to the results in the threshold

Figure 4: Average Time Spent for Key Point and Feature

Extraction for Threshold Value 50

value 50, the number of SURF algorithm

matching features decreased. In Figure 6, the

application algorithm threshold is run for 100

and the slowest running algorithm is observed as

SIFT. ORB was the fastest completing

algorithm. ORB completes the application in

38.541 seconds, while SIFT completes the

application in 701.598 seconds (~ 11 minutes).

For SURF, this time is 129.537 seconds, while

FREAK finishes the application in 405.680

seconds. In order to obtain the results shown in

Figure 7, the application worked with the

threshold 100. SIFT takes an average of 1.159

seconds to extract key points and features from a

picture (frame). This time directly affects the

performance of the application. ORB is the

fastest algorithm, as in the results with a

threshold of 50, and takes an average of 0.015

seconds to extract key points and features from

an image. SURF performs the processing in an

Table 1: Algorithm Performance for Threshold Value 50

 ORB SIFT SURF FREAK

Base image keypoint size:

Base image time for keypoint extracting (seconds):

Base image descriptor size:

Base image time for descriptor extracting (seconds):

Base Image Total Feature & Descriptor Extracting Time (seconds):

Total Time (seconds):

Average Execute Time (seconds):

Total Feature Extracting Time (seconds):

Average Feature Extracting Time (seconds):

Total Descriptor Extracting Time (seconds):

Average Descriptor Extracting Time (seconds):

Total Feature & Descriptor Extracting Time (seconds):

Average Feature & Descriptor Extracting Time (seconds):

Total Match Time (seconds):

Average Match Time (seconds):

Total Draw Time (seconds):

Average Draw Time (seconds):

Average Match Size:

NULL 251 268 251

NULL 0.761 0.114 0.764

253

0.018

0.018

38.120

0.066

NULL

NULL

9.259

0.016

9.259

0.016

5.075

0.008

7.216

0.012

0.458

251

0.496

1.257

714.094

1.239

393.397

0.682

287.975

0.499

681.372

1.182

6.415

0.011

9.625

0.016

68.151

268

0.113

0.227

127.543

0.221

52.961

0.091

46.550

0.080

99.511

0.172

4.773

0.008

6.895

0.011

17.644

227

0.085

0.849

404.836

0.702

371.75

0.645

5.821

0.010

377.571

0.655

4.574

0.007

5.895

0.010

0

962

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

acceptable time of 0.169 seconds. FREAK, like

SIFT, has been working for a long time to affect

performance. In Figure 8, the application

threshold is run for 100 and the features extracted

by the algorithms are compared with the features

extracted from the base image and divided by the

total number of frames, the average feature

matching numbers are obtained. SIFT

demonstrates the advantage of slow operation

here. SIFT obtained an average number of

feature matching of 123.11 images from the end

of the video. ORB and SURF have very close

matches. The SURF gave results close to the

threshold value 50, while ORB increased the

number of feature matching from 0.458 to

18.946.

Figure 6: Total Execution Time for Threshold Value 100.

Figure 7: Average Time Spent for Key Point and Feature

Extraction for Threshold Value 100

Figure 8: Average Number of Feature Matches for

Threshold Value 100

As can be seen from the results in Table 2, when

the threshold value is given 120, the slowest

running algorithm is the SIFT as in the other

threshold values. ORB, as the fastest running

algorithm, has also increased the number of

feature matchings obtained at threshold 100.

FREAK was unable to match the feature in

addition to running slowly. SURF completed the

implementation within a reasonable time and

again achieved an acceptable number of matches.

In Figure 9, the application threshold is run for

120 and the slowest running algorithm is

observed as SIFT. ORB is the fastest completing

algorithm. ORB completed the application in

42,048 seconds, while SIFT completed the

application in as long as 719.802 seconds (~ 11

minutes). SURF has completed the application in

a suitable time of 125.222 seconds. FREAK

completed the application in 423,282 seconds.

Figure 9: Total Execution Time for Threshold Value 120.

Figure 10: Average Time Spent for Key Point and Feature

Extraction for Threshold Value 120

Figure 11: Average Number of Feature Matches for

Threshold Value 120

963

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

In Figure 10, the application is run and divided

by the total number of frames (frames), the

average time taken for a picture taken from the

video is calculated for the key point and feature.

While ORB completed key-point and feature

extraction operations in a very small average

time of 0.016, SIFT performed this operation on

average for 1.183 seconds for an image, which

means that an SIFT-powered application would

run slowly. SURF completes key point and

feature extraction in an acceptable average time

of 0.167 seconds. FREAK completes key point

and feature extraction in approximately 0.670

seconds. In Figure 11, the application is operated

for the threshold 120. ORB increased the number

of feature matches from 18.946 to 101.916

compared to the threshold 100. ORB removes an

average of 253 features from an image and

matches 101,916 of these features. SIFT can

match an average of 189,159 features. SURF has

maintained the 17,644 feature matching counts

of threshold 100 for threshold 120. FREAK did

not match any features. As the results in Table 3

show, when the threshold is set to 150, the

slowest running algorithm is SIFT. ORB, as the

fastest running algorithm, has increased the

number of feature matches at threshold 120.

FREAK has a very low number of features as

well as slow operation. SURF completed the

application within an acceptable time and

matched the number of features obtained at the

threshold 120.

Table 3: Algorithm Performance for Threshold Value 150.

Table 2: Algorithm Performance for Threshold Value 120.

 ORB SIFT SURF FREAK

Base image keypoint size:

Base image time for keypoint extracting (seconds):

Base image descriptor size:

Base image time for descriptor extracting (seconds):

Base Image Total Feature & Descriptor Extracting Time (seconds):

Total Time (seconds):

Average Execute Time (seconds):

Total Feature Extracting Time (seconds):

Average Feature Extracting Time (seconds):

Total Descriptor Extracting Time (seconds):

Average Descriptor Extracting Time (seconds):

Total Feature & Descriptor Extracting Time (seconds):

Average Feature & Descriptor Extracting Time (seconds):

Total Match Time (seconds):

Average Match Time (seconds):

Total Draw Time (seconds):

Average Draw Time (seconds):

Average Match Size:

NULL 251 268 251

NULL 0.782 0.088 0.079

253

0.018

0.018

42.048

0.073

NULL

NULL

9.429

0.016

9.429

0.016

5.972

0.010

11.876

0.020

101.916

251

0.512

1.294

719.802

1.249

390.273

0.677

291,465

0.506

681.738

1.183

5.870

0.010

15.504

0.026

189.159

268

0.073

0.161

125.222

0.217

50.569

0.087

45.786

0.079

96.355

0.167

4.389

0.007

7.010

0.012

17.644

227

0.085

0.864

423.282

0.734

380.600

0.660

5.875

0.010

386.475

0.670

5.136

0.009

6.026

0.010

0.000

 ORB SIFT SURF FREAK

Base image keypoint size:

Base image time for keypoint extracting (seconds):

Base image descriptor size:

Base image time for descriptor extracting (seconds):

Base Image Total Feature & Descriptor Extracting Time (seconds):

Total Time (seconds):

Average Execute Time (seconds):

Total Feature Extracting Time (seconds):

Average Feature Extracting Time (seconds):

Total Descriptor Extracting Time (seconds):

Average Descriptor Extracting Time (seconds):

Total Feature & Descriptor Extracting Time (seconds):

Average Feature & Descriptor Extracting Time (seconds):

Total Match Time (seconds):

Average Match Time (seconds):

Total Draw Time (seconds):

Average Draw Time (seconds):

Average Match Size:

NULL 251 251 251

NULL 0.782 0.759 0.766

253

0.018

0.018

49.391

0.085

NULL

NULL

9.241

0.016

9.241

0.016

8,017

0.013

18.369

0.031

248.876

251

0.512

1.294

719.802

1.249

390.273

0.677

291,465

0.506

681.738

1.183

5.870

0.010

15.504

0.026

189.159

251

0.493

1.252

699.518

1.214

371.997

0.645

286.577

0.497

658.574

1.143

5.096

0.008

18.826

0.032

250.737

227

0.086

0.852

412.129

0.715

378.546

0.657

5.875

0.010

384.421

0.667

4.896

0.008

6.104

0.010

0.029

964

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

4. CONCLUSIONS

According to the results obtained, ORB is the

fastest working algorithm. SIFT has the highest

value in feature extraction criteria. Increasing the

threshold value causes the fall of feature matching

quality. In other words, increasing the threshold

value causes the number of matching features

generated by the algorithms to increase. As a result

of this work, it was observed that SIFT and SURF

performed more accurate feature matches. ORB

has better results than the other three algorithms in

terms of FPS (frame per second) time. In addition

to being a slow algorithm like SIFT, FREAK is not

successful in feature matching. Although SURF is

relatively slow compared to ORB, it cannot provide

feature matches such as SIFT. If it is an application

where the simultaneous pictures taken from a

camera are processed or pictures taken from a

video are processed; extracting features for each

image may cause a slowdown. If the desired

number of features is matched on the picture, the

feature may not be matched again on the next

picture to be processed. Instead, features matched

in the previous picture can be given to the follow-

up phase depending on the type of application;

thus, time can be saved as the follow-up phase runs

faster than the feature matching phase. At this

point, it is important to note that the key points that

are processed as a result of feature matching during

the follow-up phase are correctly matched key

points. As a result, ORB works faster than the other

three algorithms compared, and fewer features

match with SIFT and SURF. Algorithm selection

with respect to the application area of the

augmented reality application to be implemented

would be beneficial. For example, if a mobile

application is to be realized, time will be an

important criterion and ORB will give a good

performance in this regard. SIFT or SURF will be

more appropriate in high performance applications

where time is not critical and correct feature

matching is more important.

REFERENCES

[1] Graham M., Zook M., and Boulton A.,

Augmented Reality in Urban Places: contested

content and the duplicity of code, Trans. Inst.

Br. Geogr., 38-3 (2013) 464-479.

[2] Steuer J., Defining Virtual Reality:

Dimensions Determining Telepresence, J.

Commun., 42-4 (1992) 73-93.

[3] If You’re Not Seeing Data You’re Not Seeing,

Wired.https://www.wired.com/2009/08/augm

ented-reality/. Retrieved October 25 (2009).

[4] Rublee E., Rabaud V., Konolige K., and

Bradski G., ORB An Efficient Alternative to

SIFT or SURF, Proceedings of 7th IEEE

International Conference on Computer Vision,

(2011) 2564-2571.

[5] Wagner D., Reitmayr G., Mulloni A.,

Drummond T., and Schmalstieg D., Pose

Tracking from Natural Features on Mobile

Phones, Proceedings of 7th IEEE and ACM

International Symposium on Mixed and

Augmented Reality, (2008) 125-134.

[6] Wagner D., Schmalstieg D., and Bischof H.,

Multiple Target Detection and Tracking with

Guaranteed Framerates on Mobile Phones,

International Symposium on Mixed and

Augmented Reality, (2009) 57-64.

[7] Wagner D., Mulloni A., Langlotz T., and

Schmalstieg D., Real-Time Panoramic

Mapping and Tracking on Mobile Phones,

Proceedings of IEEE Virtual Reality, (2010)

211-218.

[8] Klein G. and Murray D., Parallel Tracking and

Mapping on a Camera Phone, Proceedings of

8th IEEE International Symposium on Mixed

and Augmented Reality, (2009) 83-86.

[9] Ta D. N., Chen W. C., Gelfand N., and Pulli

K., SURFTrac: Efficient Tracking and

Continuous Object Recognition using Local

Feature Descriptors, IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, (2009) 2937-2944.

[10] Takacs G., Chandrasekhar V., Tsai S., Chen

D., Grzeszczuk R., and Girod B., Rotation-

invariant fast features for large-scale

recognition and real-time tracking, Signal

Process. Image, 28-4 (2013) 334-34.

[11] Rosten E. and Drummond T., Machine

learning for high-speed corner detection,

European Conference on Computer Vision,

(2006) 430-443 .

[12] Rosten E., Porter R., and Drummond T., Faster

and better: A machine learning approach to

corner detection, IEEE T. Pattern Anal., 32-1

(2010) 105–119.

[13] Trzcinski T., Christoudias M., Lepetit V., and

Fua P., Learning Image Descriptors with the

965

https://www.wired.com/2009/08/augmented-reality/
https://www.wired.com/2009/08/augmented-reality/

 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966

Boosting-Trick, Advances in Neural

Information Processing Systems, (2012) 1-9.

[14] Winder S. and Brown M., Learning Local

Image Descriptors, IEEE Conference on

Computer Vision and Pattern Recognition,

(2007) 1-8.

[15] Brown M., Hua G., and Winder S.,

Discriminative Learning of Local Image

Descriptors, IEEE T. Pattern Anal., 33-1

(2011) 43-57.

[16] Ke Y. and Sukthankar R., PCA-SIFT: A More

Distinctive Representation for Local Image

Descriptors, IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, (2004) 506-514.

[17] Simonyan K., Vedali A., and Zisserman A.,

Descriptor Learning Using Convex

Optimisation, European Conference on

Computer Vision (2012), 243-256.

[18] Lowe D. G., Distinctive Image Features from

Scale-Invariant Keypoints, Int. J. Comput.

Vis., 60-2 (2004) 91-110.

[19] Bay H., Ess A., Tuytelaars T., and Gool L.V.,

Speeded-Up Robust Features (SURF),

Comput. Vis. Image Und., 110-3 (2008), 346-

359.

[20] Calonder M,, Lepetit V, Strecha C, and Fua P.

Brief: Binary Robust Independent Elementary

Features, European Conference on Computer

Vision, Heraklion, (2010) 778-792.

[21] Harris C. and Stephens M., A combined corner

and edge detector, Fourth Alvey Vision

Conference, (1988) 147-151.

[22] Huang W., Wu L. D., Song H. C., and Wei Y.

M. “RBRIEF: a robust descriptor based on

random binary comparisons”. IET Comput.

Vis,, 7-1 (2013) 29-35.

[23] Scale Invariant FeatureTransform,

Scholarpedia.http://www.scholarpedia.org/art

icle/SIFT. Retrieved October 18, 2013.

[24] Scale Invariant Feature Transform (SIFT),

VLFeat. http://www.vlfeat.org/api/sift.html.

Retrieved October 18, 2013.

[25] Schaeffer C., A Comparison of Keypoint

Descriptors in the Context of Pedestrian

Detection: FREAK vs. SURF vs. BRISK

(2013).

[26] Alahi A., Ortiz R., and Vandergheynst P.,

FREAK: Fast Retina Keypoint, Proceedings of

the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition,

(2012) 510-517.

[27] Leutenegger S., Chli M., and Siegwart R. Y.,

BRISK: Binary Robust invariant scalable

keypoints, Proceedings of the IEEE

International Conference on Computer Vision,

(2011) 2548-2555.

966

http://www.scholarpedia.org/article/SIFT
http://www.scholarpedia.org/article/SIFT
http://www.vlfeat.org/api/sift.html

