

e-ISSN: 2587-246X ISSN: 2587-2680

Cumhuriyet Sci. J., Vol.40-4 (2019) 792-801

3-Zero-Divisor Hypergraph with Respect to an Element in Multiplicative Lattice

Gülşen ULUCAK¹

¹ Department of Mathematics, Gebze Technical University, P.K 41400, Gebze-Kocaeli, TURKEY

Received: 19.11.2018; Accepted: 23.10.2019

http://dx.doi.org/10.17776/csj.485085

Abstract. Let *L* be a multiplicative lattice and *z* be a proper element of *L*. We introduce the 3-zero-divisor hypergraph of *L* with respect to *z* which is a hypergraph whose vertices are elements of the set $\{x_1 \in L - \{z\} | \begin{array}{c} x_1 x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, \ x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \\ for some x_2, x_3 \in L - \{z\} \end{array} \}$ where distinct vertices x_1, x_2 and $x_1 x_3 \leq z$ adjacent, that is, $\{x_1, x_2, x_3\}$ is a hyperedge if and only if $x_1 x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z$. Throughout this paper, the hypergraph is denoted by $H_3(L, z)$. We investigate many properties of the hypergraph over a multiplicative lattice. Moreover, we find a lower bound of diameter of $H_3(L, z)$ and obtain that $H_3(L, z)$ is connected.

Keywords: 3-Zero-Divisor Hypergraph, Complete n-partite Hypergraph.

Çarpımsal Kafeslerde Bir Eleman ile İlgili 3-lü Sıfır Bölen Hipergrafı

Özet. *L* bir çarpımsal kafes ve *z*, *L* nin bir has elemanı olsun. *z* ile ilgili *L* nin 3-lü sıfır bölen hipergrafını tanıttık öyle ki bu hipergrafın köşeleri $\left\{x_1 \in L - \{z\} \middle| \begin{array}{c} x_1 x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, \ x_2 x_3 \leq z \ ve \ x_1 x_3 \leq z \\ herhangi \ x_2, x_3 \in L - \{z\} \ icin \end{array} \right\}$ kümesinin elemanlarıdır ki burada x_1, x_2 ve x_3 komşudur, yani, $\{x_1, x_2, x_3\}$ bu hipergafın bir hiperkenarıdır ancak ve ancak $x_1 x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \Rightarrow x_1 x_2 = x_1 x_2$

Anahtar Kelimeler: 3-lü Sıfır Bölen Hipergraf, n-parçalı Tam Hipergraf.

1. INTRODUCTION

A complete lattice *L* is called multiplicative lattice if there exists a commutative, associative, completely join distributive product on the lattice with the compact greatest element 1_L , which is the multiplicative identity, and the least element 0_L . It can be easily seen that $L/a = \{b \in L | a \le b\}$ is a multiplicative lattice with the product $x \circ y = xy \lor a$ where *L* is multiplicative lattice and $a \in L$. Note that $0_{L/z} = z$. D.D. Anderson and the current authors have studied on multiplicative lattices in a series of articles [1-4]. An element $a \in L$ is said to be proper if $a < 1_L$. A proper element $p \in L$ is called a prime element if $ab \le p$ implies $a \le p$ or $b \le p$, where $a, b \in L$. Then *p* is called 2-absorbing element of *L* if $x_1x_2x_3 \le p$ for some x_1, x_2 and x_3 in L, then $x_1x_2 \le p$ or $x_1x_3 \le p$ or $x_2x_3 \le p$.

Let a finite set V be a vertex set and $E(V) = \{(u, v) | u, v \in V, u \neq v\}$. A pairwise G = (V, E) is called a graph on V where $E \subseteq E(V)$. The elements of V are the vertices of G, and those of E the

^{*} Corresponding author. Email address: gulsenulucak@gtu.edu.tr

http://dergipark.gov.tr/csj ©2016 Faculty of Science, Sivas Cumhuriyet University

edges of G. Consider that the edges (x, y) and (y, x) denote the same edge (For more information, see [3-8].

A hypergraph *H* is a pair (*V*, *E*) of disjoint sets, where the elements of *E* are nonempty subsets of *V*. The elements of *V* are called the vertices of *H* and the elements of *E* are called the hyperedges of *H*. If the size of any hyperedge *e* in the hypergraph *H* is *n*, then *H* is called *n*-uniform hypergraph. Let *H* be an *n*-uniform hypergraph. An alternating sequence of distinct vertices and hyperedges is called a path with the form $v_1, e_1, v_2, e_2, ..., v_m$ such that v_i, v_{i+1} are in e_i for all $1 \le i \le m - 1$. The length of a path is the number of hyperedges of it. The distance d(x, y) between two vertices *x* and *y* of *H* is the length of the shortest path from *x* to *y*. If no such path between *x* and *y* exists, then $d(x, y) = \infty$. The diameter diam(H) of *H* is the greatest distance between any two vertices. The hypergraph *H* is said to be connected if $diam(H) < \infty$. A cycle in a hypergraph *H* is an alternating sequence of distinct vertices and hyperedges of the form $v_1, e_1, v_2, e_2, ..., v_m, e_m, v_1$ such that $v_i, v_{i+1} \in e_i$ and $v_m, v_1 \in e_m$ for all $1 \le i \le m$. The girth gr(H) of a hypergraph *H* containing a cycle is the smallest size of the length of cycles of *H*. (For more information, see [5]). A hypergraph *H* is called trivial if it has a single vertex and also it is called empty if it has no hyperedges.

The concept of a zero-divisor graph of a commutative ring was first introduced in [6]. Let *R* be a commutative ring and $k \ge 2$ be an integer. A nonzero nonunit element x_1 in *R* is said to be a *k*-zero-divisor in *R* if there are k - 1 distinct nonunit elements $x_2, x_3, ..., x_k$ in *R* different from x_1 such that $x_1x_2x_3...x_k = 0$ and the product of no elements of any proper subset of $A = \{x_1, x_2, x_3, ..., x_k\}$ is zero. The set of *k*-zero divisor elements of *R* is denoted by $Z_k(R)$. Let *I* be a proper ideal of *R*. The 3-zero-divisor hypergraph of *R* with respect to *I*, denoted by $H_3(R, I)$, is the hypergraph whose vertices are the set $\{x_1 \in R \setminus I | x_1x_2x_3 \in I \text{ for some } x_2, x_3 \in R \setminus I \text{ such that } x_1x_2 \notin I, x_2x_3 \notin I \text{ and } x_1x_3 \notin I\}$ where distinct vertices x_1, x_2 and x_3 are adjacent if and only if $x_1x_2x_3 \in I, x_1x_2 \notin I, x_2x_3 \notin I \text{ and } x_1x_3 \notin I$ for some x_1, x_2 and x_3 in *R*, then $x_1x_2 \in I$ or $x_2x_3 \in I$ or $x_1x_3 \in I$ (For more information, see [10]). Hence $H_3(R, I)$ is not empty if and only if *I* is not a 2-absorbing ideal of *R* (see Proposition 1 in [9]).

Let z be a proper element of L. A proper element a_1 of L is called *n*-zero divisor element with respect to z in L if there are n - 1 distinct elements $a_2, a_3, ..., a_n$ in L different from a_1 such that $a_2a_3 ... a_n \le z$ and the product of no elements of any proper subset of $A = \{a_1, a_2, ..., a_n\}$ is less than or equals to z. The set of all *n*-zero divisor element with respect to z in L is denoted by $Z_n(L, z)$. For example, consider the lattice of ideals of \mathbb{Z} , $L = I(\mathbb{Z})$ the set of all ideals of \mathbb{Z} . The ideal (2) is a 3-zero-divisor with respect to (8) in L since (2)(3)(6) \subseteq (8), and the product of no elements of any proper subset of $\{(2), (3), (6)\}$ is contained by (8).

Throughout this paper, we assume that a lattice *L* is a multiplicative lattice. Let *z* be a proper element of *L*. The 3-zero-divisor hyper-graph of *L* with respect to *z*, denoted by $H_3(L, z)$, is a hypergraph whose vertices are elements of the set $\left\{x_1 \in L - \{z\} \middle| \begin{array}{c} x_1 x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \\ for \text{ some } x_2, x_3 \in L - \{z\} \end{array} \right\}$ such that distinct vertices x_1, x_2 and x_3 are adjacent, that is, $\{x_1, x_2, x_3\}$ is a hyperedge if and only if $x_1 x_2 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \Rightarrow x_1 x_2 \leq z, x_2 x_3 \leq z \text{ and } x_1 x_3 \leq z \text{ and }$ hypergraph if and only if $H_3(L, z)$ is empty hypergraph. Then we give that $H_3(L, z)$ is connected and $diam(H_3(L, z)) \le 4$. Additionally, we show that $H_3(L, z)$ is a complete 3-partite hypergraph if p_1, p_2 and p_3 are prime elements of L and $z = p_1 \land p_2 \land p_3 \neq 0_L$ and the converse is true if L is reduced lattice. Finally, we see that $H_3(L, z)$ has no cut-point.

2. ZERO DIVISOR HYPERGRAPH H_3 (L,z) WITH RESPECT TO z

Definition 1. Let z be a proper element of L. The 3-zero-divisor hypergraph of L with respect to z is a hypergraph whose vertices are elements of the set $\begin{cases} x_1 \in L - \{z\} \\ for some x_2, x_3 \in L - \{z\} \end{cases}$. Also, distinct vertices $x_1, x_2 \notin z$, and $x_1x_3 \notin z$. Throughout this paper, the hypergraph is denoted by $H_3(L, z)$.

Let $z = 0_L$. Then it is clear that $H_3(L) = H_3(L, 0_L)$ is the hypergraph whose vertices are elements of the set $\begin{cases} x_1 \in Z_3(L) \\ x_1 x_2 x_3 = 0_L \Rightarrow x_1 x_2 \neq 0_L, x_2 x_3 \neq 0_L \text{ and } x_1 x_3 \neq 0_L \\ for some x_2, x_3 \in Z_3(L) \end{cases}$ where distinct vertices x_1, x_2 and x_3 are adjacent if and only if $x_1 x_2 x_3 = 0_L \Rightarrow x_1 x_2 \neq 0_L, x_2 x_3 \neq 0_L \text{ and } x_1 x_3 \neq 0_L$.

The hypergraphs $H_3(R)$ in [5] and $H_3(R, I)$ in [10], which are defined on a commutative ring R and a proper ideal I of R, are examples for the hypergraph $H_3(L, z)$.

We obtain the following results with the above definition and the definition of 2-absorbing element in L.

Proposition 1. Let *z* be a proper element of *L*. Then the following statements hold:

H₃(L, z) is empty hypergraph if and only if z is a 2-absorbing element of L.
H₃(L/z) is empty hypergraph if and only if H₃(L, z) is empty hypergraph.

Proof. 1). (\Rightarrow): Let $H_3(L, z)$ be empty hypergraph. Suppose that *z* is not a 2-absorbing element of *L*. Take $x_1x_2x_3 \le z$ for some $x_1, x_2, x_3 \in L$. Then we get $x_1x_2 \nleq z$, $x_2x_3 \nleq z$ and $x_1x_3 \nleq z$. Hence $e = \{x_1, x_2, x_3\}$ is a hyperedge of $H_3(L, z)$, a contradiction.

 (\Leftarrow) : It is obvious.

2). (\Rightarrow): Assume that $H_3(L, z)$ is not an empty hypergraph. Then it has a hyperedge $e = \{x_1, x_2, x_3\}$. Consider $x_1 \lor z, x_2 \lor z, x_3 \lor z \in L/z$. It is clear that $x_1 \lor z, x_2 \lor z, x_3 \lor z$ are different from z. Then we have that $(x_1 \lor z)(x_2 \lor z)(x_3 \lor z) = 0_{L/z}$, $(x_1 \lor z)(x_2 \lor z) \neq 0_{L/z}$, $(x_2 \lor z)(x_3 \lor z) \neq 0_{L/z}$ and $(x_1 \lor z)(x_3 \lor z) \neq 0_{L/z}$. Thus $e' = \{x_1 \lor z, x_2 \lor z, x_3 \lor z\}$ is a hyperedge of $H_3(L/z)$, a contradiction.

(⇐): Let $H_3(L/z)$ be not an empty hypergraph. Then it has a hyperedge $e = \{y_1, y_2, y_3\}$ for some $y_1, y_2, y_3 \in V(H_3(L/z))$. Then $y_1 \circ y_2 \circ y_3 = 0_{L/z}$, that is, $y_1y_2y_3 \leq z$ and since $y_1 \circ y_2, y_2 \circ y_3$ and $y_1 \circ y_3$ are different from $0_{L/z}$, then $y_1y_2, y_2y_3, y_1y_3 \leq z$. Therefore, $e = \{y_1, y_2, y_3\}$ is a hyperedge of $H_3(L, z)$, a contradiction.

Theorem 1. Let $H_3(L, z)$ be a 3-zero-divisor hypergraph of L with respect to z. If $x^2 \leq z$ for each 3-zero-divisor $x \in L$ with respect to z, then $H_3(L, z)$ is connected and $diam(H_3(L, z)) \leq 4$. Furthermore, if $H_3(L, z)$ has a cycle, then $gr(H_3(L, z)) \leq 9$.

Proof. Let $e_1 = \{x_1, x_2, x_3\}$ and $e_2 = \{y_1, y_2, y_3\}$ be hyperedges of $H_3(L, z)$. If $e_1 \cap e_2 \neq \emptyset$, the proof is completed. Assume that $e_1 \cap e_2 = \emptyset$. We show that there are hyperedges e_3, e_4 such that they satisfy one of the followings:

(1)
$$e_3 \cap e_1 \neq \emptyset, e_3 \cap e_2 \neq \emptyset$$

(2) $e_3 \cap e_1 \neq \emptyset, e_4 \cap e_2 \neq \emptyset, e_4 \cap e_3 \neq \emptyset$

Assume that *G* is the partite graph such that $V(G) = e_1 \cup e_2$ and $x_i y_j \in E(G)$ if and only if $x_i y_j \leq z$.

Assume that *G* has two isolated vertices such that one is in e_1 and the other is in e_2 . Let $deg_G(x_3) = deg_G(y_3) = 0$. Suppose that there is $a \in \{x_1, x_2, y_1, y_2\}$ where $x_3y_3a \le z$. Then $e_3 = \{x_3, y_3, a\}$ is a hyperedge which holds the condition (1). Let the case not satisfy. If $x_3y_3 \notin \{x_1, x_2, y_1, y_2\}$, then $e_3 = \{x_1, x_2, x_3y_3\}$ and $e_4 = \{y_1, y_2, x_3y_3\}$ are two hyperedges which satisfy the condition (2). In the contrary case, without loss of generality (wlog.), suppose that $x_3y_3 = x_1$. Hence $e_3 = \{x_1, y_1, y_2\}$ is a hyperedge satisfying the condition (1). Consequently, $H_3(L, z)$ is connected. Now, we show that $diam(H_3(L, z)) \le 4$. We consider the number of edges *G* for the rest of the proof.

Case 1. Assume that $|E(G)| \le 2$. Then G has two isolated vertices such that one is in e_1 and the other is in e_2 .

Case 2. Let |E(G)| = 3. Take account of the next four different subcases for this case:

Case 2.1: Let $deg_G(a) = 1$ for each vertex a of G. Assume that $E(G) = \{x_1y_1, x_2y_2, x_3y_3\}$. We consider $\{x_1, x_2y_3, y_1 \lor y_2\}$. If $x_1 = x_2y_3$, then $x_1y_2 = x_2y_3y_2 \le z$, a contradiction. If $x_1 = y_1 \lor y_2$, then $y_1x_2x_3 \le z$. Thus $e_3 = \{y_1, x_2, x_3\}$ satisfies the condition (1). If $y_1 \lor y_2 = x_2y_3$, then $x_1y_2x_3 \le z$ and so the condition (1) is satisfied for $e_3 = \{x_1, y_2, x_3\}$. On the contrary, reconsider $e_3 = \{x_1, x_2y_3, y_1 \lor y_2\}$. If e_3 is not a hyperedge, then $x_1x_2y_3 \le z$ or $x_2y_3(y_1 \lor y_2) \le z$, that is, $x_2y_3y_1 \le z$. Then $e'_3 = \{x_1, x_2, y_3\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_2, y_3, x_1\}$ is a hyperedge satisfying the condition (1). Let $e_3 = \{x_1, x_2y_3, y_1 \lor y_2\}$ be a hyperedge. In a similar way, we consider $\{y_1, x_2y_3, x_1 \lor x_3\}$. If e_4 is not a hyperedge, then $y_1x_2y_3 \le z$ or $x_2y_3(x_1 \lor x_3) \le z$, that is, $x_2y_3x_1 \le z$. Then $e''_3 = \{y_1, x_2, y_3\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1 \lor x_3\}$. If e_4 is not a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1 \lor x_3\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1 \lor x_3\}$. If e_4 is not a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1 \lor x_3\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1 \lor x_3\}$. If e_4 is not a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1 \bowtie x_3\}$. If e_4 is not a hyperedge satisfying the condition (1) or $e''_4 = \{x_2, y_3, x_1\}$ is a hyperedge satisfying the condition (1). Assume that $e_4 = \{y_1, x_2y_3, x_1 \lor x_3\}$ is a hyperedge. Then we have two hyperedges $e_3 = \{x_1, x_2y_3, y_1 \lor y_2\}$ and $e_4 = \{y_1, x_2y_3, x_1 \lor x_3\}$ with e_3 and e_4 satisfying the condition (2).

Case 2.2. Let $deg_G(a) = 1$ for only an element a of G. Wlog., suppose that $E(G) = \{x_1y_1, x_1y_2, x_2y_3\}$. We consider $\{x_2, x_3y_1, x_1 \lor y_3\}$. If $x_2 = x_3y_1$, then $x_1x_2 \le z$, is a contradiction. If $x_2 = x_1 \lor y_3$, then $x_2y_2y_1 \le z$ and so the condition (1) is satisfied for $e_3 = \{x_2, y_2, y_1\}$. If $x_1 \lor y_3 = x_3y_1$, then $x_3y_1y_2y_1 \le z$. In the circumstances, if $x_3 = y_1y_2$, then $x_1x_3 \le z$, a contradiction. If $y_1 = y_1y_2$, then $y_1y_3 \le z$, a contradiction. Hence, the condition (1) holds for $e_3 = \{x_3, y_1y_2, y_1\}$. Let the above conditions not hold. If $e_3 = \{x_2, x_3y_1, x_1 \lor y_3\}$ is not a hyperedge, then $x_2x_3y_1 \le z$ or $x_3y_1(x_1 \lor y_3) \le z$, that is, $x_3y_1y_3 \le z$. Then $e'_3 = \{x_2, x_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_3, y_1, y_3\}$ is a hyperedge satisfying the condition (1). Suppose that $e_3 = \{x_3, y_1, y_3\}$ is a hyperedge satisfying the condition (1).

 $\{x_2, x_3y_1, x_1 \lor y_3\}$ is a hyperedge. Now, similarly we consider $\{y_2, x_3y_1, y_3\}$. If $e_4 = \{y_2, x_3y_1, y_3\}$ is not a hyperedge, then $y_2x_3y_1 \le z$ or $x_3y_1y_3 \le z$. Then $e''_3 = \{y_2, x_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_3, y_1, y_3\}$ is a hyperedge satisfying the condition (1). Let $\{y_2, x_3y_1, x_1 \lor y_3\}$ be a hyperedge. Then we obtain two hyperedges $e_3 = \{x_2, x_3y_1, x_1 \lor y_3\}$ and $e_4 = \{y_2, x_3y_1, y_3\}$ with e_3 and e_4 satisfying the condition.

Case 2.3. Let $deg_G(a) = deg_G(b) = 2$ for $a, b \in V(G)$. Wlog., suppose that $E(G) = \{x_1y_1, x_1y_2, x_2y_2\}$. Then $deg_G(x_3) = deg_G(y_3) = 0$ and so the proof is completed.

Case 2.4. Let $deg_G(a) = 3$ for only one element a of G. Wlog., suppose that $E(G) = \{x_1y_1, x_1y_2, x_1y_3\}$. Let $x_1^2x_2 \notin z$. Consider $\{x_1x_2 \lor y_1, x_1, x_3\}$. If $x_1x_2 \lor y_1 = x_1$, then $y_2y_1 \leq z$, a contradiction. If $x_1x_2 \lor y_1 = x_3$, then $x_3y_3y_2 \leq z$, a contradiction. Hence $e_3 = \{x_3, y_2, y_3\}$ is a hyperedge satisfying the condition (1). In the other case, $e_3 = \{x_1x_2 \lor y_1, x_1, x_3\}$ is a hyperedge. In a similar way, we consider $\{x_1x_2 \lor y_1, y_2, y_3\}$. Then we have a hyperedge e_3 which satisfies the condition (1) or $e_4 = \{x_1x_2 \lor y_1, y_2, y_3\}$ is a hyperedge with e_3 and e_4 satisfying the condition. (2). Let $x_1^2x_2 \leq z$. We consider $\{x_1 \lor y_1, x_1, x_2\}$. If $x_1 \lor y_1 = x_2$, then $x_2y_3y_2 \leq z$, a contradiction. Thus $e_3 = \{x_1 \lor y_1, x_1, x_2\}$ is a hyperedge. In a similar way, we consider $\{x_1 \lor y_1, x_1, x_2\}$. If $x_1 \lor y_1 = x_2$, then $x_2y_3y_2 \leq z$, a contradiction. The end end hyperedge e_3 which satisfies the condition (1) or $e_4 = \{x_1 \lor y_1, x_1, x_2\}$. If $x_1 \lor y_1 = x_2$, then $x_2y_3y_2 \leq z$, a contradiction. Thus $e_3 = \{x_1 \lor y_1, x_1, x_2\}$ is a hyperedge. In a similar way, we consider $\{x_1 \lor y_1, x_2, y_3\}$. Then we have a hyperedge e_3 which satisfies the condition (1) or $e_4 = \{x_1x_2 \lor y_1, y_2, y_3\}$. Then we have a hyperedge e_3 which satisfies the condition (2).

Case 3. Assume that |E(G)| = 4. Consider four different subcases for this case:

Case 3.1. Let $deg_G(a) = 3$ for only one element a of G. Wlog., suppose that $E(G) = \{x_1y_1, x_1y_2, x_1y_3, x_2y_3\}$. We consider $\{x_3y_1, x_2, x_1 \lor y_3\}$. If $x_3y_1 = x_2$, then $x_3y_3y_1 \le z$, a contradiction. Thus $e_3 = \{x_3, y_1, y_3\}$ is a hyperedge which holds (1). If $x_3y_1 = x_1 \lor y_3$, then $x_1^2 \le z$, is a contradiction. If $x_2 = x_1 \lor y_3$, then $y_3^2 \le z$, a contradiction. In the other condition, consider again $e_3 = \{x_3y_1, x_2, x_1 \lor y_3\}$. If $e_3 = \{x_3y_1, x_2, x_1 \lor y_3\}$ is not a hyperedge, then $x_2x_3y_1 \le z$ or $x_3y_1(x_1 \lor y_3) \le z$, that is, $x_3y_1y_3 \le z$. Then $e'_3 = \{x_2, x_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_3, y_1, y_3\}$ is a hyperedge satisfying the condition (1). Assume that $e_3 = \{x_3y_1, x_2, x_1 \lor y_3\}$ is not a hyperedge. In a similar way, we consider $\{x_3y_1, y_2, y_3\}$. If $e_4 = \{x_3y_1, y_2, y_3\}$ is not a hyperedge, then $x_3y_1y_2 \le z$ or $x_3y_1y_3 \le z$. Then $e''_3 = \{y_2, x_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_3y_1, y_2, y_3\}$ is a hyperedge. In a similar way, we consider $\{x_3y_1, y_2, y_3\}$. If $e_4 = \{x_3y_1, y_2, y_3\}$ is not a hyperedge, then $x_3y_1y_2 \le z$ or $x_3y_1y_3 \le z$. Then $e''_3 = \{y_2, x_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_3y_1, y_2, y_3\}$ is a hyperedge. Then we get two hyperedges $e_3 = \{x_3y_1, x_2, x_1 \lor y_3\}$. and $e_4 = \{x_3y_1, y_2, y_3\}$ with e_3 and e_4 satisfying the condition (2).

Case 3.2. Assume that the degree of four vertices of *G* equals to two. Wlog., presume that $E(G) = \{x_1y_1, x_1y_2, x_2y_1, x_2y_2\}$. Then $deg_G(x_3) = deg_G(y_3) = 0$ and so the proof is completed.

Case 3.3. Suppose that the degree of three vertices of G is two. Wlog. assume that $E(G) = \{x_1y_1, x_1y_2, x_2y_2, x_2y_3\}$. We consider $\{x_3y_3, x_1, x_2\}$. If $x_3y_3 = x_1$ or $x_3y_3 = x_2$, then $x_3y_3y_2 \le z$ and so (1) is satisfied for a hyperedge $e_3 = \{x_3, y_2, y_3\}$. In the other case, let us view $e_3 = \{x_3y_3, x_1, x_2\}$. If $e_3 = \{x_3y_3, x_1, x_2\}$ is not a hyperedge, then $x_3y_3x_1 \le z$ or $x_3y_3x_2 \le z$. Then $e'_3 = \{x_3, y_3, x_1\}$ is a hyperedge satisfying the condition (1) or $e'_4 = \{x_3, y_3, x_2\}$ is a hyperedge satisfying the condition (1). Let $e_3 = \{x_3y_3, x_1, x_2\}$ be a hyperedge. In a similar way, we consider $\{x_3y_3, y_1, y_2\}$. If $e_4 = \{x_3y_3, y_1, y_2\}$ is not a hyperedge, then $x_3y_3y_1 \le z$ or $x_3y_3y_2 \le z$. Then $e''_3 = \{x_3, y_3, y_1, y_2\}$. If a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y$

satisfying the condition (1). Let $e_4 = \{x_3y_3, y_1, y_2\}$ be a hyperedge. Then we get two hyperedges $e_3 = \{x_3y_3, x_1, x_2\}$ and $e_4 = \{x_3y_3, y_1, y_2\}$ with e_3 and e_4 satisfying the condition (2).

Case 3.4. Let $deg_G(a) = deg_G(b) = 2$ for $a, b \in V(G)$. Then, we have two different cases and we can choose one of these sets $E(G) = \{x_1y_1, x_1y_2, x_2y_2, x_3y_3\}$ and $E(G) = \{x_1y_1, x_1y_2, x_2y_3, x_3y_3\}$. In the first choice, we consider $\{x_3y_1, x_2, x_1 \lor y_2\}$. If $x_3y_1 = x_2$, then $x_3y_1y_2 \le z$ and so $e_3 = \{x_3, y_1, y_2\}$ is an edge satisfying (1). If $x_3y_1 = x_1 \lor y_2$, then $x_1^2 \le z$, a contradiction. If $x_2 = x_1 \lor y_2$, then $y_2^2 \le z$, is a contradiction. In the other case, consider $e_3 = \{x_3y_1, x_2, x_1 \lor y_2\}$. If $e_3 = \{x_3y_1, x_2, x_1 \lor y_2\}$ is not a hyperedge, then $x_3y_1x_2 \le z$ or $x_3y_1(x_1 \lor y_2) \le z$, that is, $x_3y_1y_2 \le z$. Then $e''_3 = \{x_3, y_1, y_2\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_1, y_3\}$ is a hyperedge satisfying the condition (1). Let $e_4 = \{x_3y_1, y_2, y_3\}$ be a hyperedge. Then we get two hyperedges $e_3 = \{x_3y_1, x_2, x_1 \lor y_2\}$ and $e_4 = \{x_3y_1, y_2, y_3\}$ with e_3 and e_4 satisfying the condition (2).

In a similar manner, we consider $\{x_1 \lor y_1, x_2, x_3\}$ and $\{x_1 \lor y_1, y_2, y_3\}$ for the second choice. Hence, we have a hyperedge e_3 which holds (1) or two hyperedges e_3 and e_4 which hold the condition (2).

Case 4. Assume that |E(G)| = 5. Consider four different subcases for this case:

Case 4.1. Wlog. assume that $E(G) = \{x_1y_1, x_1y_2, x_1y_3, x_2y_1, x_2y_2\}$. We consider $\{x_3y_3, x_2, x_1 \lor y_2\}$. If $x_3y_3 = x_2$, then $x_3y_3x_2 \le z$, and so the condition (1) is satisfied for a hyperedge $e_3 = \{x_2, x_3, y_3\}$. If $x_3y_3 = x_1 \lor y_2$, then $x_1^2 \le z$, a contradiction. If $x_2 = x_1 \lor y_2$, then $y_1y_2 \le z$, yielding a contradiction. On the other hand, $e_3 = \{x_3y_3, x_2, x_1 \lor y_2\}$ is a edge in *G*. In a similar way, we consider $\{x_3y_3, y_1, y_2\}$. If $e_4 = \{x_3y_3, y_1, y_2\}$ is not a hyperedge, then $x_3y_3y_1 \le z$ or $x_3y_3y_2 \le z$. Then $e''_3 = \{x_3, y_3, y_1\}$ is a hyperedge satisfying the condition (1) or $e''_4 = \{x_3, y_3, y_2\}$ is a hyperedge satisfying the condition (1). Let $e_4 = \{x_3y_3, y_1, y_2\}$ be a hyperedge. Then we get two hyperedges $e_3 = \{x_3y_3, x_2, x_1 \lor y_2\}$ and $e_4 = \{x_3y_3, y_1, y_2\}$ with e_3 and e_4 satisfying the condition (2).

Case 4.2. Wlog., presume that $E(G) = \{x_1y_1, x_1y_2, x_1y_3, x_2y_1, x_3y_2\}$. We consider $\{x_1 \lor y_1, x_2, y_2\}$. If $x_1 \lor y_1 = x_2$, then $y_1^2 \le z$, is a contradiction. If $x_1 \lor y_1 = y_2$, then $x_1^2 \le z$, is a contradiction. In the following situations, $e_3 = \{x_1 \lor y_1, x_2, x_3y_3\}$ is a hyperedge of G satisfying (1).

Case 4.3. Wlog., presume that $E(G) = \{x_1y_1, x_1y_2, x_1y_3, x_2y_1, x_3y_2\}$. We consider $\{x_1 \lor y_1, x_2, y_2\}$. If $x_1 \lor y_1 = x_2$ then $y_1^2 \le z$, is a contradiction. If $x_1 \lor y_1 = y_2$ then $x_2x_3y_2 \le z$. Thus $e_3 = \{x_2, x_3, y_2\}$ is a hyperedge satisfying (1). In the other case, $e_3 = \{x_1 \lor y_1, x_2, y_2\}$ is a hyperedge satisfying (1).

Case 4.4. Wlog., let $E(G) = \{x_1y_1, x_1y_2, x_2y_1, x_2y_2, x_3y_3\}$. We consider $\{x_3 \lor y_1, x_1, y_3\}$. If $x_3 \lor y_1 = x_1$ or $x_3 \lor y_1 = y_3$, then $x_1x_2y_3 \le z$. Then $e_3 = \{x_1, x_2, y_3\}$ is a hyperedge satisfying the condition (1). In the other case, $e_3 = \{x_3 \lor y_1, x_1, y_3\}$ is a hyperedge satisfying the condition (1).

Case 4.5. Wlog., presume that $E(G) = \{x_1y_1, x_1y_2, x_2y_2, x_2y_3, x_3y_3\}$. We consider $\{x_1 \lor y_2, x_2, y_1\}$. If $x_1 \lor y_2 = x_2$, then $y_2^2 \le z$, is a contradiction. If $x_1 \lor y_2 = y_1$, then $x_1^2 \le z$, is a contradiction. Then $e_3 = \{x_1 \lor y_2, x_2, y_1\}$ is a hyperedge satisfying the condition (1).

Case 5. Let |E(G)| = 6. Consider three different subcases for this case:

Case 5.1. Wlog., presume that $E(G) = \{x_1y_1, x_1y_2, x_1y_3, x_2y_1, x_2y_2, x_3y_1\}.$

We consider $\{x_1 \lor y_1, x_2, x_3\}$ and $\{x_1 \lor y_1, y_2, y_3\}$. If $x_1 \lor y_1 = x_2$, then $y_1y_2 \le z$, a contradiction. If $x_1 \lor y_1 = x_3$, then $y_1^2 \le z$, is a contradiction. If $x_1 \lor y_1 = y_2$ or $x_1 \lor y_1 = y_3$, then $x_1^2 \le z$, is a contradiction. Thus $e_3 = \{x_1 \lor y_1, x_2, x_3\}$ and $e_4 = \{x_1 \lor y_1, y_2, y_3\}$ are hyperedges satisfying the condition (2).

Case 5.2. Wlog., presume that $E(G) = \{x_1y_1, x_1y_2, x_1y_3, x_2y_1, x_2y_2, x_3y_3\}.$

We consider $\{x_1 \lor y_3, x_3, y_1\}$. If $x_1 \lor y_3 = x_3$, then $y_3^2 \le z$, is a contradiction. If $x_1 \lor y_3 = y_1$, then $x_1^2 \le z$, is a contradiction. Thus $e_3 = \{x_1 \lor y_3, x_3, y_1\}$ is a hyperedge satisfying the condition (1).

Case 5.3. Wlog., presume that $E(G) = \{x_1y_1, x_1y_3, x_2y_1, x_2y_2, x_3y_2, x_3y_3\}$. We consider $\{x_1 \lor y_3, x_3, y_1\}$. If $x_1 \lor y_3 = x_3$, then $y_3^2 \le z$, is a contradiction. If $x_1 \lor y_3 = y_1$, then $x_1^2 \le z$, is a contradiction. Thus $e_3 = \{x_1 \lor y_3, x_3, y_1\}$ is a hyperedge satisfying the condition (1).

Case 6. If $7 \le |E(G)| \le 9$, then we have two vertices which are degree three in e_1 and the other in e_2 . We suppose that $deg_G(x_1) = deg_G(y_1) = 3$. We consider $\{x_1 \lor y_1, x_2, x_3\}$ and $\{x_1 \lor y_1, y_2, y_3\}$. If $x_1 \lor y_1 = x_2$ or $x_1 \lor y_1 = x_3$, then $y_1^2 \le z$, is a contradiction. If $x_1 \lor y_1 = y_2$ or $x_1 \lor y_1 = y_3$, then $x_1^2 \le z$, is a contradiction. Hence $e_3 = \{x_1 \lor y_1, x_2, x_3\}$ and $e_4 = \{x_1 \lor y_1, y_2, y_3\}$ are hyperedges satisfying the condition (2).

By the fact that $gr(H_3(L, z)) \le 2diam(H_3(L, z)) + 1$, we have that $gr(H_3(L, z)) \le 9$.

2.1. Complete 3-Partite Hypergraph

Definition 2. [10] A hypergraph *H* is called an *n*-partite if the vertex set *V* can be partitioned into disjoint subsets $V_1, V_2, ..., V_n$ of *V* such that a hyperedge in the hyperedge set *E* composes of a choice of completely one vertex from each subset of *V*. Also, a hypergraph *H* is called a complete *n*-partite hypergraph if the vertex set *V* can be partitioned into disjoint subsets $V_1, V_2, ..., V_n$ of *V* and each element of V_i for each $1 \le i \le n$ creates a hyperedge of *H*.

Proposition 2. Let $H_3(L, z)$ be a complete 3-partite hypergraph.

If $xy \le z$, then x and y are contained by same subset V_i for some $i \in \{1,2,3\}$.

Proof. Let $H_3(L, z)$ has disjoint subsets V_1, V_2, V_3 which are partitions of the vertex set V. Let a be a vertex with $xya \le z$. Without loss of generality, assume that $x \in V_1$ and $a \in V_2$. Then $e = \{x, y, a\}$ is not a hyperedge in $H_3(L, z)$ by our assumption. If $y \in V_3$, then e is a hyperedge since $H_3(L, z)$ is a complete 3-partite hypergraph, a contradiction. If $y \in V_2$, then there is a vertex $b \in V_3$ such that $e' = \{x, y, b\}$. But this contradicts the fact that $xy \le z$. Therefore, y must be in V_1 .

Theorem 2. Let *z* be a proper element of *L*. Then the following statements hold:

(1) If p_1, p_2 and p_3 are prime elements of L and $z = p_1 \land p_2 \land p_3 \neq 0_L$, then $H_3(L, z)$ is a complete 3-partite hypergraph.

(2) Let $a^2 \le z$ for every 3-zero-divisor $a \in L$ with respect to z and $H_3(L, z)$ be a complete 3partite hypergraph over the reduced lattice L. Then there exist prime elements p_1, p_2 and p_3 of Lsuch that $p_1 \land p_2 \land p_3 \le z$.

Proof. (1). Let $e = \{a, b, c\}$ be a hyperedge of $H_3(L, z)$. Then $abc \le z = p_1 \land p_2 \land p_3$, that is, $abc \le p_1, p_2, p_3$. Since p_i is a prime element for any $i \in \{1,2,3\}$, then $a \le p_1$ or $b \le p_1$ or $c \le p_1$ and $a \le p_2$ or $b \le p_2$ or $c \le p_2$ and $a \le p_3$ or $b \le p_3$ or $c \le p_3$. Additionally, $ab \le p_i$ and $bc \le p_j$ and $ac \le p_k$ for some $i, j, k \in \{1,2,3\}$ since $ab, bc, ac \le z = p_1 \land p_2 \land p_3$. Wlog., we assume $ab \le p_1$. Then $a \le p_1$ and $b \le p_1$. Thus, we have $c \le p_1$. Indeed, if $ac \le p_1$, then $b \le p_1$, a contradiction. In a similar manner, suppose that $ac \le p_2$. Then $a \le p_2$ and $c \le p_2$. Thus, this yields $b \le p_2$. Indeed, if $bc \le p_1$, then $a \le p_1$, a contradiction. Thus, it must be $bc \le p_3$. Then, we get $a \le p_3$. We assume that $a \le p_3$ and $a \le p_2$, a = contradiction. Thus, it must be $bc \le p_1$ and $c \le p_2, p_3$. Consequently, $H_3(L, z)$ is a complete 3-partite hypergraph with parts V_i for any $i \in \{1,2,3\}$ whose vertices must be only less than or equal to p_i .

(2). Let $H_3(L, z)$ be a complete 3-partite hypergraph and it has parts V_1, V_2 and V_3 . Set $p_1 = V_1 \lor z$, $p_2 = V_2 \lor z$ and $p_3 = V_3 \lor z$. Then $x_1 x_2 x_3 \le z$ for every $x_i \le p_i$ for any $i \in \{1, 2, 3\}$. It is clear that $(\bigvee_{x_1 \in V_1} x_1)(\bigvee_{x_2 \in V_2} x_2)(\bigvee_{x_3 \in V_3} x_3) \lor z \le z$, that is, $p_1 p_2 p_3 \le z$ since *L* is a multiplicative lattice. As *L* is reduced, then $p_1 \land p_2 \land p_3 \le z$. We assume that p_1 is not a prime element of *L*, that is, $ab \le p_1$ and $a, b \le p_1$ for some $a, b \in L$. Since $ab \le p_1 = V_1 \lor z$ then $ab \le z$ or $ab \in V_1$. We have three cases for this assumption.

Case 1. Let $ab \in V_1$ and $ab \le z$. This contradicts the definition of vertex set of $H_3(L, z)$.

Case 2. Let $ab \in V_1$ and $ab \leq z$. Since $ab \in V_1$ and $a \notin V_1$, then $a \in V_2$ or $a \in V_3$. Wlog., assume that $a \in V_2$. So, $\{ab, a, c\}$ must be a hyperedge of $H_3(L, z)$ for any $c \in V_3$. However, since $a^2 \leq z$ for every 3-zero-divisor $a \in L$, then $a^2b \leq z$, contradiction.

Case 3. Let $ab \notin V_1$ and $ab \leq z$. By Proposition 2, *a* and *b* must be in the same V_i for any $i = \{2,3\}$. Wlog., let $a, b \in V_2$. Then, $xay \leq z$, $xa \notin z$, $xy \notin z$, $ay \notin z$ and $xby \leq z$, $xb \notin z$, $xy \notin z$, $by \notin z$ for some $x \in V_1$ and $y \in V_3$. By Proposition 2, we obtain that $xa \in V_3$, $xb \in V_3$, $ay \in V_1$, $by \in V_1$. Therefore, $\{ay, b, xa\}$ must be a hyperedge, since $H_3(L, z)$ is a complete 3-partite hypergraph. However, $a^2yx \leq z$ for $a^2 \leq z$, contradiction. We have a contradiction for each cases. Therefore, *a* or *b* must be less than or equal to p_1 . Similarly, it can be seen that p_2 and p_3 are prime elements in *L*.

2.2. Cut Points and Bridge of $H_3(L, z)$

Definition 3. [6] A vertex *a* of a connected graph *G* is called a cut-point of *G* if there are vertices *x* and *y* of *G* with $a \neq x$ and $a \neq y$ such that *a* is in every path which is from *x* to *y*.

Theorem 3. Let $z \in L$ and $S = \{u \in L | u \le z \text{ and } u \le a\}$. If $S \ne \emptyset$, then *a* is not a cut-point in $H_3(L, z)$.

Proof. Let *a* be in every path which is from *x* to *y* with $a \neq x$ and $a \neq y$. We know that d(x, y) = 2, 3 or 4 by Theorem 1. Consider $a \lor u$. Note that it is a vertex in $H_3(L, z)$ which is different from *a*. We consider the following cases:

Case 1. Let d(x, y) = 2. Then there are two hyperedges $e_1 = \{x, a, c_1\}$ and $e_2 = \{a, y, c_2\}$ for some vertices c_1, c_2 in $H_3(L, z)$ such that $x - e_1 a - e_2 y$ is a path. Consider $e'_1 = \{x, a \lor u, c_1\}$ and $e'_2 = \{a \lor u, y, c_2\}$.

Let $a \lor u \neq x$, $a \lor u \neq y$ and $a \lor u \neq c_i$ for $i \in \{1,2\}$. It is easily seen that e'_1 and e'_2 are two hyperedges such that $x_{-e'_1} a \lor u_{-e'_2} y$ is a path.

i.If $a \lor u = x$ or $a \lor u = y$, then x and y are adjacent.

ii.Consider $a \lor u = c_1$ or $a \lor u = c_2$. Wlog., assume that $a \lor u = c_1$. Then $e''_1 = \{x, a \lor u, a\}$ and $e'_2 = \{a \lor u, y, c_2\}$ are two hyperedges such that $x - e''_1 a \lor u - e'_2 y$ is a path.

Thus a is not a cut point.

Case 2. Let d(x, y) = 3. Then there are three hyperedges $e_1 = \{x, a, c_1\}$ and $e_2 = \{a, b, c_2\}$ and $e_3 = \{b, y, c_3\}$ for some vertices b, c_1, c_2, c_3 in $H_3(L, z)$ such that $x - e_1 a - e_2 b - e_3 y$ is a path. If $a \lor u$ is different from each of x, b and c_i for $i \in \{1, 2, 3\}$, then there is a path from x to y which does not contain a. Now, we consider other situations.

- i. Let $a \lor u = x$. Then consider $e'_2 = \{a \lor u, b, c_2\}$ and e_3 . Note that there is a path $a \lor u e_{l_2}b e_3y$. Thus a is not a cut point.
- ii. Let $a \lor u = b$. Consider $e'_1 = \{x, a \lor u, c_1\}$ and e_3 . Clearly, there is a path $x e'_1 a \lor u e_2 y$. Hence a is not a cut point.
- iii. Let $a \lor u = y$. Consider $e'_1 = \{x, a \lor u, c_1\}$. Thus x and y are adjacent. Hence a is not a cut point.
- iv. $a \lor u = c_i$ for $i \in \{1,2\}$. It can be seen in a similar way in Case 1 (ii).
- v. Let $a \lor u = c_3$. Consider $e'_3 = \{b, y, a \lor u\}$ and $e'_1 = \{x, a \lor u, c_1\}$. Then there is a path such that $x e_{i_1}a e_{i_3}y$.

Case 3. Let d(x, y) = 4. Then there are four hyperedges $e_1 = \{x, a, c_1\}$ and $e_2 = \{a, b, c_2\}$, $e_3 = \{b, c, c_3\}$ and $e_4 = \{c, y, c_4\}$ for some vertices b, c, c_1, c_2, c_3, c_4 in $H_3(L, z)$ such that $x - e_1 a - e_2 b - e_3 y - e_4 c$ is a path. If $a \lor u$ is different from each of x, b, c, y and c_i for $i \in \{1, 2, 3, 4\}$, then there is a path from x to y which does not contain a. Now, we consider other situations.

- i. Let $a \lor u = x$. Now, consider $e'_2 = \{a \lor u, b, c_2\}$. Then note that e'_2 is a hyperedge and there is a path $a \lor u_{-e'_2}b_{-e_3}c_{-e_4}y$.
- **ii.** Let $a \lor u = b$ Consider $e'_1 = \{x, a \lor u, c_1\}$ and $e'_3 = \{a \lor u, c, c_3\}$. Then note that e'_1 and e'_3 are two hyperedges and there is a path $x_{-e'_1}a \lor u_{-e'_3}c_{-e_4}y$.
- iii. Let $a \lor u = c$. Consider $e'_1 = \{x, a \lor u, c_1\}$ and $e'_4 = \{a \lor u, y, c_4\}$. Then note that e'_4 is a hyperedge and there is a path $x e'_1 a \lor u e'_4 y$.
- iv. Let $a \lor u = y$. Consider $e'_1 = \{x, a \lor u, c_1\}$. Note that e'_1 is a hyperedge and x and y are adjacent.
- iv. Let $a \lor u = c_i$ for $i \in \{1,2\}$. It can be seen in a similar way in Case 1 (ii).

v. Let $a \lor u = c_i$ for $i \in \{3,4\}$. It can be seen in a similar way in Case 2 (v).

We obtain the following result by the previous theorem.

Corollary 1. Let *a* be a vertex in $H_3(L, z)$ and $z \leq a$. Then *a* is not a cut-point of $H_3(L, z)$.

Proposition 3. If $H_3(L, z)$ is connected, then $H_3(L, z)$ has not any bridge.

Proof. Let $e = \{a, b, c\}$ be a bridge of $H_3(L, z)$. Then $H_3(L, z)$ is disconnected if e is omitted in hypergraph. Take an element y with $0_L \neq y \leq z$. Then $a \lor y, b \lor y, c \lor y \leq z$. Also each of $e_1 = \{a \lor y, b, c\}, e_2 = \{a, b \lor y, c\}$ and $e_3 = \{a, b, c \lor y\}$ is a hyperedge. Thus, there is a cycle $a - e_3 b - e_1 c - e_2 a$. Indeed if e is omitted in hypergraph, $H_3(L, z)$ is connected. Thus, $H_3(L, z)$ has not any bridge.

REFERENCES

- Jayaram C. and Johnson E.W., Some Results on Almost Principal Element Lattices, Period. Math. Hungar, 31 (1995) 33-42.
- [2] Anderson D.D., Abstract Commutative Ideal Theory without Chain Condition, Algebra Universalis, 6 (1976) 131-145.
- [3] Anderson D.F. and Livingston P.S., The Zero Divisor of a Commutative Ring, J. of Algebra, (1999) 434-447.
- [4] Dilworth R.P., Abstract Commutative Ideal Theory, Pacific Journal of Mathematics 12 (1962) 481-498.
- [5] Eslahchi Ch. and Rahimi A.M., The k-Zero-Divisor Hypergraph of a Commutative Ring, Int. J. Math. Math. Sci. Art. 50875 (2007) 15.
- [6] Beck I., Coloring of Commutative Rings, J. of Algebra, (1988) 208-226.
- [7] Selvakumar K. and Ramanathana V., Classification of non-Local Rings with Genus One 3zero-divisor Hypergraphs, Comm. Algebra, (2016) 275-284.
- [8] Akbari S. and Mohammadian A., On the Zero-Divisor Graph of a Commutative Ring, J. Algebra, (2004) 847-855.
- [9] Elele A.B. and Ulucak G., 3-Zero-Divisor Hypergraph Regarding an Ideal, 7 th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 2017.
- [10] Badawi A., On 2-absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc.,75 (2007) 417-429.