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Abstract. Let (𝑀, 𝐹) be a forward complete and connected Finsler manifold of dimensional 𝑛 ≥ 2. In this 

study, we extend Wan’s extension theorem in Riemannian manifolds to Finsler manifolds by using the weighted 

Ricci curvature R𝑖𝑐𝑁 bounded below. The proof of theorem is obtained by the Laplacian comparison theorem 

on Finsler manifolds and the excess function.  

Keywords: Distance function, Finsler manifold, Weighted Ricci curvature. 

Finsler Manifoldlar Üzerinde Ağırlıklı Ricci Eğriliği İçin Bir Genişleme 

Teoremi 

Özet. (M,F) tam ve bağlantılı n≥2 boyutlu bir Finsler manifold olsun. Bu çalışmada aşağıdan sınırlı 

R𝑖𝑐𝑁 ağırlıklı Ricci eğriliği yardımıyla Wan’ın Riemann manifoldlarında elde ettiği genişleme teoremi Finsler 

manifoldlara genişletilmiştir. Teoremin ispatı Finsler manifoldlar üzerindeki Laplasyan karşılaştırma teoremi 

ve excess fonksiyonu kullanılarak elde edilmiştir. 

Anahtar Kelimeler: Uzaklık fonksiyonu, Finsler manifold, Ağırlıklı Ricci eğriliği. 

 

1. INTRODUCTION  

Finsler geometry includes analogues for many of the natural objects in Riemannian geometry. It is just 

Riemannian geometry without quadratic restriction. The recent works have shown that some results in 

Riemannian geometry have been extended to the Finsler setting. For example in this scope, the reader is 

referred to [1, 2, 3] and references therein. 

In the Riemannian case, in [4], Myers obtained a compactness theorem. The theorem of Myers concludes 

that if R𝑖𝑐 ≥ (𝑛 − 1)𝐾 > 0, then d𝑖𝑎𝑚(𝑀) ≤ 𝜋/√𝐾. Later, Calabi [5] extended this theorem as follows:  

Theorem 1. Let M be a complete and connected n-dimensional Riemannian manifold with non-negative 

Ricci curvature. Suppose there exists a point po ∈ M such that every geodesic ray γ(t) issuing from po 

satisfies  

       limsup
𝑘→∞

(∫
𝑘

0
R𝑖𝑐(𝑠)1/2𝑑𝑠 − 1/2ln(𝑘)) = ∞, (1) 

then manifold is compact.  

In [6] Cheeger-Gromov-Taylor have proved the following result: 
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Theorem 2. Let Mn be a complete and connected Riemannian manifold. If there exist o ∈ M and r0, ν >

0 such that  

                             R𝑖𝑐(𝑥) ≥
(𝑛−1)(

1

4
+𝜈2)

𝑟2
 (2) 

holds for all r(x) ≥ r0 > 0, then M is compact and the diameter is bounded from above by diamo(M) <

r0e
π/ν, where r is distance function defined with respect to fixed point o ∈ M.  

The idea of their proof relies on studying carefully the index form or the second variation. 

Recently, Wan [7] gave a complementary extension of Calabi and Cheeger-Gromov-Taylor’s theorems 

by showing that the manifold has no ray issuing from some point. 

Theorem 3.  Let (M, g) be a complete n-dimensional Riemannian manifold and satisfy 

                                                         R𝑖𝑐 ≥
𝐻(𝑛,ℓ,𝜔)

(𝑟+𝜔)ℓ
                    (3) 

for all r ≥ 0, ω > 0 and ℓ ≥ 2, where r is a distance function r(x) = d(x, o) with respect to a fixed point 

o ∈ M and H is a constant depending on n, ℓ and ω. Then manifold is compact. Here H can be chosen to 

equal to (n − 1).ωℓ−2.
(ℓ−1)ℓ

(ℓ−2)ℓ−2
  for ℓ > 2 and (n − 1). (1 +

ω

ε
),  ε > 0 for ℓ = 2.  

Qui [8] used the idea of Wan, by using the excess function and 𝑉-Laplacian comparison theorem, he 

derived an extension of Bonnet– Myers type theorem with the Bakry–Emery Ricci curvature R𝑖𝑐𝑉:=

R𝑖𝑐 −
1

2
𝐿𝑉𝑔. Also, he showed that when the vector field 𝑉 is the gradient of some smooth function 𝑓 on 

𝑀, i.e., 𝑉 = ∇𝑓, if R𝑖𝑐𝑉 has a positive lower bound and |𝑓| is bounded, then manifold is compact. 

Moreover, for the 𝑚-Bakry-Emery Ricci curvature R𝑖𝑐𝑉
𝑚:= R𝑖𝑐 −

1

2
𝐿𝑉𝑔 −

1

𝑚−𝑛
𝑉∗⊗𝑉∗, he obtained a 

compactness theorem by using a similar method as in the proof of Wan. 

Also, these type theorems and other calculations in Riemannian geometry has been generalized in various 

direction by a lot of authors [9, 10, 11, 12] and references therein. 

Motivated by the above studies, in this paper we will prove the corresponding Wan’s above theorem, for 

the weighted Ricci curvature R𝑖𝑐𝑁 on Finsler manifolds. In particular, we will use the Laplacian 

comparison theorem on Finsler manifolds and the excess function. Our main result is as follows: 

Theorem 4. Let (M, F, dμ) be a forward complete and connected Finsler manifold of dimension n with 

arbitrary volume form and let r be the distance function r(x) = d(x, o) with respect to a fixed point o ∈

M. Suppose that the weighted Ricci curvature  

 R𝑖𝑐𝑁:= R𝑖𝑐∞ −
𝑆2

𝑁−𝑛
≥ 𝐴𝜓(𝑟) (4) 

 for all N ∈ (n,∞) and A is a constant depending on ψ and N. Then   

  •  Manifold is compact,  

  • Let ϵ and δ be positive arbitrary constants. Then A can be chosen as (
N−1

ϵ
)(∫

∞

ϵ
ψ(s)ds)−1 + δ.  
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Remark 5. If we choose ψ =
1

r2
 and ψ =

1

(r+1)2
, then Theorem 4 becomes Theorem 2 and Theorem 3 in 

[13], respectively.  

Remark 6. If ψ satisfies ∫
∞

ϵ
ψ(s)ds = ∞, then A can be chosen as an arbitrary positive real number.  

Choose 𝜓 =
1

(𝑟+𝜔)ℓ
 such that ℓ ∈ ℝ and 𝜔 > 0. So we can obtain the following result: 

Corollary 7. Let (M, F, dμ) be a forward complete and connected Finsler manifold of dimension n with 

arbitrary volume form and let r be the distance function r(x) = d(x, o) with respect to a fixed point o ∈

M. Suppose that the weighted Ricci curvature 

                                  R𝑖𝑐𝑁 ≥
𝐵(𝑛,ℓ,𝜔)

(𝑟+𝜔)ℓ
 (5) 

for all r ≥ 0 and ω > 0, where r is a distance function r(x) = d(x, o) with respect to a fixed point o ∈ M 

and B is a positive constant depending on N, ℓ and ω. Then manifold is compact. Here B can be chosen 

to equal to   

    • (𝑁 − 1). 𝜔ℓ−2.
(ℓ−1)ℓ

(ℓ−2)ℓ−2
+ 𝛿 for ℓ > 2,  

    • 
(𝑁−1)(ℓ−1)

𝜖
. (𝜔 + 𝜖)ℓ−1 + 𝛿 for 1 < ℓ ≤ 2,  

    • an arbitrary positive real number for ℓ ≤ 1  

 (𝜖, 𝛿 are positive constants).  

Additionally, if  R𝑖𝑐𝑁 ≥  𝛿 > 0,  we can rescale the metric such that δ is bigger than the right hand of  (5). 

So manifold is compact (see [13]). By taking 𝜓 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in Theorem 4 we have 

Corollary 8. Let (M, F, dμ) be a forward complete and connected Finsler manifold of dimension n with 

arbitrary volume form. Assume that RicN ≥ (N − 1)C, C > 0, then manifold is compact and the diameter 

has an upper bound.  

The proof of Corollary 8 is almost the same steps of Theorem 2 in [13]. So, it may be omitted here. 

Now, we review below a summary of the basic concepts associated with the Finsler geometry. 

2. FINSLER GEOMETRY 

Let M be a differentiable n-manifold and TM be the tangent bundle on M, where TxM is tangent space at 

x ∈ M. Set T0M = TM\{0}. Let π: TM → M be the natural projection and (x, y) be a point of TM such that 

x ∈ M and y ∈ TxM. 

Definition 9. A Finsler metric F: TM → [0,∞) is a 𝒞∞-Finsler structure of M with the following 

conditions: 

1.  F is 𝒞∞ on T0M (Regularity), 

2.  F(x, λy) = λF(x, y) for all λ > 0 (Positive homogeneity), 

3.  The n × n Hessian matrix 
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 gij: =
1

2
[F2]yiyj (6) 

is positive-definite at every point of T0M (Strong convexity). 

The pair (M, F) is called a Finsler manifold. 

The Chern curvature RV for vectors fields X, Y, Z ∈ TxM\{0} is defined by 

 RV(X, Y)Z: = ∇X
V∇Y

VZ − ∇Y
V∇X

VZ − ∇[X,Y]
V Z. (7) 

In the Riemannian case this curvature does not depend on V and coincides with the Riemannian curvature 

tensor. The flag curvature is defined as follows: 

 K(V,W):=
gV(R

V(V,W)W,V)

gV(V,V)gV(W,W)−gV(V,W)2
, (8) 

where V,W ∈ TxM\{0} are linearly independent vectors. Then the Ricci curvature of V (as the trace of the 

flag curvature) is given as 

                                          Ric(V):= ∑n−1i=1 K(V, Ei), (9) 

where {E1, E2, . . . , En−1, V/F(V)} is an orthonormal basis of TxM with respect to gV, namely gV(Ei, Ej) =

δij and gV(V, Ei) = 0 for all i, j = 1, . . . , n − 1. 

Let dμ = σF(x)dx
1dx2. . . dxn be the volume form on M. For a vector V ∈ TxM\{0}, 

                                            τ(x, V):= ln
√det(gij(x,V))

σF(x)
 (10) 

is a scalar function on TxM\{0} which is called the distortion of (M, F, dμ). We say that the distortion τ is 

a 𝒞∞-function, if M is a Riemannian manifold. Setting 

                                             S(x, V):=
d

dt
(τ(γ(t), γ̇(t)))|t=0, (11) 

where γ is the geodesic with γ(0) = x, γ̇(0) = V. S(x, λV) = λS(x, V) for all λ > 0. S is a scalar function 

on TxM\{0} which is called the S-curvature. From the definition, it seems that the S-curvature measures 

the rate of change in the distortion along geodesics in the direction V ∈ TxM. 

For all N ∈ (n,∞), we define the weighted Ricci curvature of (M, F, dμ) as follows (see [1]): 

{
 
 

 
 RicN(W):= Ric(W) + Ṡ(W) −

S(W)2

N − n
,

Ric∞(W):= Ric(W) + Ṡ(W),

Ricn(W)  ∶= {
Ric + Ṡ(W), if    S(W) = 0
−∞ otherwise.

 

 

Also RicN(βW):= β
2RicN(W) for β > 0. 
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We say that (M, F) is forward complete if each geodesic γ: [0, ℓ] → M is extended to a geodesic on [0,∞), 

in other words, if exponential map is defined on whole TM. Then the Hopf-Rinow theorem gives that 

every pair of points in M can be joined by a minimal geodesic. 

The Legendre transformation ℒ: TM → T∗M is defined as 

ℒ(Z): = {
gZ(Z, . ), Z ∈ T0M,
0 Z = 0.

 

For a smooth function h:M → ℝ, the gradient vector of h at x ∈ M is defined as ∇h(x):= ℒ−1(dh). 

Given a smooth vector field Z = Zi ∂/ ∂xi on M, the divergence of Z with respect to an arbitrary volume 

form dμ = eφdx1dx2. . . dxn is defined by 

                                             divZ:= ∑ni=1 (
∂Zi

∂xi
+ Zi

∂φ

∂xi
). (12) 

Then we define the Finsler-Laplacian of h by Δh:= div(∇h) = div(ℒ−1(dh)). 

Let U = {x ∈ M:∇u|x ≠ 0}. The Hessian of u on U is defined by follows: 

H(u)(V,W):= VW(u) − ∇V
∇uW(u),   ∀ V,W ∈ TM|U. 

We know that H(u) is symmetric, and it can be rewritten as 

H(u)(V,W) = g∇u(∇V
∇u∇u,W). 

The following lemma will be very useful in the proofs of our main results (see [14]). 

Lemma 10.  Let (M, F, dμ) be a Finsler n-manifold, and u:M → R a smooth function on M. Then on U =

{x ∈ M:∇u|x ≠ 0} we have 

 Δu = ∑i H(u)(Ei, Ei) − S(∇u):= tr∇uH(u) − S(∇u), (13) 

where E1, E2, . . . , En is a local g∇u-orthonormal frame on U. 

Finally, define revesibility λ:= λ(M, F) as follows: 

                               λ: = sup
x∈M,y∈TM\0

F(x,−y)

F(x,y)
.                                                                               (14) 

It is clear that λ ∈ [1,∞], and λ = 1 if and only if (M, F) is called reversible. 

3. THE PROOF OF THE MAIN RESULT 

Let (𝑀, 𝐹, 𝑑𝜇) be a Finsler manifold of dimensional 𝑛 and 𝑟(𝑥) = 𝑑(𝑜, 𝑥) be a distance function with 

respect to a fixed point 𝑜 ∈ 𝑀. It is well known that 𝑟 is only smooth on 𝑀 − (𝐶𝑜 ∪ {𝑜}) where 𝐶𝑜 is the 

cut locus of the point 𝑜 ∈ 𝑀. We assume that 𝜎 is a minimal unit speed geodesic segment. We have ∇𝑟 =

𝜎′(𝑡) in the adapted coordinates with respect to the 𝑟, and the distance function 𝑟 satisfies 𝐹(∇𝑟) = 1 for 

all 𝑝 ∈ 𝑀 − (𝐶𝑜 ∪ {𝑜}) (see [15]). On the other hand, using the Finsler metric we obtain a weighted 

Riemannian metric 𝑔∇𝑟. Thus we apply the Riemannian calculation for 𝑔∇𝑟 (on 𝑀− (𝐶𝑜 ∪ {𝑜})). 

In order to prove the Theorem 4 we first give an upper estimate for the Laplacian of the distance function 

𝑟(𝑥) = 𝑑(𝑜, 𝑥). 
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Lemma 11. [16] If RicN ≥ 0 for N ∈ (n,∞), then the Laplacian of the distance function r(x) = d(o, x) 
from any given point o ∈ M can be estimated as follows:  

                                                       Δ𝑟 ≤
𝑁−1

𝑟
                                                                             (15) 

in the sense of distributions on M\{o}.  

Now, we can prove our main theorem using the above notations.  

Proof of Theorem 4. Let σ(t) be a unit speed ray starting from a fixed point o ∈ M with σ(0) = o. For 

every t > 0, Δr(γ(t)) denotes the Finsler-Laplacian of distance function r from a fixed point o ∈ M. It 

satisfies F(∇r) = 1. In the Finsler case, recall that the Bochner-Weitzenböck formula [17] for a smooth 

function u ∈ 𝒞∞(M)  

 0 = Δ∇𝑢 (
𝐹(∇𝑢)2

2
) = R𝑖𝑐∞(∇𝑢) + 𝐷(Δ𝑢)(∇𝑢)+∥ ∇

2𝑢 ∥𝐻𝑆(∇𝑢)
2 . (16) 

From the Bochner formula applied to distance function 𝑟 and by Lemma 10, we have, on 𝑀− (𝐶𝑝 ∪ {𝑝}),  

 0 = R𝑖𝑐∞(∇𝑟) + 𝐷(Δ𝑟)(∇𝑟)+∥ ∇
2𝑟 ∥𝐻𝑆(∇𝑟)

2  

 ≥ R𝑖𝑐∞(∇𝑟) + 𝑔∇𝑟(∇
∇𝑟Δ𝑟, ∇𝑟) +

1

𝑛−1
(𝑡𝑟∇𝑟H𝑒𝑠𝑠𝑟)

2 

 = R𝑖𝑐∞(∇𝑟) + 𝑔∇𝑟(∇
∇𝑟Δ𝑟, ∇𝑟) +

(Δ𝑟+𝑆(∇𝑟))2

𝑛−1
. (17) 

Using the basic inequality  

 (𝑥 + 𝑧)2 ≥
1

𝜈+1
𝑥2 −

1

𝜈
𝑧2 

holding for all real numbers 𝑥, 𝑧 and positive real number 𝜈, we have  

 
(Δ𝑟+𝑆(∇𝑟))2

𝑛−1
≥

(Δ𝑟)2

(𝑛−1)(𝜈+1)
−
(𝑆(∇𝑟))2

(𝑛−1)𝜈
. (18) 

In the case where 𝑁 > 𝑛, taking 𝜈 =
𝑁−𝑛

𝑛−1
> 0, (17) yields  

 0 ≥ R𝑖𝑐∞(∇𝑟) + 𝑔∇𝑟(∇
∇𝑟Δ𝑟, ∇𝑟) +

(Δ𝑟)2

𝑁−1
−
(𝑆(∇𝑟))2

𝑁−𝑛
 

 = R𝑖𝑐𝑁(∇𝑟) +
𝜕

𝜕𝑟
(Δ𝑟) +

(Δ𝑟)2

𝑁−1
. (19) 

Integrating the inequality (19) over the interval [𝜖, 𝑡], we get  

 0 ≥ ∫
𝑡

𝜖
R𝑖𝑐𝑁(∇𝑟)𝑑𝑠 + Δ𝑟(𝑡) − Δ𝑟(𝜖) +

1

𝑁−1
∫
𝑡

𝜖
(Δ𝑟)2𝑑𝑠 (20) 

for any 𝜖 > 0. Because R𝑖𝑐𝑁 ≥ 𝐴𝜓(𝑟) > 0, by Lemma 11, we have Δ𝑟(𝜎(𝑡)) ≤
𝑁−1

𝑡
. 

Now, let 𝑟1(𝑥) = 𝑑(𝑜, 𝑥) and 𝑟2(𝑥) = 𝑑(𝜎(𝑗), 𝑥). We can think of the excess function 𝑒 as  

 𝑒(𝑥): = 𝑑(𝑜, 𝑥) + 𝑑(𝜎(𝑗), 𝑥) − 𝑗, (21) 

which measures how much the triangle inequality fails to be an equality. By the triangle inequality, we 

have 𝑒(𝑥) ≥ 0 and 𝑒(𝜎(𝑡)) = 0 for 0 ≤ 𝑡 ≤ 𝑗. Thus  
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 Δ𝑒(𝜎(𝑡)) = Δ𝑑(𝑜, 𝜎(𝑡)) + Δ𝑑(𝜎(𝑗), 𝜎(𝑡)) ≥ 0. (22) 

From here, we have   

 Δ𝑟(𝜎(𝑡)) = Δ𝑑(𝜎(0), 𝜎(𝑡)) ≥ −Δ𝑑(𝜎(𝑗), 𝜎(𝑡)) ≥ −
𝑛−1

𝑗−𝑡
. (23) 

By taking 𝑗 → ∞ in the above inequality, we obtain Δ𝑟(𝜎(𝑡)) ≥ 0 and therefore we have 

 0 ≤ Δ𝑟(𝜎(𝑡)) ≤
𝑁−1

𝑡
. (24) 

From (20), (24) and the assumption of Theorem 4, we have 

 0 ≤
1

𝑁−1
∫
𝑡

𝜖
(Δ𝑟)2𝑑𝑠 ≤

𝑁−1

𝜖
− ∫

𝑡

𝜖
𝐴𝜓(𝑠)𝑑𝑠 (25) 

We observe that this is a contradiction if 𝐴 is very large (see [7]). So manifold must be compact. Now we 

calculate the 𝐴 constant we need. By taking 𝑡 → ∞ and solving . The term 

 
𝑁−1

𝜖
− 𝐴∫

∞

𝜖
𝜓(𝑠)𝑑𝑠 ≤ 0,  (26) 

we get  

 𝐴 ≥ (
𝑁−1

𝜖
) (∫

∞

𝜖
𝜓(𝑠)𝑑𝑠)

−1
. (27) 

This allows to choose 𝐴 = (
𝑁−1

𝜖
) (∫

∞

𝜖
𝜓(𝑠)𝑑𝑠)

−1
+ 𝛿 for any 𝛿 > 0. Therefore theorem holds. 

Proof of the Corollary 7. If we take 𝐴 = 𝐵(𝑛, ℓ,𝜔) and 𝜓(𝑠) =
1

(𝑟+𝜔)ℓ
 in the proof of the Theorem 4, 

then we have 

 0 ≤
1

𝑁−1
∫
𝑡

𝜖
(Δ𝑟)2𝑑𝑠 ≤

𝑁−1

𝜖
− ∫

𝑡

𝜖

𝐵(𝑛,ℓ,𝜔)

(𝑠+𝜔)ℓ
𝑑𝑠 

 

 =
𝑁−1

𝜖
−

𝐵

ℓ−1
[

1

(𝜖+𝜔)ℓ−1
−

1

(𝑡+𝜔)ℓ−1
] (28) 

from the inequality (25). Let 𝑡 → ∞. So we get  

 𝐵 ≥ (𝑁 − 1)(ℓ − 1)
(𝜖+𝜔)ℓ−1

𝜖
. (29) 

The term 
(𝜖+𝜔)ℓ−1

𝜖
 attains its minimal value when 𝜖 =

𝜔

ℓ−2
 for ℓ > 2. Inserting 𝜖 =

𝜔

ℓ−2
 into the above 

inequality, we have (𝑁 − 1). 𝜔ℓ−2.
(ℓ−1)ℓ

(ℓ−2)ℓ−2
+ 𝛿, 𝛿 > 0. It is easy to see that (𝑖𝑖) for 1 < ℓ ≤ 2 and (𝑖𝑖𝑖) 

for ℓ ≤ 1. 
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