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Abstract. Let 𝐿 be a multiplicative lattice and 𝑧 be a proper element of 𝐿. We introduce the 3-zero-divisor 

hypergraph of 𝐿 with respect to 𝑧 which is a hypergraph whose vertices are elements of the set 

{𝑥1 ∈ 𝐿 − {𝑧}|
𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 𝑎𝑛𝑑 𝑥1𝑥3 ≰ 𝑧 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥2, 𝑥3 ∈ 𝐿 − {𝑧}
} where distinct vertices 𝑥1, 𝑥2 and 𝑥3 are 

adjacent, that is, {𝑥1, 𝑥2, 𝑥3} is a hyperedge if and only if 𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 𝑎𝑛𝑑 𝑥1𝑥3 ≰ 𝑧. 

Throughout this paper, the hypergraph is denoted by 𝐻3(𝐿, 𝑧). We investigate many properties of the hypergraph 

over a multiplicative lattice. Moreover, we find a lower bound of diameter of 𝐻3(𝐿, 𝑧) and obtain that 𝐻3(𝐿, 𝑧) 

is connected. 

Keywords: 3-Zero-Divisor Hypergraph, Complete n-partite Hypergraph. 

Çarpımsal Kafeslerde Bir Eleman ile İlgili 3-lü Sıfır Bölen Hipergrafı 

Özet. 𝐿 bir çarpımsal kafes ve 𝑧, 𝐿 nin bir has elemanı olsun. 𝑧 ile ilgili 𝐿 nin 3-lü sıfır bölen hipergrafını tanıttık 

öyle ki bu hipergrafın köşeleri{𝑥1 ∈ 𝐿 − {𝑧}|
𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 𝑣𝑒 𝑥1𝑥3 ≰ 𝑧 

ℎ𝑒𝑟ℎ𝑎𝑛𝑔𝑖 𝑥2, 𝑥3 ∈ 𝐿 − {𝑧} 𝑖ç𝑖𝑛
} kümesinin 

elemanlarıdır ki burada 𝑥1, 𝑥2 ve 𝑥3 komşudur, yani, {𝑥1, 𝑥2, 𝑥3} bu hipergarfın bir hiperkenarıdır ancak ve 

ancak 𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 𝑣𝑒 𝑥1𝑥3 ≰ 𝑧. Bu çalışma boyunca, bu hipergrafı 𝐻3(𝐿, 𝑧) ile 

göstereceğiz. Çarpımsal bir kafes üzerinde bu hipergrafın birçok özelliğini araştırdık. Ayrıca, 𝐻3(𝐿, 𝑧) nin 

diametresinin bir alt sınırını bulduk ve bu hipergrafın bağlantılı olduğunu gösterdik. 

Anahtar Kelimeler: 3-lü Sıfır Bölen Hipergraf, n-parçalı Tam Hipergraf. 

 

1. INTRODUCTION  

A complete lattice 𝐿 is called multiplicative lattice if there exists a commutative, associative, 

completely join distributive product on the lattice with the compact greatest element 1𝐿, which is 

the multiplicative identity, and the least element 0𝐿. It can be easily seen that 𝐿/𝑎 = {𝑏 ∈ 𝐿|𝑎 ≤

𝑏} is a multiplicative lattice with the product 𝑥 ∘ 𝑦 =  𝑥𝑦 ∨ 𝑎 where 𝐿 is multiplicative lattice and 

𝑎 ∈ 𝐿. Note that 0𝐿/𝑧 = 𝑧. D.D. Anderson and the current authors have studied on multiplicative 

lattices in a series of articles [1-4]. An element 𝑎 ∈ 𝐿 is said to be proper if 𝑎 < 1𝐿. A proper element 

𝑝 ∈ 𝐿 is called a prime element if 𝑎𝑏 ≤ 𝑝 implies 𝑎 ≤ 𝑝 or 𝑏 ≤ 𝑝, where 𝑎, 𝑏 ∈ 𝐿. Then 𝑝 is called 

2-absorbing element of 𝐿 if 𝑥1𝑥2𝑥3 ≤ 𝑝 for some 𝑥1, 𝑥2 and 𝑥3 in L, then 𝑥1𝑥2 ≤ 𝑝 or 𝑥1𝑥3 ≤ 𝑝 or 

𝑥2𝑥3 ≤ 𝑝. 

Let a finite set 𝑉 be a vertex set and 𝐸(𝑉) = {(𝑢, 𝑣)|𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣}. A pairwise 𝐺 = (𝑉, 𝐸) is 

called a graph on 𝑉 where 𝐸 ⊆ 𝐸(𝑉). The elements of 𝑉 are the vertices of 𝐺, and those of 𝐸 the 

https://orcid.org/0000-0001-6690-6671
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edges of 𝐺. Consider that the edges (𝑥, 𝑦) and (𝑦, 𝑥) denote the same edge (For more information, 

see [3-8]. 

A hypergraph 𝐻 is a pair (𝑉, 𝐸) of disjoint sets, where the elements of 𝐸 are nonempty subsets of 

𝑉. The elements of 𝑉 are called the vertices of 𝐻 and the elements of 𝐸 are called the hyperedges of 

𝐻. If the size of any hyperedge 𝑒 in the hypergraph 𝐻 is 𝑛, then 𝐻 is called 𝑛-uniform hypergraph. 

Let 𝐻 be an 𝑛-uniform hypergraph. An alternating sequence of distinct vertices and hyperedges is 

called a path with the form 𝑣1, 𝑒1, 𝑣2, 𝑒2, … , 𝑣𝑚 such that 𝑣𝑖 , 𝑣𝑖+1 are in 𝑒𝑖 for all 1 ≤ 𝑖 ≤ 𝑚 − 1. 

The length of a path is the number of hyperedges of it. The distance 𝑑(𝑥, 𝑦) between two vertices 𝑥 

and 𝑦 of 𝐻 is the length of the shortest path from 𝑥 to 𝑦. If no such path between 𝑥 and 𝑦 exists, then 

𝑑(𝑥, 𝑦) = ∞. The diameter 𝑑𝑖𝑎𝑚(𝐻) of 𝐻 is the greatest distance between any two vertices. The 

hypergraph 𝐻 is said to be connected if 𝑑𝑖𝑎𝑚(𝐻) < ∞. A cycle in a hypergraph 𝐻 is an alternating 

sequence of distinct vertices and hyperedges of the form 𝑣1, 𝑒1, 𝑣2, 𝑒2, … , 𝑣𝑚, 𝑒𝑚, 𝑣1 such that 

𝑣𝑖, 𝑣𝑖+1 ∈ 𝑒𝑖 and 𝑣𝑚, 𝑣1 ∈ 𝑒𝑚 for all 1 ≤  𝑖 ≤  𝑚. The girth 𝑔𝑟(𝐻) of a hypergraph 𝐻 containing a 

cycle is the smallest size of the length of cycles of 𝐻. (For more information, see [5]). A hypergraph 

𝐻 is called trivial if it has a single vertex and also it is called empty if it has no hyperedges. 

The concept of a zero-divisor graph of a commutative ring was first introduced in [6]. Let 𝑅 be a 

commutative ring and 𝑘 ≥ 2 be an integer. A nonzero nonunit element 𝑥1 in 𝑅 is said to be a 𝑘-zero-

divisor in 𝑅 if there are 𝑘 − 1 distinct nonunit elements 𝑥2, 𝑥3, … , 𝑥𝑘 in 𝑅 different from 𝑥1 such 

that 𝑥1𝑥2𝑥3 … 𝑥𝑘 = 0 and the product of no elements of any proper subset of 𝐴 = {𝑥1, 𝑥2,𝑥3, … , 𝑥𝑘} 

is zero. The set of 𝑘-zero divisor elements of 𝑅 is denoted by 𝑍𝑘(𝑅). Let 𝐼 be a proper ideal of 𝑅. 

The 3-zero-divisor hypergraph of 𝑅 with respect to 𝐼, denoted by 𝐻3(𝑅, 𝐼), is the hypergraph whose 

vertices are the set {𝑥1 ∈ 𝑅\𝐼|𝑥1𝑥2𝑥3 ∈ 𝐼 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥2, 𝑥3 ∈ 𝑅\𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥1𝑥2 ∉ 𝐼, 𝑥2𝑥3 ∉

𝐼 𝑎𝑛𝑑 𝑥1𝑥3 ∉ 𝐼} where distinct vertices 𝑥1, 𝑥2 and 𝑥3 are adjacent if and only if 𝑥1𝑥2𝑥3 ∈ 𝐼, 𝑥1𝑥2 ∉

𝐼, 𝑥2𝑥3 ∉ 𝐼 𝑎𝑛𝑑 𝑥1𝑥3 ∉ 𝐼 (See [9]). Let 𝐼 be a proper ideal of 𝑅. Recall that 𝐼 is called a 2-absorbing 

ideal of 𝑅 if 𝑥1𝑥2𝑥3 ∈ 𝐼 for some 𝑥1, 𝑥2 and 𝑥3 in 𝑅, then 𝑥1𝑥2 ∈ 𝐼 or 𝑥2𝑥3 ∈ 𝐼 or 𝑥1𝑥3 ∈ 𝐼 (For 

more information, see [10]). Hence 𝐻3(𝑅, 𝐼) is not empty if and only if 𝐼 is not a 2-absorbing ideal 

of 𝑅 (see Proposition 1 in [9]). 

Let 𝑧 be a proper element of 𝐿. A proper element 𝑎1 of 𝐿 is called 𝑛-zero divisor element with respect 

to 𝑧 in 𝐿 if there are 𝑛 − 1 distinct elements 𝑎2, 𝑎3, … , 𝑎𝑛  in 𝐿 different from 𝑎1 such that 

𝑎2𝑎3 … 𝑎𝑛 ≤ 𝑧 and the product of no elements of any proper subset of 𝐴 = {𝑎1, 𝑎2,, … , 𝑎𝑛} is less 

than or equals to 𝑧. The set of all 𝑛-zero divisor element with respect to 𝑧 in 𝐿 is denoted by 𝑍𝑛(𝐿, 𝑧). 

For example, consider the lattice of ideals of ℤ, 𝐿 = Ι(ℤ) the set of all ideals of ℤ. The ideal (2) is 

a 3-zero-divisor with respect to (8) in 𝐿 since (2)(3)(6) ⊆ (8), and the product of no elements of 

any proper subset of {(2), (3), (6)} is contained by (8). 

Throughout this paper, we assume that a lattice 𝐿 is a multiplicative lattice. Let 𝑧 be a proper element 

of 𝐿. The 3-zero-divisor hyper-graph of 𝐿 with respect to 𝑧, denoted by 𝐻3(𝐿, 𝑧), is a hypergraph 

whose vertices are elements of the set 

{𝑥1 ∈ 𝐿 − {𝑧}|
𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 𝑎𝑛𝑑 𝑥1𝑥3 ≰ 𝑧 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥2, 𝑥3 ∈ 𝐿 − {𝑧}
} such that distinct vertices 𝑥1, 𝑥2 

and 𝑥3 are adjacent, that is, {𝑥1, 𝑥2, 𝑥3} is a hyperedge if and only if 𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧,

𝑥2𝑥3 ≰ 𝑧 𝑎𝑛𝑑 𝑥1𝑥3 ≰ 𝑧. It can be seen that 𝐻3(𝐿, 𝑧) is a 3-uniform hypergraph. In this paper, we 

show that 𝐻3(𝐿, 𝑧) is empty if and only if 𝑧 is a 2-absorbing element of 𝐿 and also, 𝐻3(𝐿/𝑧) is empty 
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hypergraph if and only if 𝐻3(𝐿, 𝑧) is empty hypergraph. Then we give that 𝐻3(𝐿, 𝑧) is connected 

and 𝑑𝑖𝑎𝑚(𝐻3(𝐿, 𝑧)) ≤ 4. Additionally, we show that 𝐻3(𝐿, 𝑧) is a complete 3-partite hypergraph if 

𝑝1, 𝑝2 and 𝑝3 are prime elements of 𝐿 and 𝑧 =  𝑝1 ∧ 𝑝2 ∧ 𝑝3 ≠  0𝐿 and the converse is true if 𝐿 is 

reduced lattice. Finally, we see that 𝐻3(𝐿, 𝑧) has no cut-point. 

2. ZERO DIVISOR HYPERGRAPH H_3 (L,z) WITH RESPECT TO z  

Definition 1. Let 𝑧 be a proper element of 𝐿. The 3-zero-divisor hypergraph of 𝐿 with respect to 𝑧 

is a hypergraph whose vertices are elements of the set 

{𝑥1 ∈ 𝐿 − {𝑧}|
𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 𝑎𝑛𝑑 𝑥1𝑥3 ≰ 𝑧 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥2, 𝑥3 ∈ 𝐿 − {𝑧}
}. Also, distinct vertices 𝑥1, 𝑥2 and 

𝑥3 are adjacent, that is, {𝑥1, 𝑥2, 𝑥3} is a hyperedge if and only if 𝑥1𝑥2𝑥3 ≤ 𝑧 ⇒ 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰

𝑧 𝑎𝑛𝑑 𝑥1𝑥3 ≰ 𝑧. Throughout this paper, the hypergraph is denoted by 𝐻3(𝐿, 𝑧). 

Let 𝑧 = 0𝐿. Then it is clear that 𝐻3(𝐿) = 𝐻3(𝐿, 0𝐿) is the hypergraph whose vertices are elements 

of the set{𝑥1 ∈ 𝑍3(𝐿)|
𝑥1𝑥2𝑥3 = 0𝐿 ⇒ 𝑥1𝑥2 ≠ 0𝐿 , 𝑥2𝑥3 ≠ 0𝐿  𝑎𝑛𝑑 𝑥1𝑥3 ≠ 0𝐿 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥2, 𝑥3 ∈ 𝑍3(𝐿)
} where distinct 

vertices 𝑥1, 𝑥2 and 𝑥3 are adjacent if and only if 𝑥1𝑥2𝑥3 = 0𝐿 ⇒ 𝑥1𝑥2 ≠ 0𝐿 , 𝑥2𝑥3 ≠ 0𝐿  𝑎𝑛𝑑 𝑥1𝑥3 ≠

0𝐿. 

The hypergraphs 𝐻3(𝑅) in [5] and 𝐻3(𝑅, 𝐼) in [10], which are defined on a commutative ring 𝑅 and 

a proper ideal 𝐼 of 𝑅, are examples for the hypergraph 𝐻3(𝐿, 𝑧). 

We obtain the following results with the above definition and the definition of 2-absorbing element 

in 𝐿. 

Proposition 1. Let 𝑧 be a proper element of 𝐿. Then the following statements hold:  

1) 𝐻3(𝐿, 𝑧) is empty hypergraph if and only if 𝑧 is a 2-absorbing element of 𝐿. 

2) 𝐻3(𝐿/ 𝑧) is empty hypergraph if and only if 𝐻3(𝐿, 𝑧) is empty hypergraph. 

Proof. 1). (⇒): Let 𝐻3(𝐿, 𝑧) be empty hypergraph. Suppose that 𝑧 is not a 2-absorbing element of 

𝐿. Take 𝑥1𝑥2𝑥3 ≤ 𝑧 for some 𝑥1, 𝑥2, 𝑥3 ∈ 𝐿. Then we get 𝑥1𝑥2 ≰ 𝑧, 𝑥2𝑥3 ≰ 𝑧 and 𝑥1𝑥3 ≰ 𝑧. Hence 

𝑒 = {𝑥1, 𝑥2, 𝑥3} is a hyperedge of 𝐻3(𝐿, 𝑧), a contradiction. 

(⇐): It is obvious. 

2). (⇒): Assume that 𝐻3(𝐿, 𝑧) is not an empty hypergraph. Then it has a hyperedge 𝑒 = {𝑥1, 𝑥2, 𝑥3}. 

Consider 𝑥1 ∨ 𝑧, 𝑥2 ∨ 𝑧, 𝑥3 ∨ 𝑧 ∈ 𝐿/𝑧. It is clear that 𝑥1 ∨ 𝑧, 𝑥2 ∨ 𝑧, 𝑥3 ∨ 𝑧 are different from 𝑧. Then 

we have that (𝑥1 ∨ 𝑧)(𝑥2 ∨ 𝑧)(𝑥3 ∨ 𝑧) = 0𝐿/𝑧, (𝑥1 ∨ 𝑧)(𝑥2 ∨ 𝑧) ≠ 0𝐿/𝑧, (𝑥2 ∨ 𝑧)(𝑥3 ∨ 𝑧) ≠ 0𝐿/𝑧 

and (𝑥1 ∨ 𝑧)(𝑥3 ∨ 𝑧) ≠ 0𝐿/𝑧. Thus 𝑒′ = {𝑥1 ∨ 𝑧, 𝑥2 ∨ 𝑧, 𝑥3 ∨ 𝑧} is a hyperedge of 𝐻3(𝐿/ 𝑧), a 

contradiction. 

(⇐): Let 𝐻3(𝐿/ 𝑧) be not an empty hypergraph. Then it has a hyperedge 𝑒 = {𝑦1, 𝑦2, 𝑦3} for some 

𝑦1, 𝑦2, 𝑦3 ∈ 𝑉(𝐻3(𝐿/ 𝑧)). Then 𝑦1 ∘ 𝑦2 ∘ 𝑦3 = 0𝐿/𝑧, that is, 𝑦1𝑦2𝑦3 ≤ 𝑧  and since 𝑦1 ∘ 𝑦2,  𝑦2 ∘ 𝑦3 

and   𝑦1 ∘ 𝑦3 are different from 0𝐿/𝑧, then 𝑦1𝑦2, 𝑦2𝑦3, 𝑦1𝑦3 ≰ 𝑧. Therefore, 𝑒 = {𝑦1, 𝑦2, 𝑦3} is a 

hyperedge of 𝐻3(𝐿, 𝑧), a contradiction. 
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Theorem 1. Let 𝐻3(𝐿, 𝑧) be a 3-zero-divisor hypergraph of 𝐿 with respect to 𝑧. If 𝑥2 ≰ 𝑧 for each 

3-zero-divisor 𝑥 ∈ 𝐿 with respect to 𝑧, then 𝐻3(𝐿, 𝑧) is connected and 𝑑𝑖𝑎𝑚(𝐻3(𝐿, 𝑧)) ≤ 4. 

Furthermore, if 𝐻3(𝐿, 𝑧) has a cycle, then 𝑔𝑟(𝐻3(𝐿, 𝑧)) ≤ 9. 

Proof. Let 𝑒1 = {𝑥1, 𝑥2, 𝑥3}  and 𝑒2 = {𝑦1, 𝑦2, 𝑦3} be hyperedges of 𝐻3(𝐿, 𝑧). If 𝑒1 ∩ 𝑒2 ≠ ∅, the 

proof is completed. Assume that 𝑒1 ∩ 𝑒2 = ∅. We show that there are hyperedges 𝑒3, 𝑒4 such that 

they satisfy one of the followings: 

(1) 𝒆𝟑 ∩ 𝒆𝟏 ≠ ∅, 𝒆𝟑 ∩ 𝒆𝟐 ≠ ∅ 

(2) 𝑒3 ∩ 𝑒1 ≠ ∅, 𝑒4 ∩ 𝑒2 ≠ ∅, 𝑒4 ∩ 𝑒3 ≠ ∅ 

Assume that 𝐺 is the partite graph such that 𝑉(𝐺) = 𝑒1 ∪ 𝑒𝟐 and 𝑥𝑖𝑦𝑗 ∈ 𝐸(𝐺) if and only if 𝑥𝑖𝑦𝑗 ≤

𝑧. 

Assume that 𝐺 has two isolated vertices such that one is in 𝑒1 and the other is in 𝑒2. Let 𝑑𝑒𝑔𝐺(𝑥3) =

𝑑𝑒𝑔𝐺(𝑦3) = 0. Suppose that there is 𝑎 ∈ {𝑥1, 𝑥2, 𝑦1, 𝑦2} where 𝑥3𝑦3𝑎 ≤ 𝑧. Then 𝑒3 = {𝑥3, 𝑦3, 𝑎} is 

a hyperedge which holds the condition (1). Let the case not satisfy. If 𝑥3𝑦3 ∉ {𝑥1, 𝑥2, 𝑦1, 𝑦2}, then 

𝑒3 = {𝑥1, 𝑥2, 𝑥3𝑦3} and 𝑒4 = {𝑦1, 𝑦2, 𝑥3𝑦3} are two hyperedges which satisfy the condition (2). In 

the contrary case, without loss of generality (wlog.), suppose that 𝑥3𝑦3 = 𝑥1. Hence 𝑒3 =

{𝑥1, 𝑦1, 𝑦2} is a hyperedge satisfying the condition (1). Consequently, 𝐻3(𝐿, 𝑧) is connected. Now, 

we show that 𝑑𝑖𝑎𝑚(𝐻3(𝐿, 𝑧)) ≤ 4. We consider the number of edges 𝐺 for the rest of the proof. 

Case 1. Assume that |𝐸(𝐺)| ≤ 2. Then 𝐺 has two isolated vertices such that one is in 𝑒1 and the 

other is in 𝑒2. 

Case 2. Let |𝐸(𝐺)| = 3. Take account of the next four different subcases for this case: 

 Case 2.1: Let 𝑑𝑒𝑔𝐺(𝑎) = 1 for each vertex 𝑎 of 𝐺. Assume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥2𝑦2, 𝑥3𝑦3}. We 

consider {𝑥1, 𝑥2𝑦3, 𝑦1 ∨ 𝑦2}. If 𝑥1 = 𝑥2𝑦3, then 𝑥1𝑦2 = 𝑥2𝑦3𝑦2 ≤ 𝑧, a contradiction. If 𝑥1 = 𝑦1 ∨

𝑦2, then 𝑦1𝑥2𝑥3 ≤ 𝑧. Thus 𝑒3 = {𝑦1, 𝑥2, 𝑥3} satisfies the condition (1). If 𝑦1 ∨ 𝑦2 = 𝑥2𝑦3, then 

𝑥1𝑦2𝑥3 ≤ 𝑧 and so the condition (1) is satisfied for 𝑒3 = {𝑥1, 𝑦2, 𝑥3}. On the contrary, reconsider 

𝑒3 = {𝑥1, 𝑥2𝑦3, 𝑦1 ∨ 𝑦2}. If 𝑒3 is not a hyperedge, then 𝑥1𝑥2𝑦3 ≤ 𝑧 or 𝑥2𝑦3(𝑦1 ∨ 𝑦2) ≤ 𝑧, that is, 

𝑥2𝑦3𝑦1 ≤ 𝑧. Then 𝑒′3 = {𝑥1, 𝑥2, 𝑦3} is a hyperedge satisfying the condition (1) or 𝑒′4 = {𝑥2, 𝑦3, 𝑥1} 

is a hyperedge satisfying the condition (1). Let 𝑒3 = {𝑥1, 𝑥2𝑦3, 𝑦1 ∨ 𝑦2} be a hyperedge. In a similar 

way, we consider {𝑦1, 𝑥2𝑦3, 𝑥1 ∨ 𝑥3}. If 𝑒4 is not a hyperedge, then 𝑦1𝑥2𝑦3 ≤ 𝑧 or 𝑥2𝑦3(𝑥1 ∨ 𝑥3) ≤

𝑧, that is, 𝑥2𝑦3𝑥1 ≤ 𝑧. Then 𝑒′′3 = {𝑦1, 𝑥2, 𝑦3} is a hyperedge satisfying the condition (1) or 𝑒′′4 =

{𝑥2, 𝑦3, 𝑥1} is a hyperedge satisfying the condition (1). Assume that 𝑒4 = {𝑦1, 𝑥2𝑦3, 𝑥1 ∨ 𝑥3} is a 

hyperedge. Then we have two hyperedges 𝑒3 = {𝑥1, 𝑥2𝑦3, 𝑦1 ∨ 𝑦2} and 𝑒4 = {𝑦1, 𝑥2𝑦3, 𝑥1 ∨ 𝑥3} 

with 𝑒3 and 𝑒4 satisfying the condition (2). 

Case 2.2. Let 𝑑𝑒𝑔𝐺(𝑎) = 1 for only an element 𝑎 of 𝐺. Wlog., suppose that 𝐸(𝐺) =

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦3}. We consider {𝑥2, 𝑥3𝑦1, 𝑥1 ∨ 𝑦3}. If 𝑥2 = 𝑥3𝑦1, then 𝑥1𝑥2 ≤ 𝑧, is a contradiction. 

If 𝑥2 = 𝑥1 ∨ 𝑦3, then 𝑥2𝑦2𝑦1 ≤ 𝑧 and so the condition (1) is satisfied for 𝑒3 = {𝑥2, 𝑦2, 𝑦1}. If 𝑥1 ∨

𝑦3 = 𝑥3𝑦1, then 𝑥3𝑦1𝑦2𝑦1 ≤ 𝑧. In the circumstances, if 𝑥3 = 𝑦1𝑦2, then 𝑥1𝑥3 ≤ 𝑧, a contradiction. 

If 𝑦1 = 𝑦1𝑦2, then 𝑦1𝑦3 ≤ 𝑧, a contradiction. Hence, the condition (1) holds for 𝑒3 = {𝑥3, 𝑦1𝑦2, 𝑦1}. 

Let the above conditions not hold. If 𝑒3 = {𝑥2, 𝑥3𝑦1, 𝑥1 ∨ 𝑦3} is not a hyperedge, then 𝑥2𝑥3𝑦1 ≤ 𝑧 

or 𝑥3𝑦1(𝑥1 ∨ 𝑦3) ≤ 𝑧, that is, 𝑥3𝑦1𝑦3 ≤ 𝑧. Then 𝑒′3 = {𝑥2, 𝑥3, 𝑦1}  is a hyperedge satisfying the 

condition (1) or 𝑒′4 = {𝑥3, 𝑦1, 𝑦3} is a hyperedge satisfying the condition (1). Suppose that 𝑒3 =
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{𝑥2, 𝑥3𝑦1, 𝑥1 ∨ 𝑦3} is a hyperedge. Now, similarly we consider {𝑦2, 𝑥3𝑦1, 𝑦3}. If 𝑒4 = {𝑦2, 𝑥3𝑦1, 𝑦3} 

is not a hyperedge, then 𝑦2𝑥3𝑦1 ≤ 𝑧 or 𝑥3𝑦1𝑦3 ≤ 𝑧. Then 𝑒′′3 = {𝑦2, 𝑥3, 𝑦1} is a hyperedge 

satisfying the condition (1) or 𝑒′4 = {𝑥3, 𝑦1, 𝑦3} is a hyperedge satisfying the condition (1). Let 

{𝑦2, 𝑥3𝑦1, 𝑥1 ∨ 𝑦3}  be a hyperedge. Then we obtain two hyperedges 𝑒3 = {𝑥2, 𝑥3𝑦1, 𝑥1 ∨ 𝑦3} and 

𝑒4 = {𝑦2, 𝑥3𝑦1, 𝑦3} with 𝑒3 and 𝑒4 satisfying the condition. 

Case 2.3. Let 𝑑𝑒𝑔𝐺(𝑎) = 𝑑𝑒𝑔𝐺(𝑏) = 2 for 𝑎, 𝑏 ∈ 𝑉 (𝐺). Wlog., suppose that 𝐸(𝐺) =

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦2}. Then 𝑑𝑒𝑔𝐺(𝑥3) = 𝑑𝑒𝑔𝐺(𝑦3) = 0 and so the proof is completed. 

 Case 2.4. Let 𝑑𝑒𝑔𝐺(𝑎) = 3 for only one element 𝑎 of 𝐺.  Wlog., suppose that 𝐸(𝐺) =

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3}. Let 𝑥1
2𝑥2 ≰ 𝑧. Consider {𝑥1𝑥2 ∨ 𝑦1, 𝑥1, 𝑥3}. If 𝑥1𝑥2 ∨ 𝑦1 = 𝑥1, then 𝑦2𝑦1 ≤ 𝑧, 

a contradiction. If 𝑥1𝑥2 ∨ 𝑦1 = 𝑥3, then 𝑥3𝑦3𝑦2 ≤ 𝑧, a contradiction. Hence 𝑒3 = {𝑥3, 𝑦2, 𝑦3} is a 

hyperedge satisfying the condition (1). In the other case, 𝑒3 = {𝑥1𝑥2 ∨ 𝑦1, 𝑥1, 𝑥3} is a hyperedge. In 

a similar way, we consider {𝑥1𝑥2 ∨ 𝑦1, 𝑦2, 𝑦3}. Then we have a hyperedge 𝑒3 which satisfies the 

condition (1) or 𝑒4 = {𝑥1𝑥2 ∨ 𝑦1, 𝑦2, 𝑦3} is a hyperedge with 𝑒3 and 𝑒4 satisfying the condition (2). 

Let 𝑥1
2𝑥2 ≤ 𝑧. We consider {𝑥1 ∨ 𝑦1, 𝑥1, 𝑥2}. If 𝑥1 ∨ 𝑦1 = 𝑥2, then 𝑥2𝑦3𝑦2 ≤ 𝑧, a contradiction. 

Thus 𝑒3 = {𝑥1 ∨ 𝑦1, 𝑥1, 𝑥2} is a hyperedge. In a similar way, we consider {𝑥1 ∨ 𝑦1, 𝑦2, 𝑦3}. Then we 

have a hyperedge 𝑒3 which satisfies the condition (1) or 𝑒4 = {𝑥1𝑥2 ∨ 𝑦1, 𝑦2, 𝑦3} is a hyperedge with 

𝑒3 and 𝑒4 satisfying the condition (2). 

 Case 3. Assume that |𝐸(𝐺)| = 4. Consider four different subcases for this case: 

 Case 3.1. Let 𝑑𝑒𝑔𝐺(𝑎) = 3 for only one element 𝑎 of 𝐺. Wlog., suppose that 𝐸(𝐺) =

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3, 𝑥2𝑦3}.   We consider {𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦3}. If 𝑥3𝑦1 = 𝑥2, then 𝑥3𝑦3𝑦1 ≤ 𝑧, a 

contradiction. Thus 𝑒3 = {𝑥3, 𝑦1, 𝑦3} is a hyperedge which holds (1). If 𝑥3𝑦1 = 𝑥1 ∨ 𝑦3, then 𝑥1
2 ≤

𝑧, is a contradiction. If 𝑥2 = 𝑥1 ∨ 𝑦3, then 𝑦3
2 ≤ 𝑧, a contradiction. In the other condition, consider 

again 𝑒3 = {𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦3}. If 𝑒3 = {𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦3} is not a hyperedge, then 𝑥2𝑥3𝑦1 ≤ 𝑧 or 

𝑥3𝑦1(𝑥1 ∨ 𝑦3)  ≤ 𝑧, that is, 𝑥3𝑦1𝑦3  ≤ 𝑧. Then 𝑒′3 = {𝑥2, 𝑥3, 𝑦1} is a hyperedge satisfying the 

condition (1) or 𝑒′4 = {𝑥3, 𝑦1, 𝑦3} is a hyperedge satisfying the condition (1). Assume that 𝑒3 =

{𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦3} is a hyperedge. In a similar way, we consider {𝑥3𝑦1, 𝑦2, 𝑦3}. If 𝑒4 =

{𝑥3𝑦1, 𝑦2, 𝑦3} is not a hyperedge, then 𝑥3𝑦1𝑦2 ≤ 𝑧 or 𝑥3𝑦1𝑦3 ≤ 𝑧. Then 𝑒′′3 = {𝑦2, 𝑥3, 𝑦1} is a 

hyperedge satisfying the condition (1) or 𝑒′4 = {𝑥3, 𝑦1, 𝑦3} is a hyperedge satisfying the condition 

(1). Suppose that 𝑒4 = {𝑥3𝑦1, 𝑦2, 𝑦3} is a hyperedge. Then we get two hyperedges 𝑒3 =

{𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦3}.  and 𝑒4 = {𝑥3𝑦1, 𝑦2, 𝑦3} with 𝑒3 and 𝑒4 satisfying the condition (2). 

 Case 3.2. Assume that the degree of four vertices of 𝐺 equals to two. Wlog., presume that 𝐸(𝐺) =

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, 𝑥2𝑦2}. Then 𝑑𝑒𝑔𝐺(𝑥3) = 𝑑𝑒𝑔𝐺(𝑦3) = 0 and so the proof is completed. 

Case 3.3. Suppose that the degree of three vertices of 𝐺 is two. Wlog. assume that 𝐸(𝐺) =

{𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦2, 𝑥2𝑦3}. We consider {𝑥3𝑦3, 𝑥1, 𝑥2}. If 𝑥3𝑦3 = 𝑥1 or 𝑥3𝑦3 = 𝑥2, then 𝑥3𝑦3𝑦2 ≤ 𝑧 

and so (1) is satisfied for a hyperedge 𝑒3 = {𝑥3, 𝑦2, 𝑦3}. In the other case, let us view 𝑒3 =

{𝑥3𝑦3, 𝑥1, 𝑥2}. If 𝑒3 = {𝑥3𝑦3, 𝑥1, 𝑥2} is not a hyperedge, then 𝑥3𝑦3𝑥1 ≤ 𝑧 or 𝑥3𝑦3𝑥2 ≤ 𝑧. Then 𝑒′3 =

{𝑥3, 𝑦3, 𝑥1} is a hyperedge satisfying the condition (1) or 𝑒′4 = {𝑥3, 𝑦3, 𝑥2}  is a hyperedge satisfying 

the condition (1). Let 𝑒3 = {𝑥3𝑦3, 𝑥1, 𝑥2} be a hyperedge. In a similar way, we consider 

{𝑥3𝑦3, 𝑦1, 𝑦2}. If 𝑒4 = {𝑥3𝑦3, 𝑦1, 𝑦2} is not a hyperedge, then 𝑥3𝑦3𝑦1 ≤ 𝑧 or 𝑥3𝑦3𝑦2 ≤ 𝑧. Then 

𝑒′′3 = {𝑥3, 𝑦3, 𝑦1} is a hyperedge satisfying the condition (1) or 𝑒′′4 = {𝑥3, 𝑦3, 𝑦2} is a hyperedge 
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satisfying the condition (1). Let 𝑒4 = {𝑥3𝑦3, 𝑦1, 𝑦2} be a hyperedge. Then we get two hyperedges 

𝑒3 = {𝑥3𝑦3, 𝑥1, 𝑥2} and 𝑒4 = {𝑥3𝑦3, 𝑦1, 𝑦2} with 𝑒3 and 𝑒4 satisfying the condition (2). 

Case 3.4. Let 𝑑𝑒𝑔𝐺(𝑎) = 𝑑𝑒𝑔𝐺(𝑏) = 2 for 𝑎, 𝑏 ∈ 𝑉 (𝐺). Then, we have two different cases and we 

can choose one of these sets 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦2, 𝑥3𝑦3} and 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦3, 𝑥3𝑦3}. 

In the first choice, we consider {𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦2}. If 𝑥3𝑦1 = 𝑥2, then 𝑥3𝑦1𝑦2 ≤ 𝑧 and so 𝑒3 =

{𝑥3, 𝑦1, 𝑦2} is an edge satisfying (1). If 𝑥3𝑦1 = 𝑥1 ∨ 𝑦2, then 𝑥1
2 ≤ 𝑧, a contradiction. If 𝑥2 = 𝑥1 ∨

𝑦2, then 𝑦2
2 ≤ 𝑧, is a contradiction. In the other case, consider 𝑒3 = {𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦2}. If 𝑒3 =

{𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦2} is not a hyperedge, then 𝑥3𝑦1𝑥2 ≤ 𝑧 or 𝑥3𝑦1(𝑥1 ∨ 𝑦2) ≤ 𝑧, that is, 𝑥3𝑦1𝑦2 ≤ 𝑧. 

Then 𝑒′′3 = {𝑥3, 𝑦1, 𝑦2} is a hyperedge satisfying the condition (1) or 𝑒′′4 = {𝑥3, 𝑦1, 𝑦3} is a 

hyperedge satisfying the condition (1). Let 𝑒4 = {𝑥3𝑦1, 𝑦2, 𝑦3} be a hyperedge. Then we get two 

hyperedges 𝑒3 = {𝑥3𝑦1, 𝑥2, 𝑥1 ∨ 𝑦2} and 𝑒4 = {𝑥3𝑦1, 𝑦2, 𝑦3} with 𝑒3 and 𝑒4 satisfying the condition 

(2). 

In a similar manner, we consider {𝑥1 ∨ 𝑦1, 𝑥2, 𝑥3} and {𝑥1 ∨ 𝑦1, 𝑦2, 𝑦3} for the second choice. Hence, 

we have a hyperedge 𝑒3 which holds (1) or two hyperedges 𝑒3 and 𝑒4 which hold the condition (2). 

Case 4. Assume that |𝐸(𝐺)| = 5. Consider four different subcases for this case: 

Case 4.1. Wlog. assume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3, 𝑥2𝑦1, 𝑥2𝑦2}. We consider {𝑥3𝑦3, 𝑥2, 𝑥1 ∨

𝑦2}. If 𝑥3𝑦3 = 𝑥2, then 𝑥3𝑦3𝑥2 ≤ 𝑧, and so the condition (1) is satisfied for a hyperedge 𝑒3 =

{𝑥2, 𝑥3, 𝑦3}. If 𝑥3𝑦3 = 𝑥1 ∨ 𝑦2, then 𝑥1
2 ≤ 𝑧, a contradiction. If 𝑥2 = 𝑥1 ∨ 𝑦2, then 𝑦1𝑦2 ≤ 𝑧, 

yielding a contradiction. On the other hand, 𝑒3 = {𝑥3𝑦3, 𝑥2, 𝑥1 ∨ 𝑦2} is a edge in 𝐺. In a similar way, 

we consider {𝑥3𝑦3, 𝑦1, 𝑦2}. If 𝑒4 = {𝑥3𝑦3, 𝑦1, 𝑦2} is not a hyperedge, then 𝑥3𝑦3𝑦1 ≤ 𝑧 or 𝑥3𝑦3𝑦2 ≤

𝑧. Then 𝑒′′3 = {𝑥3, 𝑦3, 𝑦1} is a hyperedge satisfying the condition (1) or 𝑒′′4 = {𝑥3, 𝑦3, 𝑦2} is a 

hyperedge satisfying the condition (1). Let 𝑒4 = {𝑥3𝑦3, 𝑦1, 𝑦2} be a hyperedge. Then we get two 

hyperedges 𝑒3 = {𝑥3𝑦3, 𝑥2, 𝑥1 ∨ 𝑦2} and 𝑒4 = {𝑥3𝑦3, 𝑦1, 𝑦2} with 𝑒3 and 𝑒4 satisfying the condition 

(2). 

Case 4.2. Wlog., presume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3, 𝑥2𝑦1, 𝑥3𝑦2}. We consider {𝑥1 ∨

𝑦1, 𝑥2, 𝑦2}. If 𝑥1 ∨ 𝑦1 = 𝑥2, then 𝑦1
2 ≤ 𝑧, is a contradiction. If 𝑥1 ∨ 𝑦1 = 𝑦2, then 𝑥1

2 ≤ 𝑧, is a 

contradiction. In the following situations, 𝑒3 = {𝑥1 ∨ 𝑦1, 𝑥2, 𝑥3𝑦3} is a hyperedge of 𝐺 satisfying 

(1). 

Case 4.3. Wlog., presume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3, 𝑥2𝑦1, 𝑥3𝑦2}. We consider {𝑥1 ∨

𝑦1, 𝑥2, 𝑦2}. If 𝑥1 ∨ 𝑦1 = 𝑥2 then 𝑦1
2 ≤ 𝑧, is a contradiction. If 𝑥1 ∨ 𝑦1 = 𝑦2 then 𝑥2𝑥3𝑦2 ≤ 𝑧. Thus 

𝑒3 = {𝑥2, 𝑥3, 𝑦2} is a hyperedge satisfying (1). In the other case, 𝑒3 = {𝑥1 ∨ 𝑦1, 𝑥2, 𝑦2}  is a 

hyperedge satisfying (1). 

 Case 4.4. Wlog., let 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, 𝑥2𝑦2, 𝑥3𝑦3}. We consider {𝑥3 ∨ 𝑦1, 𝑥1, 𝑦3}. If 𝑥3 ∨

𝑦1 = 𝑥1 or 𝑥3 ∨ 𝑦1 = 𝑦3, then 𝑥1𝑥2𝑦3 ≤ 𝑧. Then 𝑒3 = {𝑥1, 𝑥2, 𝑦3} is a hyperedge satisfying the 

condition (1). In the other case, 𝑒3 = {𝑥3 ∨ 𝑦1, 𝑥1, 𝑦3} is a hyperedge satisfying the condition (1). 

 Case 4.5. Wlog., presume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦2, 𝑥2𝑦3, 𝑥3𝑦3}. We consider {𝑥1 ∨

𝑦2, 𝑥2, 𝑦1}. If 𝑥1 ∨ 𝑦2 = 𝑥2, then 𝑦2
2 ≤ 𝑧, is a contradiction. If 𝑥1 ∨ 𝑦2 = 𝑦1, then 𝑥1

2 ≤ 𝑧, is a 

contradiction. Then 𝑒3 = {𝑥1 ∨ 𝑦2, 𝑥2, 𝑦1} is a hyperedge satisfying the condition (1).  
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Case 5. Let |𝐸(𝐺)|  =  6. Consider three different subcases for this case: 

Case 5.1. Wlog., presume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3, 𝑥2𝑦1, 𝑥2𝑦2, 𝑥3𝑦1}. 

We consider {𝑥1 ∨ 𝑦1, 𝑥2, 𝑥3} and {𝑥1 ∨ 𝑦1, 𝑦2, 𝑦3}. If 𝑥1 ∨ 𝑦1 = 𝑥2, then 𝑦1𝑦2 ≤ 𝑧, a contradiction. 

If 𝑥1 ∨ 𝑦1 = 𝑥3, then 𝑦1
2 ≤ 𝑧, is a contradiction. If 𝑥1 ∨ 𝑦1 = 𝑦2 or 𝑥1 ∨ 𝑦1 = 𝑦3, then 𝑥1

2 ≤ 𝑧, is 

a contradiction. Thus 𝑒3 = {𝑥1 ∨ 𝑦1, 𝑥2, 𝑥3} and 𝑒4 = {𝑥1 ∨ 𝑦1, 𝑦2, 𝑦3} are hyperedges satisfying the 

condition (2). 

 Case 5.2. Wlog., presume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦2, 𝑥1𝑦3, 𝑥2𝑦1, 𝑥2𝑦2, 𝑥3𝑦3}. 

We consider {𝑥1 ∨ 𝑦3, 𝑥3, 𝑦1}.  If  𝑥1 ∨ 𝑦3 = 𝑥3, then 𝑦3
2 ≤ 𝑧, is a contradiction. If  𝑥1 ∨ 𝑦3 = 𝑦1, 

then  𝑥1
2 ≤ 𝑧, is a contradiction.  Thus  𝑒3 = {𝑥1 ∨ 𝑦3, 𝑥3, 𝑦1} is a hyperedge satisfying the condition 

(1). 

Case 5.3. Wlog., presume that 𝐸(𝐺) = {𝑥1𝑦1, 𝑥1𝑦3, 𝑥2𝑦1, 𝑥2𝑦2, 𝑥3𝑦2, 𝑥3𝑦3}. We consider {𝑥1 ∨

𝑦3, 𝑥3, 𝑦1}.  If  𝑥1 ∨ 𝑦3 = 𝑥3, then 𝑦3
2 ≤ 𝑧, is a contradiction. If  𝑥1 ∨ 𝑦3 = 𝑦1, then  𝑥1

2 ≤ 𝑧, is a 

contradiction.  Thus  𝑒3 = {𝑥1 ∨ 𝑦3, 𝑥3, 𝑦1} is a hyperedge satisfying the condition (1). 

Case 6. If 7 ≤ |𝐸(𝐺)|  ≤ 9, then we have two vertices which are degree three in 𝑒1 and the other in 

𝑒2. We suppose that 𝑑𝑒𝑔𝐺(𝑥1) = 𝑑𝑒𝑔𝐺(𝑦1) = 3. We consider {𝑥1 ∨ 𝑦1, 𝑥2, 𝑥3} and {𝑥1 ∨ 𝑦1, 𝑦2, 𝑦3}. 

If 𝑥1 ∨ 𝑦1 = 𝑥2 or 𝑥1 ∨ 𝑦1 = 𝑥3, then 𝑦1
2 ≤ 𝑧, is a contradiction. If 𝑥1 ∨ 𝑦1 = 𝑦2 or 𝑥1 ∨ 𝑦1 = 𝑦3, 

then 𝑥1
2 ≤ 𝑧, is a contradiction. Hence 𝑒3 = {𝑥1 ∨ 𝑦1, 𝑥2, 𝑥3} and 𝑒4 = {𝑥1 ∨ 𝑦1, 𝑦2, 𝑦3} are 

hyperedges satisfying the condition (2). 

By the fact that 𝑔𝑟(𝐻3(𝐿, 𝑧)) ≤ 2𝑑𝑖𝑎𝑚(𝐻3(𝐿, 𝑧)) + 1, we have that 𝑔𝑟(𝐻3(𝐿, 𝑧)) ≤ 9. 

2.1. Complete 3-Partıte Hypergraph 

Definition 2. [10] A hypergraph 𝐻 is called an 𝑛-partite if the vertex set 𝑉 can be partitioned into 

disjoint subsets 𝑉1, 𝑉2, … , 𝑉𝑛 of 𝑉 such that a hyperedge in the hyperedge set 𝐸 composes of a choice 

of completely one vertex from each subset of 𝑉. Also, a hypergraph 𝐻 is called a complete 𝑛-partite 

hypergraph if the vertex set 𝑉 can be partitioned into disjoint subsets 𝑉1, 𝑉2, … , 𝑉𝑛 of 𝑉 and each 

element of 𝑉𝑖 for each 1 ≤ 𝑖 ≤ 𝑛 creates a hyperedge of 𝐻.  

Proposition 2. Let 𝐻3(𝐿, 𝑧) be a complete 3-partite hypergraph. 

If 𝑥𝑦 ≤ 𝑧, then 𝑥 and 𝑦 are contained by same subset 𝑉𝑖 for some 𝑖 ∈ {1,2,3}. 

Proof. Let 𝐻3(𝐿, 𝑧) has disjoint subsets 𝑉1, 𝑉2, 𝑉3 which are partitions of the vertex set 𝑉. Let 𝑎 be 

a vertex with 𝑥𝑦𝑎 ≤ 𝑧. Without loss of generality, assume that 𝑥 ∈ 𝑉1 and 𝑎 ∈ 𝑉2. Then 𝑒 = {𝑥, 𝑦, 𝑎} 

is not a hyperedge in 𝐻3(𝐿, 𝑧) by our assumption. If 𝑦 ∈ 𝑉3, then 𝑒 is a hyperedge since 𝐻3(𝐿, 𝑧) is 

a complete 3-partite hypergraph, a contradiction. If 𝑦 ∈ 𝑉2, then there is a vertex 𝑏 ∈ 𝑉3 such that 

𝑒′ = {𝑥, 𝑦, 𝑏}. But this contradicts the fact that 𝑥𝑦 ≤ 𝑧. Therefore, 𝑦 must be in 𝑉1. 

Theorem 2. Let 𝑧 be a proper element of 𝐿. Then the following statements hold: 

(1) If 𝑝1, 𝑝2 and 𝑝3 are prime elements of 𝐿 and 𝑧 =  𝑝1 ∧ 𝑝2 ∧ 𝑝3 ≠  0𝐿, then 𝐻3(𝐿, 𝑧) is a complete 

3-partite hypergraph. 
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 (2) Let 𝑎2 ≤ 𝑧 for every 3-zero-divisor 𝑎 ∈ 𝐿 with respect to 𝑧 and 𝐻3(𝐿, 𝑧) be a complete 3-

partite hypergraph over the reduced lattice 𝐿. Then there exist prime elements 𝑝1, 𝑝2 and 𝑝3 of 𝐿 

such that 𝑝1 ∧ 𝑝2 ∧ 𝑝3 ≤ 𝑧. 

Proof. (1). Let 𝑒 = {𝑎, 𝑏, 𝑐} be a hyperedge of 𝐻3(𝐿, 𝑧). Then 𝑎𝑏𝑐 ≤ 𝑧 = 𝑝1 ∧ 𝑝2 ∧ 𝑝3, that is, 

𝑎𝑏𝑐 ≤ 𝑝1, 𝑝2, 𝑝3. Since 𝑝𝑖 is a prime element for any 𝑖 ∈ {1,2,3}, then 𝑎 ≤ 𝑝1 or 𝑏 ≤ 𝑝1 or 𝑐 ≤

𝑝1 and 𝑎 ≤ 𝑝2 or 𝑏 ≤ 𝑝2 or 𝑐 ≤ 𝑝2 and 𝑎 ≤ 𝑝3 or 𝑏 ≤ 𝑝3 or 𝑐 ≤ 𝑝3. Additionally, 𝑎𝑏 ≰ 𝑝𝑖 and 

𝑏𝑐 ≰ 𝑝𝑗  and 𝑎𝑐 ≰ 𝑝𝑘  for some 𝑖, 𝑗, 𝑘 ∈ {1,2,3} since 𝑎𝑏, 𝑏𝑐, 𝑎𝑐 ≰ 𝑧 = 𝑝1 ∧ 𝑝2 ∧ 𝑝3. Wlog., we 

assume 𝑎𝑏 ≰ 𝑝1. Then 𝑎 ≰ 𝑝1 and 𝑏 ≰ 𝑝1. Thus, we have 𝑐 ≤ 𝑝1. Indeed, if 𝑎𝑐 ≰ 𝑝1, then 𝑏 ≤

𝑝1, a contradiction. In a similar manner, suppose that 𝑎𝑐 ≰ 𝑝2. Then 𝑎 ≰ 𝑝2 and 𝑐 ≰ 𝑝2. Thus, 

this yields 𝑏 ≤ 𝑝2. Indeed, if 𝑏𝑐 ≰ 𝑝1, then 𝑎 ≤ 𝑝1, a contradiction and if 𝑏𝑐 ≰ 𝑝2, then 𝑎 ≤ 𝑝2, 

a contradiction. Thus, it must be 𝑏𝑐 ≰ 𝑝3. Then, we get 𝑎 ≤ 𝑝3. We assume that 𝑎 ≤ 𝑝3 and 𝑎 ≰

𝑝1, 𝑝2, 𝑏 ≤ 𝑝2 and 𝑏 ≰ 𝑝1, 𝑝3 and 𝑐 ≤ 𝑝1 and 𝑐 ≰ 𝑝2, 𝑝3. Consequently, 𝐻3(𝐿, 𝑧) is a complete 

3-partite hypergraph with parts 𝑉𝑖 for any 𝑖 ∈ {1,2,3} whose vertices must be only less than or 

equal to 𝑝𝑖. 

(2). Let 𝐻3(𝐿, 𝑧) be a complete 3-partite hypergraph and it has parts 𝑉1, 𝑉2 and 𝑉3. Set 𝑝1 = 𝑉1 ∨

𝑧, 𝑝2 = 𝑉2 ∨ 𝑧 and 𝑝3 = 𝑉3 ∨ 𝑧. Then 𝑥1𝑥2𝑥3 ≤ 𝑧 for every 𝑥𝑖 ≤ 𝑝𝑖 for any 𝑖 ∈ {1,2,3}. It is clear 

that (⋁ 𝑥1𝑥1∈𝑉1
)(⋁ 𝑥2𝑥2∈𝑉2

)(⋁ 𝑥3𝑥3∈𝑉3
) ∨ 𝑧 ≤ 𝑧, that is, 𝑝1𝑝2𝑝3 ≤ 𝑧 since 𝐿 is a multiplicative 

lattice. As 𝐿 is reduced, then 𝑝1 ∧ 𝑝2 ∧ 𝑝3 ≤ 𝑧. We assume that 𝑝1 is not a prime element of 𝐿, 

that is, 𝑎𝑏 ≤ 𝑝1 and 𝑎, 𝑏 ≰ 𝑝1 for some 𝑎, 𝑏 ∈ 𝐿. Since 𝑎𝑏 ≤ 𝑝1 = 𝑉1 ∨ 𝑧 then 𝑎𝑏 ≤ 𝑧 or 𝑎𝑏 ∈

𝑉1. We have three cases for this assumption. 

Case 1. Let 𝑎𝑏 ∈ 𝑉1 and 𝑎𝑏 ≤ 𝑧. This contradicts the definition of vertex set of 𝐻3(𝐿, 𝑧). 

Case 2. Let 𝑎𝑏 ∈ 𝑉1 and 𝑎𝑏 ≰ 𝑧. Since 𝑎𝑏 ∈ 𝑉1 and 𝑎 ∉ 𝑉1, then 𝑎 ∈ 𝑉2 or 𝑎 ∈ 𝑉3. Wlog., 

assume that 𝑎 ∈ 𝑉2. So, {𝑎𝑏, 𝑎, 𝑐} must be a hyperedge of 𝐻3(𝐿, 𝑧) for any 𝑐 ∈ 𝑉3. However, 

since 𝑎2 ≤ 𝑧 for every 3-zero-divisor 𝑎 ∈ 𝐿, then 𝑎2𝑏 ≤ 𝑧, contradiction. 

Case 3. Let 𝑎𝑏 ∉ 𝑉1 and 𝑎𝑏 ≤ 𝑧. By Proposition 2, 𝑎 and 𝑏 must be in the same 𝑉𝑖 for any 𝑖 =

{2, 3}. Wlog., let 𝑎, 𝑏 ∈ 𝑉2. Then, 𝑥𝑎𝑦 ≤ 𝑧, 𝑥𝑎 ≰ 𝑧, 𝑥𝑦 ≰ 𝑧, 𝑎𝑦 ≰ 𝑧 and 𝑥𝑏𝑦 ≤ 𝑧, 𝑥𝑏 ≰ 𝑧, 𝑥𝑦 ≰

𝑧, 𝑏𝑦 ≰ 𝑧 for some 𝑥 ∈ 𝑉1 and 𝑦 ∈ 𝑉3. By Proposition 2, we obtain that 𝑥𝑎 ∈ 𝑉3, 𝑥𝑏 ∈ 𝑉3, 𝑎𝑦 ∈

𝑉1, 𝑏𝑦 ∈ 𝑉1. Therefore, {𝑎𝑦, 𝑏, 𝑥𝑎} must be a hyperedge, since 𝐻3(𝐿, 𝑧) is a complete 3-partite 

hypergraph. However, 𝑎2𝑦𝑥 ≤ 𝑧 for 𝑎2 ≤ 𝑧, contradiction. We have a contradiction for each 

cases. Therefore, 𝑎 or 𝑏 must be less than or equal to 𝑝1. Similarly, it can be seen that 𝑝2 and 𝑝3 

are prime elements in 𝐿. 

2.2. Cut Points and Bridge of 𝑯𝟑(𝑳, 𝒛) 

Definition 3. [6] A vertex 𝑎 of a connected graph 𝐺 is called a cut-point of 𝐺 if there are vertices 

𝑥 and 𝑦 of 𝐺 with 𝑎 ≠ 𝑥 and 𝑎 ≠ 𝑦 such that 𝑎 is in every path which is from 𝑥 to 𝑦. 

Theorem 3. Let 𝑧 ∈ 𝐿 and 𝑆 = {𝑢 ∈ 𝐿|𝑢 ≤ 𝑧 𝑎𝑛𝑑 𝑢 ≰ 𝑎}. If 𝑆 ≠ ∅, then 𝑎 is not a cut-point in 

𝐻3(𝐿, 𝑧). 
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Proof. Let 𝑎 be in every path which is from 𝑥 to 𝑦 with 𝑎 ≠ 𝑥 and 𝑎 ≠ 𝑦. We know that 𝑑(𝑥, 𝑦) =

2, 3 or 4 by Theorem 1. Consider 𝑎 ∨ 𝑢. Note that it is a vertex in 𝐻3(𝐿, 𝑧) which is different 

from 𝑎. We consider the following cases: 

Case 1. Let 𝑑(𝑥, 𝑦) = 2. Then there are two hyperedges 𝑒1 = {𝑥, 𝑎, 𝑐1} and 𝑒2 = {𝑎, 𝑦, 𝑐2}  for 

some vertices 𝑐1, 𝑐2 in 𝐻3(𝐿, 𝑧) such that 𝑥−𝑒1
𝑎−𝑒2

𝑦 is a path. Consider 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1} and 

𝑒′2 = {𝑎 ∨ 𝑢, 𝑦, 𝑐2}.   

Let 𝑎 ∨ 𝑢 ≠ 𝑥, 𝑎 ∨ 𝑢 ≠ 𝑦 and 𝑎 ∨ 𝑢 ≠ 𝑐𝑖 for 𝑖 ∈ {1,2}. It is easily seen that 𝑒′1 and 𝑒′2 are two 

hyperedges such that 𝑥−𝑒′1
𝑎 ∨ 𝑢−𝑒′2

𝑦 is a path. 

i.If 𝑎 ∨ 𝑢 = 𝑥 or 𝑎 ∨ 𝑢 = 𝑦, then 𝑥 and 𝑦 are adjacent. 

ii.Consider 𝑎 ∨ 𝑢 = 𝑐1 or 𝑎 ∨ 𝑢 = 𝑐2. Wlog., assume that 𝑎 ∨ 𝑢 = 𝑐1. Then 𝑒′′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑎}  

and 𝑒′2 = {𝑎 ∨ 𝑢, 𝑦, 𝑐2} are two hyperedges such that 𝑥−𝑒′′1
𝑎 ∨ 𝑢−𝑒′2

𝑦 is a path. 

Thus 𝑎 is not a cut point. 

Case 2. Let 𝑑(𝑥, 𝑦) = 3. Then there are three hyperedges 𝑒1 = {𝑥, 𝑎, 𝑐1} and 𝑒2 = {𝑎, 𝑏, 𝑐2} and 

𝑒3 = {𝑏, 𝑦, 𝑐3} for some vertices 𝑏, 𝑐1, 𝑐2, 𝑐3 in 𝐻3(𝐿, 𝑧) such that 𝑥−𝑒1
𝑎−𝑒2

𝑏−𝑒3
𝑦 is a path. If 

𝑎 ∨ 𝑢 is different from each of 𝑥, 𝑏 and 𝑐𝑖 for 𝑖 ∈ {1,2,3}, then there is a path from 𝑥 to 𝑦 which 

does not contain 𝑎. Now, we consider other situations. 

i. Let 𝑎 ∨ 𝑢 = 𝑥. Then consider 𝑒′2 = {𝑎 ∨ 𝑢, 𝑏, 𝑐2} and 𝑒3. Note that there is a path 𝑎 ∨

𝑢−𝑒′2
𝑏−𝑒3

𝑦. Thus 𝑎 is not a cut point. 

ii. Let 𝑎 ∨ 𝑢 = 𝑏. Consider 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1} and 𝑒3. Clearly, there is a path 𝑥−𝑒′1
𝑎 ∨

𝑢−𝑒3
𝑦. Hence 𝑎 is not a cut point. 

iii. Let 𝑎 ∨ 𝑢 = 𝑦. Consider 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1}. Thus 𝑥 and 𝑦 are adjacent. Hence 𝑎 is not a 

cut point.  

iv. 𝑎 ∨ 𝑢 = 𝑐𝑖 for 𝑖 ∈ {1,2}. It can be seen in a similar way in Case 1 (ii). 

v. Let 𝑎 ∨ 𝑢 = 𝑐3. Consider 𝑒′3 = {𝑏, 𝑦, 𝑎 ∨ 𝑢} and 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1}. Then there is a path 

such that 𝑥−𝑒′1
𝑎−𝑒′3

𝑦. 

Case 3. Let 𝑑(𝑥, 𝑦) = 4. Then there are four hyperedges 𝑒1 = {𝑥, 𝑎, 𝑐1} and 𝑒2 = {𝑎, 𝑏, 𝑐2}, 

𝑒3 = {𝑏, 𝑐, 𝑐3} and 𝑒4 = {𝑐, 𝑦, 𝑐4} for some vertices 𝑏, 𝑐, 𝑐1, 𝑐2, 𝑐3, 𝑐4 in 𝐻3(𝐿, 𝑧) such that 

𝑥−𝑒1
𝑎−𝑒2

𝑏−𝑒3
𝑦−𝑒4

𝑐 is a path. If 𝑎 ∨ 𝑢 is different from each of 𝑥, 𝑏, 𝑐, 𝑦 and 𝑐𝑖 for 𝑖 ∈

{1,2,3,4}, then there is a path from 𝑥 to 𝑦 which does not contain 𝑎. Now, we consider other 

situations. 

i. Let 𝑎 ∨ 𝑢 = 𝑥. Now, consider 𝑒′2 = {𝑎 ∨ 𝑢, 𝑏, 𝑐2}. Then note that 𝑒′2 is a hyperedge and 

there is a path 𝑎 ∨ 𝑢−𝑒′2
𝑏−𝑒3

𝑐−𝑒4
𝑦. 

ii. Let 𝑎 ∨ 𝑢 = 𝑏 Consider 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1} and 𝑒′3 = {𝑎 ∨ 𝑢, 𝑐, 𝑐3}. Then note that 𝑒′1 and 

𝑒′3 are two hyperedges and there is a path x−𝑒′1
𝑎 ∨ 𝑢−𝑒′3

𝑐−𝑒4
𝑦. 

iii. Let 𝑎 ∨ 𝑢 = 𝑐. Consider 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1} and 𝑒′4 = {𝑎 ∨ 𝑢, 𝑦, 𝑐4}. Then note that 𝑒′4 is 

a hyperedge and there is a path x−𝑒′1
𝑎 ∨ 𝑢−𝑒′4

𝑦. 

iv. Let 𝑎 ∨ 𝑢 = 𝑦. Consider 𝑒′1 = {𝑥, 𝑎 ∨ 𝑢, 𝑐1}. Note that 𝑒′1 is a hyperedge and 𝑥 and 𝑦 are 

adjacent. 

iv. Let 𝑎 ∨ 𝑢 = 𝑐𝑖 for 𝑖 ∈ {1,2}. It can be seen in a similar way in Case 1 (ii). 
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v. Let 𝑎 ∨ 𝑢 = 𝑐𝑖 for 𝑖 ∈ {3,4}. It can be seen in a similar way in Case 2 (v). 

We obtain the following result by the previous theorem. 

Corollary 1. Let 𝑎 be a vertex in 𝐻3(𝐿, 𝑧) and 𝑧 ≰ 𝑎. Then 𝑎 is not a cut-point of 𝐻3(𝐿, 𝑧). 

Proposition 3. If 𝐻3(𝐿, 𝑧) is connected, then 𝐻3(𝐿, 𝑧) has not any bridge. 

Proof. Let 𝑒 = {𝑎, 𝑏, 𝑐} be a bridge of 𝐻3(𝐿, 𝑧). Then 𝐻3(𝐿, 𝑧) is disconnected if 𝑒 is omitted in 

hypergraph. Take an element 𝑦 with 0𝐿 ≠ 𝑦 ≰ 𝑧. Then 𝑎 ∨ 𝑦, 𝑏 ∨ 𝑦, 𝑐 ∨ 𝑦 ≰ 𝑧. Also each of 𝑒1 =

{𝑎 ∨ 𝑦, 𝑏, 𝑐}, 𝑒2 = {𝑎, 𝑏 ∨ 𝑦, 𝑐} and 𝑒3 = {𝑎, 𝑏, 𝑐 ∨ 𝑦} is a hyperedge. Thus, there is a cycle 

𝑎−𝑒3
𝑏−𝑒1

𝑐−𝑒2
𝑎. Indeed if 𝑒 is omitted in hypergraph, 𝐻3(𝐿, 𝑧) is connected. Thus, 𝐻3(𝐿, 𝑧) has 

not any bridge. 
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