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Abstract. First of all, a novel inequality of Hadamard's type for functions higher order derivatives of which 

are convex is developed. It is also presented midpoint type results. Afterward, Ostrowski type inequalities for 

mappings whose   derivatives are either Lipschitzian or Hölder continuous with   are established. Furthermore, 

links between results given in the earlier paper and our outcomes are examined. 

Keywords: Convex Functions, Lipschitz Continuity, Ostrowski's Inequality, Hermite-Hadamard inequality. 

Yüksek Mertebeden Diferensiyellenebilir Fonksiyonlar için Perturbe 

Tipli Eşitsizliklerin Geliştirilmiş Durumları 

Özet. Bu çalışmada, ilk olarak yüksek mertebeden türevleri konveks olan fonksiyonlar için Hadamard tipli 

yeni bir eşitsizlik geliştirilmiş ve aynı zamanda bu eşitsizliğin orta nokta tarzındaki sonuçları sunulmuştur. 

Daha sonra, n. mertebeden türevleri ya Lipschitzyan ya da ]1,0(  olmak üzere − Hölder sürekli olan 

fonksiyonlar için Ostrowski tipli eşitsizlikler kurulmuştur. Bulunanlara ek olarak, bizim sonuçlarımız ile 

önceki makalelerde sunulmuş eşitsizlikler arasındaki bağlantılar incelenmiştir. 

Anahtar Kelimeler: Konveks Fonksiyonlar, Lipschitzyan Süreklilik, Ostrowski Eşitsizliği, Hermite-

Hadamard Eşitsizliği. 

 

1. INTRODUCTION  

The main purpose of the mathematical inequalities is to determine lower and upper bounds to 

mathematical expressions whose values are unknown exactly. So, inequality theory plays an 

important role in many areas of modern mathematics. Hermite-Hadamard inequality, introduced by 

C. Hermite and J. Hadamard but first published by Hadamard [1] in 1893, is one of the most 

significant inequalities in the literature because it gives an estimate of the mean value of a convex 

function. This inequality expresses that if R→If :  is a convex function on the interval of real 

numbers and ba,  are elements of I  with ,ba   then we have the chain of inequalities. 
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Another important inequality, published by Ostrowski [2] in 1938, is Ostrowski inequality obtained 

by using functions first derivatives of which are bound. This inequality is stated as follows: 
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Let   R,: →baf  be a differentiable mapping on ( )ba,  whose derivative ( ) R,: → baf  

is bounded on ( ),,ba  i.e. 
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for all   bax , . The constant 4
1  is the best possible. 

These two inequalities have attracted many researchers due to its wide application areas. A large 

number of authors have devoted their effort to observed different generalizations, refined, 

counterparts and extensions of (1) and (2) for various classes of mappings. In particular, some 

generalizations of the inequalities (1) and (2) for differentiable, twice differentiable and higher-

order differentiable mappings are studied. For instance, Sarikaya and Set derived some novel 

Ostrowski type results for twice differentiable functions by using a new Montgomery type 

identity in [3]. Moreover, results similar to Ostrowski's inequality are provided for functions 

second derivatives of which are bounded in [4] and [5]. On the other side, an extension of the 

inequality (1) for twice differentiable functions is presented by Farissi et al. in reference [6]. 

The interested mathematicians focused on perturbed type inequalities which give more general 

and more extensive outcomes of (1) and (2). In [7], the author developed an identity to establish 

some inequalities of perturbed Ostrowski type for absolutely continuous as follows. 

Theorem 1. Let   C,: →baf  be an absolutely continuous on  ba,  and  .,bax  Then, 

for any )(1 x  and )(2 x  complex numbers, we have 
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where the integrals in the left hand side are taken in the Lebesgue sense. 

Afterward, researchers worked on perturbed inequalities for twice differentiable functions in [8] 

and [9]. 

We note that there are cases when first and second-order derivatives are not enough to solve 

certain mathematical issues. Hence, some researchers observed integral inequalities for higher-

order differentiable mappings. As an illustration, authors provided some generalizations of 

Ostrowski type results for mappings higher-order derivatives are elements of 
pLL ,1

 or L  in 

[10], [11] and [12]. What is more, results that are higher order generalizations of Hermite-

Hadamard inequality are deduced in [13] and [14]. In [15], Ozdemir and Yildiz examined 

midpoint formula related to (1) for higher order differentiable functions. In [16], Erden gave 

perturbed inequalities for mappings n .th derivatives of which are of bounded variation. In 

addition, it is presented some perturbed type integral inequalities for functions whose higher-

order derivatives are either convex or Lipschitzian in [17]. 
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In [18] and [19], Dragomir observed companions of Perturbed Ostrowski type inequalities for 

absolutely continuous functions. In [20], Erden established the following equality for −n times 

differentiable functions so as to refined Ostrowski type inequalities. He also investigated new 

quadrature rules to capture more effective results than the previous. 

Lemma 1.  Let   R,: →baf  be a −n  time differentiable function on ( ).,ba  Then, for any 

3,2,1),( =ixi  complex numbers and all  ,,
2
baax +  we have the identity 
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where ),:( xnfS  is defined by 
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In [21], Kashif et al. developed new results of Ostrowski type for functions thn.  derivatives of 

which are element of either  baL ,1  or  baL ,2  by means of three-step kernel. Moreover, 

Qayyum et al. improved more comprehensive Ostrowski type results whose special cases give 

inequalities presented in the previous studies for functions having a five-step kernel in [22]. 

Both works also presented new efficient quadrature rules which can use to find the approximate 

value of expressions values of which cannot be calculated exactly. 

In this study, our purpose is to establish new inequalities for mappings higher order derivatives 

of which are absolutely continuous. By utilizing the above equality, some companions of 

perturbed inequality for mappings higher order derivatives of which are either convex or 

Lipschitzian are examined. Results given in previous articles were recaptured when we gave 

specific values to the inequalities obtained in this work. 

2. INEQUALITIES FOR CONVEX FUNCTIONS 

Convex functions have become a cornerstone in many fields of Mathematics. Specifically, these 

type functions are a lot used in the inequality theory and optimization problems. The most 

famous of the inequalities obtained by using convex functions is Hermite-Hadamard inequality. 

Furthermore, midpoint and trapezoidal type results which are related to Hermite-Hadamard 

inequality plays an important role in a large number of areas of Mathematics. Now, we recall 

some definitions and properties concerning the convex functions which will use to establish our 

new results. 
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Supposing that I  is an interval of real number with interior .I  Also, R:)1( →− In  be a 

convex function on .I  In this case, 
)1( −n  is continuous on 

I  and possess finite left and right 

derivatives at each point of .I  Furthermore, if i  and j  are element of 
I  and ,ji   then 

),()()()( )()()()( jjii nnnn

+−+−    and this situation shows that both 
)(n

−  
and 

)(n

+  are 

non-decreasing functions on .I  A convex function is well known to must be differentiable 

apart from at most countably many points. 

We note that the sub differential of convex function 
)1( −n  indicated by 

)1( − n  is the set of all 

functions  −→ ,: I  such that ( ) RI  satisfied the condition 
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for any ., Imi   In this circumstance, if 
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 if f  is differentiable and convex on .I  

Theorem 2. Let   R,: →baf  be n  times differentiable function on ( ),,ba  and let n  be 
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where ,)1( − nf   because   is equal to 
)(nf  almost everywhere on  .,ba  
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for any  xbaat −+ , . Also, as n  is odd number, we have 
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for any  bxbat ,−+ . Hence, the desired inequality is proved. 
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which is a midpoint type inequality for mappings whose higher order derivatives are convex. 

Corollary 2. Under all the all conditions of the Theorem 2, if we choose ,
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Remark 1. If we take 1=n  in the inequality presented in the theorem 2, we have 
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which was proved by Dragomir in [19]. 

3. SOME RESULTS FOR LIPSCHITZIAN DERIVATIVES 

Lipschitz continuity, which was called after Rudolf Lipschitz, is a more consistent form of 

uniform continuity. We began with the definition of Lipschitz continuity to this section. 

  R,: →ba  is said to be Lipschitzian ,  if there exists a real constant 0M  such that 

srMsr −− )()(   

for any  .,, basr 
 

A recent companion inequality for mappings whose higher order derivatives are Lipschitzian is 

provided in the following theorem. 

Theorem 3. Let R: →If  be a n  times differentiable function on 
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where ),:( xnfS  is defined as in (4). 
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Seeing that C:)( →If n
 is Lipschitzian with the constant 1M  on  ,, xa  we get 
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Similarly, if the other two integrals in the right-hand side of (5) are observed, then the desired 

result can easily be obtained. 

Corollary 3. Let R: →If  be a n  times differentiable function on 
I  and   ., Iba   

Also, let ( ).,bax  If the n th derivative R:)( →If n
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for any  ., 2
baax +  

Remark 2. If we take 1=n  in (6), the inequality (6) becomes 
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which is provided by Dragomir in [19]. 

Furthermore, it can be derived trapezoidal and midpoint type inequalities by choosing ax =  

and 2
bax +=  in the above results. 
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Now, we deal with another result acquired by using a more comprehensive condition than 

Lipschitz continuity in the next theorem. 

Theorem 4. Let  R: →If   be a  n   time differentiable function on  
I   and    ., Iba    
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where ),:( xnfS  is as shown in (4). 

Proof. We take absolute value of both sides of the equality (3) for ),()( )(
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Now, should we calculate the first integral given in right hand side of the above inequality by 
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utilizing the property (7), we possess 
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If we substitute the resulting inequalities in (11) after having estimated the other two integrals 

by using the properties (8) and (9), we can easily find the desired inequality (10) which finishes 

the proof. 

In particular, if we take in consideration Hölder condition that is a generalization of the 

Lipschitzian, then we can express a new result as follows. 

Corollary 4. Let R: →If  be a n  time differentiable function on 
I  and   ., Iba   If the 

n th derivative 
)(nf  is − Hölder type on  ,,ba  then we have the inequality 


srKsfrf nn −− )()( )()(

 

for any  ,,, basr   where ( 1,0r  and 0H . In this case, the following inequality holds: 
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for any  ., 2
baax +  Specifically, if we suppose that

)(nf  is Lipschitzian with the constant 

0K  or if we take 1=  in the above result, then, for any  ,,
2
baax +  we get 
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                    (12) 

where ),:( xnfS  is as given in (4). 

Remark 3. If we choose 1=n  in (12), the inequality (12) reduce to the result 
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that was presented by Dragomir in the reference [19]. 

In addition to all these result, the inequalities given in this section can be examined the cases 

when 2
bax +=  and .

4
3 bax +=  What is more, it is clear that the cases when 1=n  and 2=n  of 

the results provided throughout this section relate to inequalities developed in some works listed 

in the references. 
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