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Abstract. In this study, a new bivariate distribution family is introduced by adding an appropriate term to 

independent class. By choosing a base distribution which is negatively dependent from the same marginals we 

derive a new distribution around the product of marginals, i.e. independent class of distribution. We note that 

the new distribution has additional parameter which would provide additional flexibility in applications. The 

joint probability density, joint reliability and reversed hazard rate functions of the new bivariate distribution are 

obtained. Furthermore, we obtain lower and upper bounds of Spearman’s correlation coefficient. Two example 

are given to illustrate this family. This new bivariate continuous distribution can make more appropriate 

modeling of some data sets in terms of the Spearman rank coefficient. 

Keywords: Transmuted bivariate distribution, Dependence, Bivariate distribution, Spearman’s Rho correlation 

coefficient, Fréchet bounds.   

Bağımlı Dağılım Fonksiyonunun Dönüştürülmesi ile İki Boyutlu Sürekli 

Dağılım Fonksiyonu Oluşturulması 

Özet. Bu çalışmada, bağımsız dağılım fonksiyonuna uygun bir terim eklenerek yeni bir iki boyutlu dağılım 

fonksiyonu tanıtılmıştır. Bu yeni dağılım karmaşık bir yapıda değildir. Aynı marjinallere sahip dağılım 

fonksiyonları sınıfından bir temel dağılım seçilerek, bağımsız dağılım fonksiyonu etrafında yeni dağılım 

türetilmiştir. Bu yeni dağılımın fazladan bir parametresi olup, uygulama alanlarında modelleme esnasında 

esneklik sağlayacağı düşünülmektedir. Bu yeni iki boyutlu dağılımın ortak olasılık yoğunluk fonksiyonu, ortak 

güvenirlilik fonksiyonu ve ters bozulma oranı fonksiyonu elde edilmiştir. Bunun yanı sıra, bu metot ile elde 

edilen yeni dağılım fonksiyonunun Spearman Sıra Korelasyonu katsayısı bakımından biraz daha esneklik 

kazandırabileceği söylenebilir. 

Anahtar Kelimeler: Dönüştürülmüş iki boyutlu dağılım, Bağımlılık, İki boyutlu dağılım, Spearman sıra 

korelasyonu, Fréchet sınırları. 

 

1. INTRODUCTION  

In both statistical theory and practice, univariate models are sometimes insufficient to explain random 

phenomena. Bivariate distributions are very important in modeling dependent random quantities in many 

different areas. We need to construct a joint distribution with specific marginals and higher or lower 

correlations.  Dolati and Ubeda-Flores [1] introduced a method based on the choice of pairs of order 

statistics of the marginal distributions. Lai and Xie [2] studied on construction of continuous bivariate 

distributions that possesses the Positive Quadrant Dependence property. According to similar work of [2], 

[3] introduces some conditions for negatively dependent families. Inspired by these studies, we desire to 

propose a simpler but useful model. After giving the necessary conditions to construct a new distribution, 
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Spearman's rank correlation coefficient is calculated on two illustrative examples and the usefulness of 

this family is discussed. Furthermore, some reliability properties are studied for this family. 

Let (𝑋1, 𝑌1) and (𝑋2, 𝑌2) be two independent vectors of random variables with common distribution 

function  𝐻(𝑥, 𝑦).  Note that, 𝐻(𝑥, 𝑦) belongs to the distribution family ℱ(𝐹, 𝐺) where 𝐹 and 𝐺 denote 

respectively marginals of 𝑋 and Y. Let 𝑋(1), 𝑋(2) and 𝑌(1), 𝑌(2) be their corresponding order statistics. 

According to [4], consider the random vector 

(𝑍1, 𝑍2) = {
(𝑋(1), 𝑌(2)),with probability 1/2  

(𝑋(2), 𝑌(1)),  with probability 1/2.
 

Then the distribution of (𝑍1, 𝑍2) is given by 

𝐻1(𝑥, 𝑦) = 𝐻(𝑥, 𝑦)[1 − �̅�(𝑥, 𝑦)], (1) 

where �̅�(𝑥, 𝑦)  denotes survival function of (𝑋, 𝑌) i.e., 𝑃𝑟(𝑋 > 𝑥, 𝑌 > 𝑦). If we consider the random 

vector 

(𝑇1, 𝑇2) = {
(𝑋(1), 𝑌(1)),with probability 1/2  

(𝑋(2), 𝑌(2)),  with probability 1/2.
 

Then the distribution function of (𝑇1, 𝑇2) is given by 

𝐻2(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) + 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦). (2) 

If we look at the equations (1) and (2) immediately, it is possible to say that the model formed by obtaining 

a mixture of 𝐻1 and 𝐻2 is not a simple structure. With this in mind, our contribution is to propose a simpler 

model. According to eq. (2.1) and and the conditions (2.2)-(2.4) of Han (2011) [3], the following 

assumption is sufficient for our purpose: Suppose that 𝜓(𝑥, 𝑦) = −𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦). Then we have a 

function defined as 𝐻1
∗(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) + 𝜓(𝑥, 𝑦). For subsequent discussions, following theorem 

explains the necessity of having negative dependence (or independence) condition on 𝐻(𝑥, 𝑦). 

Theorem1. Let  𝐻(𝑥, 𝑦)  be a distribution function belongs to the distribution family ℱ(𝐹, 𝐺) which is 

differentiable on ℝ2 and ℎ(𝑥, 𝑦) =
𝜕2𝐻(𝑥,𝑦)

𝜕𝑥𝜕𝑦
 denote the joint probability density function. Then  

𝐻1
∗(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) − 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦) is a distribution function if 𝐻(𝑥, 𝑦) ≤ 𝐹(𝑥)𝐺(𝑦), for all (𝑥, 𝑦) ∈

ℝ2 (or 𝐻(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦), for all (𝑥, 𝑦) ∈ ℝ2). 

Proof.  Multivariate distribution function must satisfy following properties (see, Barlow and Proschan, 

1975, Chapter 5), [4]:  

(P1)  

lim
𝑥→∞

𝐹(𝑥)𝐺(𝑦) − 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦) = 𝐺(𝑦), 

lim
𝑦→∞

𝐹(𝑥)𝐺(𝑦) − 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦) = 𝐹(𝑥), 

lim
𝑥∧𝑦→∞

𝐹(𝑥)𝐺(𝑦) − 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦) = 1. 

(P2)  
𝜕𝐻1

∗(𝑥,𝑦)

𝜕𝑥
≥ 0 and 

𝜕𝐻1
∗(𝑥,𝑦)

𝜕𝑦
≥ 0. For the simplicity 𝑓𝑥  =

𝑑𝐹(𝑥)

𝑑𝑥
 and 𝑔𝑦 =

𝑑𝐺(𝑦)

𝑑𝑦
. Then 
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𝜕𝐻1
∗(𝑥, 𝑦)

𝜕𝑥
= 𝑓𝑥𝐺(𝑦) −

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
�̅�(𝑥, 𝑦) − 𝐻(𝑥, 𝑦)

𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
 

= 𝑓𝑥(𝐺(𝑦) − 𝑃𝑟(𝑌 ≤ 𝑦|𝑋 = 𝑥)�̅�(𝑥, 𝑦) + 𝐻(𝑥, 𝑦)𝑃𝑟(𝑌 > 𝑦|𝑋 = 𝑥)) 

Now, by noting that negatively dependence implies 𝑃𝑟(𝑌 ≤ 𝑦|𝑋 = 𝑥) ≤ 𝐺(𝑦), then we have 

𝜕𝐻1
∗(𝑥, 𝑦)

𝜕𝑥
≥  𝑓𝑥(𝑃𝑟(𝑌 ≤ 𝑦|𝑋 = 𝑥)[1 − �̅�(𝑥, 𝑦)] + 𝐻(𝑥, 𝑦)𝑃𝑟(𝑌 > 𝑦|𝑋 = 𝑥)) 

≥ 0. 

Obviously, 
𝜕𝐻1

∗(𝑥,𝑦)

𝜕𝑦
≥ 0. 

(P3)  
𝜕2𝐻1

∗(𝑥,𝑦)

𝜕𝑥𝜕𝑦
≥ 0. For the simplicity, let ℎ0 = 𝑓(𝑥)𝑔(𝑦), 𝐻0 = 𝐹(𝑥)𝐺(𝑦) and ℎ𝑥𝑦 =

𝜕2𝐻(𝑥,𝑦)

𝜕𝑥𝜕𝑦
. Then 

𝜕2𝐻1
∗(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
= ℎ0 − ℎ𝑥𝑦[𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦)] −

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥

𝜕�̅�(𝑥, 𝑦)

𝜕𝑦
−
𝜕𝐻(𝑥, 𝑦)

𝜕𝑦

𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
. 

Now, according to Domma (2011) [5], by noting that negative dependence implies both ℎ𝑥𝑦𝐻(𝑥, 𝑦) ≤
𝜕𝐻(𝑥,𝑦)

𝜕𝑥

𝜕𝐻(𝑥,𝑦)

𝜕𝑦
 and ℎ𝑥𝑦�̅�(𝑥, 𝑦) ≤

𝜕�̅�(𝑥,𝑦)

𝜕𝑥

𝜕�̅�(𝑥,𝑦)

𝜕𝑦
. Hence, we have 

𝜕2𝐻1
∗(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
≥ ℎ0 − [

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
+
𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
] [
𝜕𝐻(𝑥, 𝑦)

𝜕𝑦
+
𝜕�̅�(𝑥, 𝑦)

𝜕𝑦
]. 

By considering 
𝜕�̅�(𝑥,𝑦)

𝜕𝑥
= −𝑓𝑥 +

𝜕𝐻(𝑥,𝑦)

𝜕𝑥
 and 

𝜕�̅�(𝑥,𝑦)

𝜕𝑦
= −𝑓𝑦 +

𝜕𝐻(𝑥,𝑦)

𝜕𝑦
, the expressions in square brackets 

are rewritten as ℎ0 − 2𝑓𝑦
𝜕𝐻(𝑥,𝑦)

𝜕𝑥
− 2𝑓𝑥

𝜕𝐻(𝑥,𝑦)

𝜕𝑦
+ 4

𝜕𝐻(𝑥,𝑦)

𝜕𝑥

𝜕𝐻(𝑥,𝑦)

𝜕𝑦
. After some simplification, the above 

inequality becomes: 

𝜕2𝐻1
∗(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
≥ 2

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(𝑓𝑦 −

𝜕𝐻(𝑥, 𝑦)

𝜕𝑦
) + 2

𝜕𝐻(𝑥, 𝑦)

𝜕𝑦
(𝑓𝑥 −

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
) 

≥ 0. 

This completes the proof.  

According to Therorem1, by assuming 𝐻(𝑥, 𝑦) be negatively dependent or independent, we can define a 

new pairs of random variables 𝑈 and 𝑉 as below: 

(𝑈, 𝑉) = {
(𝑇1, 𝑇2 ),           with probability           𝛼
(𝑍1

∗, 𝑍2
∗ ),         with probability     1 − 𝛼,

 

where (𝑍1
∗, 𝑍2

∗ ) is distributed as 𝐻1
∗. Hence, the distribution of (𝑈, 𝑉) is given by 

𝐹(𝑥, 𝑦) = 𝑃𝑟(𝑈 ≤ 𝑥, 𝑉 ≤ 𝑦 ) = 𝛼𝐻2(𝑥, 𝑦) + (1 − 𝛼)𝐻1
∗(𝑥, 𝑦) 

= 𝐹(𝑥)𝐺(𝑦) + (2𝛼 − 1)𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦). (3) 

By letting 𝜆 = 2𝛼 − 1, where 𝜆 ∈ [−1,1], eq. (3) can be rewritten as 

𝐹(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) + 𝜆𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦). (4) 

λ = 0 indicates 𝐹 = 𝐹(𝑥)𝐺(𝑦), 𝜆 = −1 indicates that 𝐹 is negatively dependent and 𝜆 = 1 indicates that 

𝐹 is positively dependent. Note that, if 𝐻(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦), 𝐹 indicates well-known bivariate 

distribution which is called as Farlie-Gumbel-Morgenstern distribution (see, [6] and  [7]). 
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We need the survival and probability density function for subsequent discussions. These functions are 

respectively given by 

�̅�(𝑥, 𝑦) = �̅�(𝑥)�̅�(𝑦) + 𝜆𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦) 

and 

𝑓(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦) + 𝜆ℎ(𝑥, 𝑦)[�̅�(𝑥, 𝑦) + 𝐻(𝑥, 𝑦)] − λ𝑘(𝑥, 𝑦),  

where  𝑘(𝑥, 𝑦) = 𝑃𝑟(𝑋 ≤ 𝑥|𝑌 = 𝑦)𝑃𝑟(𝑌 > 𝑦|𝑋 = 𝑥) + 𝑃𝑟(𝑋 > 𝑥|𝑌 = 𝑦)𝑃𝑟(𝑌 ≤ 𝑦|𝑋 = 𝑥). 

2. REVERSED HAZARD RATE OF THE NEW FAMILY OF BIVARIATE DISTRIBUTION 

The bivariate reversed hazard is defined by Bismi [8]  as  𝑟𝑣(𝑥, 𝑦) = 𝑓( 𝑥, 𝑦)/𝐹(𝑥, 𝑦). Furthermore, the 

bivariate hazard rate function defined by Basu [9] as  𝑟(𝑥, 𝑦) = 𝑓( 𝑥, 𝑦)/�̅�(𝑥, 𝑦). Analogously to the 

hazard  gradient  by  Johnson  and  Kotz  [10],  Roy [11]  defined  the  bivariate  reversed  hazard  rate  

and the bivariate hazard rate as  follows: 𝒓𝒗1,2(𝑥, 𝑦) = (𝑟𝑣1(𝑥, 𝑦), 𝑟𝑣2(𝑥, 𝑦)), where 

𝑟𝑣1(𝑥, 𝑦) =
𝜕𝑙𝑜𝑔𝐹(𝑥, 𝑦)

𝜕𝑥
, 𝑟𝑣2(𝑥, 𝑦) =

𝜕𝑙𝑜𝑔𝐹(𝑥, 𝑦)

𝜕𝑦
, 

and  𝒓1,2(𝑥, 𝑦) = (𝑟1(𝑥, 𝑦), 𝑟2(𝑥, 𝑦)), where 

𝑟1(𝑥, 𝑦) =
−𝜕𝑙𝑜𝑔�̅�(𝑥, 𝑦)

𝜕𝑥
, 𝑟2(𝑥, 𝑦) =

−𝜕𝑙𝑜𝑔�̅�(𝑥, 𝑦)

𝜕𝑦
. 

Reversed hazard rate gradients of 𝐹(𝑥, 𝑦) given by eq. (4) are as follows: 

𝑟𝑣1(𝑥, 𝑦) = 𝑤(𝑥, 𝑦, 𝜆)𝑟𝑣1(𝑥,∞) + (1 − 𝑤(𝑥, 𝑦, 𝜆)) (𝑟𝑣1𝐻(𝑥, 𝑦) − 𝑟1𝐻(𝑥, 𝑦)) , 

𝑟𝑣2(𝑥, 𝑦) = 𝑤(𝑥, 𝑦, 𝜆)𝑟𝑣2(∞, 𝑦) + (1 − 𝑤(𝑥, 𝑦, 𝜆)) (𝑟𝑣2𝐻(𝑥, 𝑦) − 𝑟2𝐻(𝑥, 𝑦)). 

Accordingly, after some simplifications, bivariate reversed hazard rate can be given by 

 𝑟𝑣(𝑥, 𝑦) = 𝑤(𝑥, 𝑦, 𝜆)𝑟𝑣1(𝑥,∞)𝑟𝑣2(∞, 𝑦) + (1 − 𝑤(𝑥, 𝑦, 𝜆))(𝑟𝑣𝐻(𝑥, 𝑦) + 𝑟𝐻(𝑥, 𝑦)) 

                      −(1 − 𝑤(𝑥, 𝑦, 𝜆))[𝑟𝑣1𝐻(𝑥, 𝑦)𝑟2𝐻(𝑥, 𝑦) + 𝑟𝑣2𝐻(𝑥, 𝑦)𝑟1𝐻(𝑥, 𝑦)], 

where 𝑤(𝑥, 𝑦, 𝜆) =
𝐹(𝑥)𝐺(𝑦)

𝐹(𝑥)𝐺(𝑦)+𝜆𝐻(𝑥,𝑦)�̅�(𝑥,𝑦)
.  

3. LOWER AND UPPER BOUNDS ON SPEARMAN’S RHO MEASURE FOR THE NEW 

FAMILY OF BIVARIATE DISTRIBUTION 

This section deals with obtaining bounds for the bivariate distribution family given by the eq. (4). 

According to Hoeffding [12] and Fréchet [13], for any bivariate distribution belonging to ℱ(𝐹, 𝐺) contains 

Fréchet a lower bound and an upper bound. These bounds are respectively defined as  

𝐹−(𝑥, 𝑦) = max{𝐹(𝑥) + 𝐺(𝑦) − 1,0}                   (5) 

𝐹+(𝑥, 𝑦) = min{𝐹(𝑥), 𝐺(𝑦)}. (6) 

For 𝐹 ∈ ℱ(𝐹, 𝐺),  Spearman’s rho can be expressed as 

𝜌𝑠(𝑋, 𝑌) = 12 ∫ ∫{𝐹(𝑥, 𝑦) − 𝐹(𝑥)𝐺(𝑦)}𝑑𝐺(𝑦)𝑑𝐹(𝑥)

ℝℝ

 (7) 
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 (see, Schweizer and Wolff  [14]). The coefficient of Spearman’s rho for the new family can be obtained 

by 

𝜌𝑠 = 12𝜆 ∫ ∫ 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦)𝑑𝐺(𝑦)𝑑𝐹(𝑥)

ℝℝ

. (8) 

Hence, by using the fact that 𝐻(𝑥, 𝑦) ≤ 𝐹(𝑥)𝐺(𝑦), for 𝜆 > 0,  we have the upper bound as 𝜌𝑠 ≤
𝜆

3
. To 

obtain the lower bound for 𝜆 > 0, we use the eq. (5), then the lower bound is 𝜌𝑠 ≥ 0. According to sign 

of 𝜆, we achieve the bounds as below: 

𝜌𝑠 ∈

{
 
 

 
 [
−𝜆

3
, 0 ] , 𝑓𝑜𝑟 𝜆 < 0

0             , 𝑓𝑜𝑟 𝜆 = 0

[0,
𝜆

3
 ]    , 𝑓𝑜𝑟 𝜆 > 0.

 

We have two example to illustrate this family. 

Example1. The Farlie-Gumbel –Morgenstern (FGM) family of bivariate distributions are given by 

𝐻(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦)[1 + 𝜃 �̅�(𝑥)�̅�(𝑦)], for 𝜃 ∈  [−1,1]. By taking 𝜃 ∈ [−1,0], the distribution 𝐹(𝑥, 𝑦) 

is given by 

𝐹(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) + 𝜆𝐹(𝑥)𝐺(𝑦)�̅�(𝑥)�̅�(𝑦)[1 + 𝜃�̅�(𝑥)�̅�(𝑦)][1 + 𝜃 𝐹(𝑥)𝐺(𝑦)], 

where 𝜆 ∈ [−1, 1] and 𝜃 ∈ [−1,0]. Hence, 𝜌𝑠 = 𝜆 (
1

3
+
𝜃

6
+
𝜃2

75
). Since 𝜃 ∈ [−1,0], 

9𝜆

50
≤ 𝜌𝑠 ≤

𝜆

3
 for 𝜆 >

0, and 
𝜆

3
≤ 𝜌𝑠 ≤

9𝜆

50
   for 𝜆 < 0.  

We conclude that this family model weak dependence as FGM does. 

Example2.  The bivariate Gumbel- Exponential (BGE) distribution is given by 𝐻(𝑥, 𝑦) = 1 − 𝑒−𝑥 −

𝑒−𝑦 + 𝑒−𝑥−𝑦−𝜃𝑥𝑦, for 𝜃 ∈  [0,1]. The distribution 𝐹(𝑥, 𝑦) is given by 

𝐹(𝑥, 𝑦) = 1 − 𝑒−𝑥 − 𝑒−𝑦 + 𝑒−𝑥−𝑦 + 𝜆 (𝑒
−𝑥−𝑦−𝜃𝑥𝑦 − 𝑒−2𝑥−𝑦−𝜃𝑥𝑦 − 𝑒−𝑥−2𝑦−𝜃𝑥𝑦

+𝑒−2𝑥−2𝑦−2𝜃𝑥𝑦
), 

where 𝜆 ∈ [−1, 1] and 𝜃 ∈ [0,1]. According to Yela and Cuevas [15], the Spearman’s rho coefficient of 

BGE distribution is 𝜌𝑠
𝐵𝐺𝐸 = 12 [−

𝑒
4
𝜃

𝜃
𝐸𝑖 (−

4

𝜃
) −

1

4
], where 𝐸𝑖(·) is the exponential integral function.  

Then, 𝜌𝑠 can be obtained as 

𝜌𝑠 = 12𝜆
𝑒
4

𝜃

𝜃
[−𝐸𝑖 (−

4

𝜃
) + 2𝑒

2

𝜃𝐸𝑖 (−
6

𝜃
) −

𝑒
1

2𝜃𝐸𝑖 (−
9

2𝜃
)

2
]. 

The following plot shows the shape of 𝜌𝑠
𝐵𝐺𝐸 for different values of 𝜃. Here, the approximate values 

obtained by Matlab package program are used in 𝐸𝑖 evaluations. 
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Figure 1. Plots of the 𝜌𝑠  for some parameter values. 

As can be seen from the Figure1, for the negative values of 𝜆, it can be said that 𝐹 can model negative 

dependence slightly better than BGE in small theta values. Moreover, for the positive values of 𝜆, 𝐹 can 

be used to model weak positive dependence. 

4.  CONCLUSION 

In this study, we proposed a new bivariate distribution using a base distribution from the negative 

dependency class which is in ℱ(𝐹, 𝐺). Thus, this new distribution can reveal both negative dependence, 

positive dependence and independence between the random variables 𝑋 and 𝑌. As a result of illustrative 

examples, it can be said that distributions can be derived for pairs of random variables with higher 

correlations considering some base distributions. 

If we pay attention to Example 2 again, we can explain a structure  by illustrating  a random phenomenon 

which looks essentially negatively dependent but may also be positively dependent as follows:  

As the temperatures usually begin to increase in spring, snow starts to melt into the stream. This leads to 

a rapid increase in the water level of the river. Thereby, it can be thought that there is a positive 

dependence between temperature and the amount of water level of the river. On the other hand, during 

the summer season, as the temperatures rise, the water level in the river will decrease due to evaporation. 

In this case, there is a negative dependence between these two random variables.  

The proposed distribution may be useful to model the relationship between river water level and 

temperature all year round.  
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