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Abstract. Let L be a multiplicative lattice and z be a proper element of L. We introduce the 3-zero-divisor
hypergraph of L with respect to z which is a hypergraph whose vertices are elements of the set
X1XyX3 S Z D XXy £ Z, XoX3 £ zand x;x3 £ z
{xl €L-{z} for some x,,x3 € L — {z}
adjacent, that is, {x;, x,,x3} is a hyperedge if and only if x,x,x3 <z = x;%, £ z,x,%3 £ z and x,x3 £ z.
Throughout this paper, the hypergraph is denoted by H; (L, z). We investigate many properties of the hypergraph
over a multiplicative lattice. Moreover, we find a lower bound of diameter of H;(L, z) and obtain that H; (L, z)
is connected.

} where distinct vertices x;, x, and x; are
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Carpimsal Kafeslerde Bir Eleman ile ilgili 3-lii Sifir Bolen Hipergrafi

Ozet. L bir carpimsal kafes ve z, L nin bir has eleman1 olsun. z ile ilgili L nin 3-1ii sifir bolen hipergrafini tanittik
X1XoX3 S Z = XXy £ 2, X;x3 £zvexx3 £z
herhangi x,,x; € L — {z} igcin
elemanlaridir ki burada x4, x, ve x; komsudur, yani, {x;,x,, X3} bu hipergarfin bir hiperkenaridir ancak ve
ancak x;Xx,x3 < Z = XXy £ Z,X;X3 £ ZVe xX;x3 £ z. Bu ¢alisma boyunca, bu hipergrafi H;(L,z) ile
gOsterecegiz. Carpimsal bir kafes tizerinde bu hipergrafin birgok 6zelligini arastirdik. Ayrica, H5(L,z) nin

diametresinin bir alt sinirin1 bulduk ve bu hipergrafin baglantili oldugunu gésterdik.

} kiimesinin

Oyle ki bu hipergrafin kt')seleri{x1 €L—{z}

Anahtar Kelimeler: 3-lii Sifir Bolen Hipergraf, n-pargali Tam Hipergraf.

1. INTRODUCTION

A complete lattice L is called multiplicative lattice if there exists a commutative, associative,
completely join distributive product on the lattice with the compact greatest element 1,, which is
the multiplicative identity, and the least element 0, . It can be easily seen that L/a = {b € L|a <
b} is a multiplicative lattice with the product x oy = xy V a where L is multiplicative lattice and
a € L. Note that 0,,, = z. D.D. Anderson and the current authors have studied on multiplicative
lattices in a series of articles [1-4]. An element a € L is said to be properifa < 1. A proper element
p € L is called a prime element if ab < p impliesa < p or b < p, where a,b € L. Then p is called
2-absorbing element of L if x;x,x3 < p for some x;, x, and x5 in L, then x;x, < p or x;x3 < p or
XpX3 S .

Let a finite set VV be a vertex set and E(V) = {(w,v)|u,v € V,u # v}. A pairwise G = (V,E) is
called a graph on VV where E < E(V). The elements of V are the vertices of G, and those of E the
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edges of G. Consider that the edges (x, y) and (y, x) denote the same edge (For more information,
see [3-8].

A hypergraph H is a pair (V, E) of disjoint sets, where the elements of E are nonempty subsets of
V. The elements of V are called the vertices of H and the elements of E are called the hyperedges of
H. If the size of any hyperedge e in the hypergraph H is n, then H is called n-uniform hypergraph.
Let H be an n-uniform hypergraph. An alternating sequence of distinct vertices and hyperedges is
called a path with the form vy, e,,v,, €5, ..., v, Such that v;, v;,, areine; forall1 <i <m-—1.
The length of a path is the number of hyperedges of it. The distance d(x, y) between two vertices x
and y of H is the length of the shortest path from x to y. If no such path between x and y exists, then
d(x,y) = co. The diameter diam(H) of H is the greatest distance between any two vertices. The
hypergraph H is said to be connected if diam(H) < . A cycle in a hypergraph H is an alternating
sequence of distinct vertices and hyperedges of the form vy, ey, v,, €y, ..., Vi, €y, V1 SUCh that
Vi, Viyq € e; and vy, v, € e, forall 1 < i < m. The girth gr(H) of a hypergraph H containing a
cycle is the smallest size of the length of cycles of H. (For more information, see [5]). A hypergraph
H is called trivial if it has a single vertex and also it is called empty if it has no hyperedges.

The concept of a zero-divisor graph of a commutative ring was first introduced in [6]. Let R be a
commutative ring and k > 2 be an integer. A nonzero nonunit element x; in R is said to be a k-zero-
divisor in R if there are k — 1 distinct nonunit elements x,, xs, ..., x; in R different from x; such
that x;x,x3 ... x;, = 0 and the product of no elements of any proper subset of A = {xl,xz,x3, ...,xk}
is zero. The set of k-zero divisor elements of R is denoted by Z, (R). Let I be a proper ideal of R.
The 3-zero-divisor hypergraph of R with respect to I, denoted by H(R, I), is the hypergraph whose
vertices are the set {x; € R\I|xyx,x3 € I for some x,,x3 € R\l such that x;x, &€ I, x,x3 &
I and x,x5 & I} where distinct vertices x4, x, and x5 are adjacent if and only if x;x,x3 € I, x1x, &
I,x,x3 € I and x,x3 & I (See [9]). Let I be a proper ideal of R. Recall that I is called a 2-absorbing
ideal of R if x,x,x3 € I for some x4, x, and x5 in R, then x;x, € I or x,x3 € I or x;x3 € I (For
more information, see [10]). Hence H3 (R, I) is not empty if and only if I is not a 2-absorbing ideal
of R (see Proposition 1 in [9]).

Let z be a proper element of L. A proper element a, of L is called n-zero divisor element with respect
to z in L if there are n — 1 distinct elements a,,as, ...,a, in L different from a,; such that
a,as ...a, < z and the product of no elements of any proper subset of A = {ay,a,, ..., a,} is less
than or equals to z. The set of all n-zero divisor element with respect to z in L is denoted by Z,, (L, z).
For example, consider the lattice of ideals of Z, L = I(Z) the set of all ideals of Z. The ideal (2) is
a 3-zero-divisor with respect to (8) in L since (2)(3)(6) < (8), and the product of no elements of
any proper subset of {(2), (3), (6)} is contained by (8).

Throughout this paper, we assume that a lattice L is a multiplicative lattice. Let z be a proper element
of L. The 3-zero-divisor hyper-graph of L with respect to z, denoted by Hs(L, z), is a hypergraph
whose vertices are elements of the set
{x1 €L—{z) X1XaXx3 < ijrall;c;l foz,,Zxé f f gt}d X1X3 £z
and x5 are adjacent, that is, {x;,x,, x5} is a hyperedge if and only if x;x,x3 <z = x;x, £ z,
X,x3 ¥ z and x,x3 £ z. It can be seen that H;(L, z) is a 3-uniform hypergraph. In this paper, we
show that H5 (L, z) is empty if and only if z is a 2-absorbing element of L and also, H;(L/z) is empty

} such that distinct vertices x4, x,
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hypergraph if and only if H5(L, z) is empty hypergraph. Then we give that H;(L, z) is connected
and diam(Hs(L, z)) < 4. Additionally, we show that H;(L, z) is a complete 3-partite hypergraph if
p1, P2 and p5 are prime elements of L and z = p; Ap, Ap; # 0, and the converse is true if L is
reduced lattice. Finally, we see that H3 (L, z) has no cut-point.

2. ZERO DIVISOR HYPERGRAPH H_3 (L,z) WITH RESPECT TO z

Definition 1. Let z be a proper element of L. The 3-zero-divisor hypergraph of L with respect to z
is a hypergraph whose vertices are elements of the set
e L 522 run Sy et 2
x5 are adjacent, that is, {x;, x,, x5} is a hyperedge if and only if x;x,x3 <z = x,%, £ 27, X,x3 £
z and x,x3 £ z. Throughout this paper, the hypergraph is denoted by H;(L, z).

}. Also, distinct vertices x4, x, and

Let z = 0,. Then it is clear that H;(L) = H5(L,0,) is the hypergraph whose vertices are elements
X1X3%3 = 0 = x1x5 # 0, x,x3 + 0, and x1x3 + 0,
for some x,,x3 € Z3(L)
vertices x4, x, and x5 are adjacent if and only if x;x,x3 = 0, = x1x, # 01, x,x3 # 0, and x,x3 #

0.

of the set{x1 € Z;5(L)

} where distinct

The hypergraphs H;(R) in [5] and H3 (R, I) in [10], which are defined on a commutative ring R and
a proper ideal I of R, are examples for the hypergraph H(L, z).

We obtain the following results with the above definition and the definition of 2-absorbing element
inL.

Proposition 1. Let z be a proper element of L. Then the following statements hold:

1) H3(L,z) is empty hypergraph if and only if z is a 2-absorbing element of L.
2) H;(L/ z) is empty hypergraph if and only if H3(L, z) is empty hypergraph.

Proof. 1). (=): Let H5(L, z) be empty hypergraph. Suppose that z is not a 2-absorbing element of
L. Take x;x,x5 < z for some x;, x5, x3 € L. Then we get x;x, £ z, x,x3 £ zand x;x; £ z. Hence
e = {x1,x3,x3} is a hyperedge of H;(L, z), a contradiction.

(<): Itis obvious.

2). (=): Assume that H5 (L, z) is not an empty hypergraph. Then it has a hyperedge e = {x4, x5, x3}.
Considerx; Vz,x, Vz,x3Vz € L/z. Itisclearthat x; V z,x, V z, x5 V z are different from z. Then
we have that (x; Vz)(x; V2)(x3Vz) =0/, (x,V2z)(xzVz)+# 0y, (x,Vz)(x3V2z)+0,,
and (x; Vz)(x3Vz)#0,, Thus e’ ={x;Vzx,Vzx;3Vz} is a hyperedge of H3(L/ z), a
contradiction.

(<): Let H3(L/ z) be not an empty hypergraph. Then it has a hyperedge e = {y;, y,, y3} for some
Y1,Y2,¥3 € V(H3(L/ 2)). Then y; oy, o y3 = 0y, that is, y1y,y3 < z and since y; ° y,, ¥, © y3
and y, oy are different from 0,/,, then y,y,,y,ys,¥1y3 ¥ z. Therefore, e = {y;,y,,y3} is a
hyperedge of H5(L, z), a contradiction.
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Theorem 1. Let H5(L, z) be a 3-zero-divisor hypergraph of L with respect to z. If x? % z for each
3-zero-divisor x € L with respect to z, then H5(L,z) is connected and diam(H3(L,z)) < 4.
Furthermore, if H3(L, z) has a cycle, then gr(H;(L,z)) < 9.

Proof. Let e; = {x1,x3,x3} and e, = {y;,y,,y3} be hyperedges of H3(L,z). If e; N e, # @, the
proof is completed. Assume that e; N e, = @. We show that there are hyperedges es, e, such that
they satisfy one of the followings:

1) e3Ne; 0P, e3Ney, 0
(2 esNe; #=P,eaNe;, #0, e, Nes 0

Assume that G is the partite graph such that V(G) = e; U e, and x;y; € E(G) if and only if x;y; <
Z.

Assume that G has two isolated vertices such that one is in e; and the other isin e,. Letdeg;(x3) =
deg;(y;) = 0. Suppose that there is a € {xq,x,,y1, v} Where x3y;a < z. Then e; = {x3,y3,a} is
a hyperedge which holds the condition (1). Let the case not satisfy. If x3ys & {x1, X2, ¥1,V,}, then
es = {xq,x,,x3y3} and e, = {y;,¥,, x3y3} are two hyperedges which satisfy the condition (2). In
the contrary case, without loss of generality (wlog.), suppose that x;y; = x;. Hence e; =
{x1,v1,¥,} is a hyperedge satisfying the condition (1). Consequently, H3(L, z) is connected. Now,
we show that diam(H3 (L, z)) < 4. We consider the number of edges G for the rest of the proof.

Case 1. Assume that |E(G)| < 2. Then G has two isolated vertices such that one is in e; and the
otherisin e,.

Case 2. Let |E(G)| = 3. Take account of the next four different subcases for this case:

Case 2.1: Let degg(a) = 1 for each vertex a of G. Assume that E(G) = {x1y1, X2V, x3y3}. We
consider {x1,x,y3,¥1 V¥, }. If x; = x5y3, then x;y, = x,y3y, < z, a contradiction. If x; = y; v
Y2, then yix,x5 < z. Thus e; = {yy, x,, x5} satisfies the condition (1). If y; V ¥, = x,y3, then
X1Y2x3 < z and so the condition (1) is satisfied for e; = {x;,y,, x3}. On the contrary, reconsider
es = {xq,x,y3,¥1 V¥, }. If e3 is not a hyperedge, then x;x,y; < z or x,y3(y, V y2) < z, that is,
X,¥3y1 < z. Then e's = {x;, x5, y3} is a hyperedge satisfying the condition (1) or e, = {x5,y3, %1}
is a hyperedge satisfying the condition (1). Let e; = {x4, X3, y1 V y»} be a hyperedge. In a similar
way, we consider {y;, x,y3, %1 V x3}. If e4 is not a hyperedge, then y;x,y; < z or x,y5(xq V x3) <
z, that is, x,y3x; < z. Then e”’5 = {y, x5, y3} is a hyperedge satisfying the condition (1) or e’’, =
{x5,v3,%x1} IS a hyperedge satisfying the condition (1). Assume that e, = {y;,x,¥y3,%; Vx3} is a
hyperedge. Then we have two hyperedges e; = {xy,x,y3,¥1 V¥,} and e, = {y1,x,¥3, %1 V x3}
with e; and e, satisfying the condition (2).

Case 2.2. Let deggz(a) =1 for only an element a of G. Wlog., suppose that E(G) =
{x1V1, X1Y2, X2 V3 }. We consider {x,, x3y1,%; V y3}. If x5 = x3y,, then x;x, < z, is a contradiction.
If x, = x4 V y3, then x,y,y; < z and so the condition (1) is satisfied for e; = {x,,y,,¥1}. If x; V
Y3 = X3V, then x3y,y,y; < z. In the circumstances, if x; = y;y,, then x;x3 < z, a contradiction.
If y; = y,y,, then y;y; < z, a contradiction. Hence, the condition (1) holds for e; = {x3, y1 V., ¥1}-
Let the above conditions not hold. If ez = {x,, x3y1,x; V ¥3} is not a hyperedge, then x,x;y; < z
or x3y1(x1 Vy3) < z, that is, x3y,y3 < z. Then e'5 = {x,,x3,¥;} is a hyperedge satisfying the
condition (1) or e’y = {x3,y1,y3} is a hyperedge satisfying the condition (1). Suppose that e; =
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{x,, x3y1,%1 V y3} is a hyperedge. Now, similarly we consider {y,, x3y1,v3}. If e4 = {y2, x3y1,¥3}
is not a hyperedge, then y,x3y; <z or x3y,y; < z. Then e''5 = {y,,x3,y:} is a hyperedge
satisfying the condition (1) or e', = {x3,y;,y3} is a hyperedge satisfying the condition (1). Let
{y2,x3Y1,%1, V y3} be a hyperedge. Then we obtain two hyperedges e; = {x,, x3y,,x, V y3} and
es = {¥,, x3Y1, Y3} With e; and e, satisfying the condition.

Case 2.3. Let deg;(a) =degg(b) =2 for a,b €V (G). Wlog., suppose that E(G) =
{x1y1,%1Y2,%2¥2}. Then degg; (x3) = deg; (v3) = 0 and so the proof is completed.

Case 2.4. Let deg;(a) =3 for only one element a of G. WIlog., suppose that E(G) =
{X1V1, %12, X1 Y3 }. Let x;%x, £ z. Consider {x;x, V y1,x1,x3}. If x1x, Vy; = x4, then y,y; < z,
a contradiction. If x;x, V y; = x3, then x3y3y, < z, a contradiction. Hence e; = {x3,y,,y3} is a
hyperedge satisfying the condition (1). In the other case, e; = {x;x, V y;, x4, x3} IS a hyperedge. In
a similar way, we consider {x;x, V y1,¥2,V3}. Then we have a hyperedge e; which satisfies the
condition (1) or e, = {x1x, V ¥1,¥,,y3} IS a hyperedge with e; and e, satisfying the condition (2).
Let x,2x, < z. We consider {x; V y;,xq,x2}. If x; Vy; = x,, then x,y3y, < z, a contradiction.
Thus ez = {x; V ¥4, x4, x5} is a hyperedge. In a similar way, we consider {x; V y4, ¥, y3}. Then we
have a hyperedge e; which satisfies the condition (1) or e, = {x1x, V ¥4, V5, ¥3} is a hyperedge with
ez and e, satisfying the condition (2).

Case 3. Assume that |E(G)| = 4. Consider four different subcases for this case:

Case 3.1. Let deg;(a) =3 for only one element a of G. WIlog., suppose that E(G) =
{x1y1,%1Y2,%1¥3, %23} We consider {x3y;,x3,%; Vy3}. If x3y; =x,, then x3y3y; <z, a
contradiction. Thus e; = {x3,v;,v3} is a hyperedge which holds (1). If x3y; = x; V y5, thenx;2 <
z, is a contradiction. If x, = x; V ys, then y;2 < z, a contradiction. In the other condition, consider
again ez = {x3y1,%2, %1 Vys}. If e = {x3v1, %5, %1 V y3} is not a hyperedge, then x,x3y, < z or
x3y1(x1 Vy3) <z that is, x3y,y; <z. Then e'; = {x,,x3,y,} is a hyperedge satisfying the
condition (1) or e', = {x3,v,,y3} is a hyperedge satisfying the condition (1). Assume that e; =
{x3y1,%x5,x1 Vys} is a hyperedge. In a similar way, we consider {xsvy,v,,y3}. If e, =
{x3y1,¥2,y3}is not a hyperedge, then x3y;y, < z or x3y,;y3 < z. Then e"; = {y,,x3,y,} is a
hyperedge satisfying the condition (1) or e’, = {x3,y,,y3} is a hyperedge satisfying the condition
(1). Suppose that e, = {x3y1,V.,y3} is a hyperedge. Then we get two hyperedges e; =
{x3y1,%5,%1 V y3}. and e, = {x3y1,¥2, ¥3} With e and e, satisfying the condition (2).

Case 3.2. Assume that the degree of four vertices of G equals to two. Wlog., presume that E(G) =
{X1YV1, X1Y2, X2 V1, X2V, }. Then deg; (x3) = deg; (v3) = 0 and so the proof is completed.

Case 3.3. Suppose that the degree of three vertices of G is two. Wlog. assume that E(G) =
{x1¥1, X1Y2, X2Y2, x2¥3}. We consider {x3ys,x1,x;}. If X33 = x1 OF x3y3 = x5, then x3y3y, < z
and so (1) is satisfied for a hyperedge e; = {x3,¥,,y3}. In the other case, let us view e; =
{x3y3, x1, x5 }. If e5 = {x3y3, x1, x5} is not a hyperedge, then x3y;x; < zorx3y;x, < z. Thene's =
{x3,y3, x1} is a hyperedge satisfying the condition (1) or e’, = {x3,v3,x,} isahyperedge satisfying
the condition (1). Let e; = {x3v3,x1,x,} be a hyperedge. In a similar way, we consider

{x3y3, 1,2} If e, = {x3y3,y1,y,} is not a hyperedge, then x3ys;y; < z or x3y;y, < z. Then
e''s = {x3,v3,y,1} is a hyperedge satisfying the condition (1) or "', = {x3,y3,y,} is a hyperedge
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satisfying the condition (1). Let e, = {x3y3,y1, >} be a hyperedge. Then we get two hyperedges
es = {x3y3,%1,x,} and e, = {x3y3,y1,y,} with e; and e, satisfying the condition (2).

Case 3.4. Letdeg;(a) = deg;(b) = 2 fora,b € V (G). Then, we have two different cases and we
can choose one of these sets E(G) = {x1y1,X1Y2,X2Y2,X3Y3}and E(G) = {x1y1, X1V2, X2Y3,X3Y3}.
In the first choice, we consider {x3y;,x,,x; Vy,}. If x5y, = x5, then x3y;y, < z and S0 e; =
{x3,y1,y,} is an edge satisfying (1). If x3y; = x; V y,, then x;2 < z, a contradiction. If x, = x; vV
y,, then y,2 < z, is a contradiction. In the other case, consider e; = {x3Vy, %, %1 V y5}. If e5 =
{x3y1, %2, %1 V y,} is not a hyperedge, then x5y, x, < z or x5y, (x, Vy,) < z, that is, x3y,y, < z.
Then e”; = {x3,v;,¥,} is a hyperedge satisfying the condition (1) or e”, = {x3,v,,y3} is a
hyperedge satisfying the condition (1). Let e, = {x3y;,V,,V3} be a hyperedge. Then we get two
hyperedges e; = {x3y,,x,,%x; V ¥} and e, = {x3y4, V5, y3} With e5 and e, satisfying the condition

Q).

In a similar manner, we consider {x; V y;, x5, x3} and {x; V y;, y,, y3} for the second choice. Hence,
we have a hyperedge e; which holds (1) or two hyperedges e; and e, which hold the condition (2).

Case 4. Assume that |E(G)| = 5. Consider four different subcases for this case:

Case 4.1. Wlog. assume that E(G) = {x1Y1, X1Y2, X1Y3, X2V1, X2V, }. We consider {x3y3,x,,x; V
v2}. If x3y3 = x5, then x3y3x, < z, and so the condition (1) is satisfied for a hyperedge e; =
{x3,x3,v3}. If x3y3 = x; Vy,, then x;2 < z, a contradiction. If x, = x; Vy,, then y,y, < z,
yielding a contradiction. On the other hand, e; = {x3y3,x,,x; V y,}isaedgein G. Inasimilar way,
we consider {x3ys,y1,V2}. If e, = {x3v3,v1,y,} is not a hyperedge, then x5y;y; < z or x3y3y, <
z. Then e"; = {x3,v3,y,} is a hyperedge satisfying the condition (1) or e", = {x3,v3,y,} is a
hyperedge satisfying the condition (1). Let e, = {x3y3,v1,V,} be a hyperedge. Then we get two
hyperedges e; = {x3y3, x5, %1 V y,}and e, = {x3y3,y,,y,} With e; and e, satisfying the condition

).

Case 4.2. WIlog., presume that E(G) = {x1V1,X1Y2,X1V3, X2Y1,X3Y2}. We consider {x; Vv
Y1, %2, Y2} If x; Vy; = x,, then y;2 < z, is a contradiction. If x; Vy; = y,, then x,2 < z, is a
contradiction. In the following situations, e3 = {x; V y4, X3, x3y3} is a hyperedge of G satisfying

(1).

Case 4.3. WIlog., presume that E(G) = {x1V1,X1Y2,X1V3, X2V1,X3Y2}. We consider {x; VvV
Y1, %2, V2 }. If x; Vy; = x, then y;2 < z, is a contradiction. If x; V y; = v, then x,x3y, < z. Thus
e; = {x3,x3,¥,} IS a hyperedge satisfying (1). In the other case, e; = {x; Vy;, x5, ¥,} Is a
hyperedge satisfying (1).

Case 4.4. Wlog., let E(G) = {x1Y1, X1Y2, X2V1, X2V, X3V }. We consider {x5 V y;,xq, 3} If x5V
Y1 = X1 OF X3V Yy =Yy3, then x;x,y; < z. Then e; = {xq,x,,y3} is a hyperedge satisfying the
condition (1). In the other case, e; = {x3 V y;, x4, y3} is a hyperedge satisfying the condition (1).

Case 4.5. WIlog., presume that E(G) = {xX1Y1,X1V2, X2V2, X2V3,X3Y3}. We consider {x; Vv
Y2, %2, V1}. If x; Vy, = x,, then y,2 < z, is a contradiction. If x; vV y, = y;, then x;,2 < z, is a
contradiction. Then e; = {x; V y,, x5, ¥, } IS @ hyperedge satisfying the condition (1).
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Case 5. Let |[E(G)| = 6. Consider three different subcases for this case:
Case 5.1. Wlog., presume that E(G) = {x1V1, X1V2, X1V3, X2V1, X2 Y2, X3V1 }-

We consider {x; V y1,x,,x3}and {x; V y1,¥2,V3} If x; Vy; = x5, then y;y, < z, a contradiction.
If x; V y; = x5, then y;2 < z, is a contradiction. If x; Vy; =y, or x; Vy; =y, then x;2 < z, is
a contradiction. Thus e3 = {x; V y1, x5, x3}and e, = {x1 V y1,¥>, y3} are hyperedges satisfying the
condition (2).

Case 5.2. Wlog., presume that E(G) = {x1V1, X1V2, X1V3, X2Y1, X2 Y2, X3V3 }-

We consider {x; V y3,x3,y1}. If x;Vy; = x5, then y32 < z, is a contradiction. If x; vV y; =y,
then x;2 < z, isacontradiction. Thus e; = {x; V y3, x3, y,} is a hyperedge satisfying the condition

(1).

Case 5.3. Wlog., presume that E(G) = {x1y1,X1V3, X2V1, X2Y2, X3V2, X3Y3}. We consider {x; V
y3,%3,91} If %1 Vys = x3, then y32 < z, is a contradiction. If x; Vy; =y, then x;2 <z isa
contradiction. Thus e; = {x; V y3,x3,y,} is a hyperedge satisfying the condition (1).

Case 6. If 7 < |E(G)| <9, then we have two vertices which are degree three in e; and the other in
e,. We suppose that degg; (x1) = deg; (v,) = 3. We consider {x; V y1, X2, x3}and {x; V y1, V2, ¥3}.
If x; Vy, =x, 0rx; Vy, = xg, then y,;2 < z, is a contradiction. If x; Vy; =y, or x; Vy; = ys,
then x,2 <z, is a contradiction. Hence e; = {x; V y1,%5,x3} and e, = {x; V y1,¥,,¥3} are
hyperedges satisfying the condition (2).

By the fact that gr(H3 (L, z)) < 2diam(H3(L, z)) + 1, we have that gr(Hs(L,z)) < 9.
2.1. Complete 3-Partite Hypergraph

Definition 2. [10] A hypergraph H is called an n-partite if the vertex set VV can be partitioned into
disjoint subsets V;, V,, ..., V;, of V such that a hyperedge in the hyperedge set E composes of a choice
of completely one vertex from each subset of V. Also, a hypergraph H is called a complete n-partite
hypergraph if the vertex set V can be partitioned into disjoint subsets V;,V,, ..., ¥}, of V and each
element of V; for each 1 < i < n creates a hyperedge of H.

Proposition 2. Let H3(L, z) be a complete 3-partite hypergraph.
If xy < z, then x and y are contained by same subset V; for some i € {1,2,3}.

Proof. Let H5(L, z) has disjoint subsets V3, V,, V5 which are partitions of the vertex set V. Let a be
a vertex with xya < z. Without loss of generality, assumethatx € V; anda € V,. Thene = {x,y,a}
is not a hyperedge in H5(L, z) by our assumption. If y € V5, then e is a hyperedge since H;(L, z) is
a complete 3-partite hypergraph, a contradiction. If y € V,, then there is a vertex b € V5 such that
e’ = {x,y, b}. But this contradicts the fact that xy < z. Therefore, y must be in V.

Theorem 2. Let z be a proper element of L. Then the following statements hold:

(1) If p1, p, and p5 are prime elementsof Landz = p; Ap, Aps = 0;,then H3(L, z) isa complete
3-partite hypergraph.
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(2) Let a? < z for every 3-zero-divisor a € L with respect to z and H;(L, z) be a complete 3-
partite hypergraph over the reduced lattice L. Then there exist prime elements p;, p, and p; of L
such that p; Ap, Aps < z.

Proof. (1). Let e = {a, b, c} be a hyperedge of H3(L,z). Then abc < z = p; A p, A p3, that is,
abc < py,p,,p3. Since p; is a prime element for any i € {1,2,3}, thena <p;orb <p, orc <
pranda<p,orb <p,orc <p,anda < p;orb < p; or c < p3. Additionally, ab £ p; and
bc £ pjand ac < py, for some i, j, k € {1,2,3} since ab, bc, ac £ z = p; A p, A ps. Wlog., we
assume ab <« p,. Then a % p; and b £ p;. Thus, we have ¢ < p;. Indeed, if ac £ p;,thenb <
p4, @ contradiction. In a similar manner, suppose that ac <« p,. Then a % p, and ¢ < p,. Thus,
this yields b < p,. Indeed, if bc < p4, then a < p4, a contradiction and if bc £ p,, then a < p,,
a contradiction. Thus, it must be bc £ p5. Then, we get a < p;. We assume thata < p; and a <
pP1, P2, b <p,and b £ py,p3 and ¢ < p; and ¢ £ p,, p3. Consequently, H;(L, z) is a complete
3-partite hypergraph with parts V; for any i € {1,2,3} whose vertices must be only less than or
equal to p;.

(2). Let H5(L, z) be a complete 3-partite hypergraph and it has parts V;,V, and V5. Setp; =V, v
z,p, =V,Vzandp; = V3V z. Thenx;x,x3 < zforevery x; < p; forany i € {1,2,3}. Itisclear
that (Vx,ev, %1)(Va,ev, X2) (Vieser, X3) V z < 2, that is, pyp,ps < z since L is a multiplicative
lattice. As L is reduced, then p; A p, A p; < z. We assume that p, is not a prime element of L,
that is, ab < p; and a, b % p, for some a,b € L. Since ab < p, =V, vzthenab <zorab €
;. We have three cases for this assumption.

Case 1. Let ab € V; and ab < z. This contradicts the definition of vertex set of H3 (L, z).

Case 2. Let ab € V; and ab £ z. Since ab € V; and a € V;, then a € V, or a € V5. Wlog.,
assume that a € V,. So, {ab, a,c} must be a hyperedge of H3(L,z) for any ¢ € V5. However,
since a? < z for every 3-zero-divisor a € L, then a®b < z, contradiction.

Case 3. Let ab € V; and ab < z. By Proposition 2, a and b must be in the same V; for any i =
{2,3}. Wlog., leta,b € V,. Then, xay <z, xa £ z,xy ¥ z,ay £ zand xby < z,xb £ z,xy £
z,by < z for some x € V; and y € V3. By Proposition 2, we obtain that xa € V3, xb € V3, ay €
Vi, by € V,. Therefore, {ay, b, xa} must be a hyperedge, since H3(L, z) is a complete 3-partite
hypergraph. However, a?yx < z for a? < z, contradiction. We have a contradiction for each
cases. Therefore, a or b must be less than or equal to p,. Similarly, it can be seen that p, and p5
are prime elements in L.

2.2. Cut Points and Bridge of H3(L, z)

Definition 3. [6] A vertex a of a connected graph G is called a cut-point of G if there are vertices
x and y of G with a # x and a # y such that a is in every path which is from x to y.

Theorem 3. Letze Land S ={u € Llu < zand u % a}. If S # @, then a is not a cut-point in
H;(L,z).
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Proof. Let a be in every path which is from x to y with a # x and a # y. We know thatd(x, y) =
2,3 or 4 by Theorem 1. Consider a vV u. Note that it is a vertex in H3(L, z) which is different
from a. We consider the following cases:

Case 1. Let d(x,y) = 2. Then there are two hyperedges e; = {x,a,c,} and e, = {a,y,c,} for
some vertices cy, ¢, in H3(L, z) such that x—, a—,,y is a path. Consider e’y = {x,a V u,c;} and

e, ={avuy,c,}.

Letavu#x,avu=#yandaVu=c forie{1,2}. Itiseasily seen that e’; and €', are two
hyperedges such that x—,, a V u—,,,y is a path.

i.Ifavu=xoravu=y,thenx and y are adjacent.
ii.Consider a Vu = ¢, or aVu = ¢,. Wlog., assume that a Vu = ¢;. Then e"; = {x,a V u, a}
and e, = {a vV u,y, c,} are two hyperedges such that x—,,, a vV u—,,,y is a path.

Thus a is not a cut point.

Case 2. Let d(x,y) = 3. Then there are three hyperedges e; = {x,a,c;} and e, = {a, b, c,} and
e3 = {b,y, c3} for some vertices b, cy, ¢;, c3 in H3(L, z) such that x—, a—, b—,,y is a path. If
a V u is different from each of x, b and ¢; for i € {1,2,3}, then there is a path from x to y which
does not contain a. Now, we consider other situations.

i. Let aVvu =x. Then consider e', = {aVu,b,c,} and e;. Note that there is a path a v
U—¢/,b—¢,y. Thus a is not a cut point.

ii. Let avu=b. Consider e’y = {x,aVu,c;} and e;. Clearly, there is a path x—,, aV
u—,,y. Hence a is not a cut point.

iii. Let a vV u = y. Consider e’y = {x,a V u,c,}. Thus x and y are adjacent. Hence a is not a
cut point.

iv.aVu=c; fori€ {1,2}. It can be seen in a similar way in Case 1 (ii).

v. Let aVu = c3. Consider e'; = {b,y,aVu}and e’y = {x,aV u,c,}. Then there is a path
such that x—,, a—.,.y.

Case 3. Let d(x,y) = 4. Then there are four hyperedges e; = {x,a,c;} and e, = {a, b, c,},
es =1{b,c,c3} and e, = {c,y,c,} for some vertices b,c,cy,c,, c3,¢c4 INH3(L,z) such that
X—¢,0—¢,b—¢,y—¢,c is a path. If avu is different from each of x,b,c,y and ¢; for i €
{1,2,3,4}, then there is a path from x to y which does not contain a. Now, we consider other
situations.

i. LetaVvwu=x.Now, consider e, ={aVu,b,c,}. Then note that e’, is a hyperedge and
there isapath a vV u—,,b—..c—,,y.

ii. Letavu=bConsidere’; = {x,aVu,ctande's = {aVu,c,cs}. Thennotethate’; and
e’ are two hyperedges and there is a path Xx—,, a V u—,,c—,y.

iii. LetaVvu=c.Considere’; ={x,avVu,c}ande’, ={aVvu,y,c,}. Then note thate’, is
a hyperedge and there is a path X—, a V u—,,,y.

iv. LetaVu =y.Considere'y = {x,aVu,cq}. Note that e'; is a hyperedge and x and y are
adjacent.

iv. Letavu=c;forie{1,2}.Itcan be seeninasimilar way in Case 1 (ii).
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V. Leta Vv u =c; fori € {3,4}. It can be seen in a similar way in Case 2 (v).

We obtain the following result by the previous theorem.

Corollary 1. Let a be a vertex in H3(L,z) and z < a. Then a is not a cut-point of H;(L, z).
Proposition 3. If H5(L, z) is connected, then H;(L, z) has not any bridge.

Proof. Let e = {a, b, c} be a bridge of H;(L, z). Then H;(L, z) is disconnected if e is omitted in
hypergraph. Take anelementy with0, # y £ z. ThenaVvy,bVy,cVy % z. Alsoeach of e; =
{favy,b,c}, e;={a,bVvy,c} and e3 ={a,b,cVy} is a hyperedge. Thus, there is a cycle
a—¢,b—, c—,,a. Indeed if e is omitted in hypergraph, H3(L, z) is connected. Thus, H3(L, z) has
not any bridge.
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