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Abstract. In this study, we examined the formula of the regularized trace of the self-adjoint operator which is 

formed by 

ℓ(𝑦) = −𝑦′′ + 𝑝(𝑥)𝑦 

differential expression and 

𝑦(0) + 𝑦(𝜋) = 0 

𝑦′(0) + 𝑦′(𝜋) = 0   

anti-periodic boundary condition. 

Keywords: Regularized trace, Eigenvalues, Eigen functions. 

Ters Periyodik Sınır Koşulları İle Verilmiş İkinci Mertebeden 

Diferansiyel Denklemin Düzenli İz Formülü 

Özet. Bu çalışmada,  

ℓ(𝑦) = −𝑦′′ + 𝑝(𝑥)𝑦 

diferansiyel ifadesi ve  

𝑦(0) + 𝑦(𝜋) = 0 

𝑦′(0) + 𝑦′(𝜋) = 0   

ters periyodik sınır koşulları ile oluşturulmuş  kendine eş operatörün düzenli iz formülü incelenmiştir. 

Anahtar Kelimeler: Düzenli iz, Öz değer, Öz fonksiyon. 

 

1. INTRODUCTION  

 𝑝(𝑥) is a real valued, continuous function in[0, 𝜋], 𝐿0 and 𝐿 get  two self-adjoint operators generated by 

the following expressions 

ℓ0(𝑦) = −𝑦′′ 

and 

     ℓ(𝑦) = −𝑦′′ + 𝑝(𝑥)𝑦                                                          (1) 

https://orcid.org/0000-0003-4237-1072
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with the same boundary conditions 

𝑦(0) + 𝑦(𝜋) = 0 

    𝑦′(0) + 𝑦′(𝜋) = 0                                                                    (2) 

respectively, in the space 𝐿2[0, 𝜋].  The spectrum of operator 𝐿0 coincides with the set {(2𝑛 + 1)2}𝑛=0
∞ . 

Every point of the spectrum is an eigenvalue with multiplicity two. 

Let   

𝜇𝑘 = {
𝑘2, 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑

(𝑘 − 1)2, 𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛
         (𝑘 = 1,2, … ) 

is the eigenvalues of operator 𝐿0 and  

𝜓1 = √
2

𝜋
sin 𝑥 , 𝜓2 = √

2

𝜋
cos 𝑥 , 𝜓3 = √

2

𝜋
sin 3𝑥, 𝜓4 = √

2

𝜋
cos 3𝑥, … 

are the orthonormal eigenfunctions corresponding to this eigenvalues.  

Also we showed the eigenvalues of operator 𝐿  by  𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ ⋯ ≤ 𝜆𝑘 ≤ ⋯   and corresponding 

orthonormal eigenfunctions by 𝜑0, 𝜑1, 𝜑2, … , 𝜑𝑘 , … 

In this study, we obtained a formula for the sum of series by Dikii's method,                                                   

∑(𝜆𝑛 − 𝜇𝑛)

∞

𝑛=1

 

 which is called the formula of regularized trace of operator 𝐿. 

The regularized trace theory, which was first examined by Gelfand and Levitan and they derived the 

formula of regularized trace for the Sturm-Liouville operator [1], attracted the attention of many authors. 

Dikii [2] provided and developed Gelfand and Levitan's formulas by their own method. Later, Levitan [6] 

suggested one more method for computing the traces of the Sturm–Liouville operator. There are numerous 

investigations on the calculation of the regularized trace of differential operator equations [3-17]. 

2. CALCULATION 

Let us show the following equation 

lim
𝑁→∞

∑[(𝜑𝑛, 𝐿𝜑𝑛) − (𝜓𝑛, 𝐿𝜓𝑛)]

𝑁

𝑛=1

= 0                                                                    (3) 

which will be used later. For this we consider the transfer matrix (𝑢𝑖𝑘)𝑖,𝑘=1
∞  from the orthonormal basis 

{𝜑𝑘} to orthonormal basis {𝜓𝑘} as in [2] : 

𝜓𝑘 = ∑ 𝑢𝑖𝑘𝜑𝑖                      (𝑘 = 1,2, … )

∞

𝑖=1
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where  𝑢𝑖𝑘 = (𝜑𝑖 , 𝜓𝑘) and (𝑢𝑖𝑘)𝑖,𝑘=1
∞   are the unitary matrix, that is 

∑ 𝑢𝑖𝑘
2

∞

𝑖=1

= 1              (𝑘 = 1,2, … )   

Let us give some limitations for 𝑢𝑖𝑘 . It is clear that 

        𝐿𝜓𝑘 = 𝜇𝑘𝜓𝑘 + 𝑝𝜓𝑘                                                                                               (4) 

If we multiply both side of equality (4) by 𝜑𝑖  we obtain 

(𝐿𝜓𝑘 , 𝜑𝑖) = (𝜇𝑘𝜓𝑘, 𝜑𝑖) + (𝑝𝜓𝑘, 𝜑𝑖) 

Or 

𝜆𝑖(𝜓𝑘 , 𝜑𝑖) = 𝜇𝑘(𝜓𝑘, 𝜑𝑖) + (𝑝𝜓𝑘 , 𝜑𝑖) 

 and  

(𝜆𝑖 − 𝜇𝑘)(𝜓𝑘, 𝜑𝑖) = (𝑝𝜓𝑘 , 𝜑𝑖) 

. 

With respect to [2] taking the square of both sides of the last equality and summing from 1 to ∞ respect 

to  𝑖  we obtain 

                  ∑(𝜆𝑖 − 𝜇𝑘)2(𝜓𝑘 , 𝜑𝑖)2

∞

𝑖=1

= ∑(𝑝𝜓𝑘 , 𝜑𝑖)

∞

𝑖=1

= ‖𝑝𝜓𝑘‖2 = ∫ [𝑝(𝑥)𝜓𝑘(𝑥)]2𝑑𝑥 ≤ 𝑝0
2

𝜋

0

                 (5) 

where  𝑝0 = 𝑚𝑎𝑥0≤𝑥≤𝜋|𝑝(𝑥)|. 

Suppose that the following conditions hold: 

1. For the eigenvalues and the eigenfunctions of the 𝐿 operator  holds the asymptotic formulas 

𝜆𝑘 = 𝜇𝑘 + 𝑂 (
1

𝑘
)   ,   𝜑𝑘 = 𝜓𝑘 + 𝑂 (

1

𝑘
)           [10].  

2. ∫ 𝑝(𝑥) 𝑑𝑥 = 0  .
𝜋

0
 

Hence 

                                                 ∑ (𝜆𝑖 − 𝜇𝑘)2𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

< 𝐶            (𝐶 = 𝑐𝑜𝑛𝑠𝑡. )  (𝑘 < 𝑁)   .                              (6) 

We will use condition 1 in the inequalities we will obtain. 

Obviously, 

∑ (𝜆𝑖 − 𝜇𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

< 𝐶  ⇒   ∑ (𝜆𝑖 − 𝜇𝑘)(𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

< 𝐶  

⇒ ∑ (𝜆𝑖 − 𝜆𝑘)2𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

< 𝐶 
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is obtained for all integer 𝑁  from equation (6) 

And we obtain  

                   ∑ (𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

≤
𝐶

𝜆𝑁+1 − 𝜇𝑘
                                    (𝑘 < 𝑁).                                                   (7) 

Now let us prove the equation (3).  

(𝜓𝑘 , 𝐿𝜓𝑘) = (∑ 𝑢𝑖𝑘𝜑𝑖

∞

𝑖=1

, ∑ 𝜆𝑖𝑢𝑖𝑘𝜑𝑖

∞

𝑖=1

) = ∑ 𝜆𝑖𝑢𝑖𝑘
2

∞

𝑖=1

  

 If we take the sum  on k from 1 to 𝑁 on both sides of this equation we get  

∑(𝜓𝑘 , 𝐿𝜓𝑘)

𝑁

𝑘=1

= ∑ ∑ 𝜆𝑖𝑢𝑖𝑘
2

∞

𝑖=1

.

𝑁

𝑘=1

   

Since  ∑ 𝑢𝑘𝑖
2 = 1∞

𝑖=1   we get 

∑(𝜑𝑘 , 𝐿𝜑𝑘)

𝑁

𝑘=1

= ∑ 𝜆𝑘

𝑁

𝑘=1

= ∑ ∑ 𝜆𝑘𝑢𝑘𝑖
2  

∞

𝑖=1

𝑁

𝑘=1

 

So now we need to prove 

                   lim
𝑁→∞

(∑ ∑ 𝜆𝑖𝑢𝑖𝑘
2

∞

𝑖=1

𝑁

𝑘=1

− ∑ ∑ 𝜆𝑘𝑢𝑘𝑖
2

∞

𝑖=1

𝑁

𝑘=1

) = 0.                                                                                       (8) 

 

                 ∑ ∑ 𝜆𝑖𝑢𝑖𝑘
2

∞

𝑖=1

𝑁

𝑘=1

− ∑ ∑ 𝜆𝑘𝑢𝑘𝑖
2 = ∑ ∑ (𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘

2

∞

𝑖=𝑁+1

𝑁

𝑘=1

+

∞

𝑖=1

𝑁

𝑘=1

∑ ∑ 𝜆𝑘(𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 ).

∞

𝑖=𝑁+1

𝑁

𝑘=1

              (9) 

Let us calculate first sum on the right side of equality (9). For convenience while let  𝑁 + 1 be even 

number then we have 

 

∑ ∑ (𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

𝑁

𝑘=1

= ∑ ∑ (𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

𝑁−1

𝑘=1

+ (𝜆𝑁+1 − 𝜆𝑁)𝑢(𝑁+1)𝑁
2 + ∑ (𝜆𝑖 − 𝜆𝑁)𝑢𝑖𝑁

2

∞

𝑖=𝑁+2

     (10) 

 Let us calculate first and third sum on the right side of equality (10) by inequality (7), for 𝑁 → ∞ 

            ∑ ∑ (𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

𝑁

𝑘=1

<
1

4𝑁
+

1

2(𝑁 + 1)
[ln

𝑁2 + 𝑁

𝑁 − 1
] → 0                                                            (11) 

 and 
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             ∑ (𝜆𝑖 − 𝜆𝑁)𝑢𝑖𝑁
2

∞

𝑖=𝑁+2

≤
𝐶

𝜆𝑁+2 − 𝜇𝑁
≤

𝐶

4𝑁 + 4
 → 0                                                                             (12) 

Now we shall calculate the second term on the right side of equality (10) when 𝑁 → ∞. Suppose that  

𝑁 + 1  is even , we have 

            (𝜆𝑁+1 − 𝜆𝑁)𝑢(𝑁+1)𝑁
2 ≤ 𝑁2 + 𝑂 (

1

𝑁 + 1
) − 𝑁2 − 𝑂 (

1

𝑁
) → 0       (𝑁 → ∞)                                (13) 

In this way, for even number  𝑁 + 1 from the expressions (10), (11), (12) and (13) we have 

                  lim
𝑁→∞

∑ ∑ (𝜆𝑖 − 𝜆𝑘)𝑢𝑖𝑘
2

∞

𝑖=𝑁+1

𝑁

𝑘=1

= 0.                                                                                                       (14) 

Formula (14) can also calculated for odd number  𝑁 + 1. 

Now we shall calculate second sum on the right side of equality (9).  

 

                   𝑢𝑖𝑘 + 𝑢𝑘𝑖 = (𝜑𝑖, 𝜓𝑘) + (𝜑𝑘 , 𝜓𝑖) = −(𝜑𝑖 − 𝜓𝑖, 𝜑𝑘 − 𝜓𝑘)                                                         (15) 

 By equality (15) and condition 1., we have 

                  |𝑢𝑖𝑘 + 𝑢𝑘𝑖| ≤ ‖𝜑𝑖 − 𝜓𝑖‖ ‖𝜑𝑘 − 𝜓𝑘‖ <
𝐶

𝑖𝑘
 .                                                                                  (16) 

According to Cauchy-Schwarz inequality we have 

∑ (𝜆𝑖 − 𝜇𝑘)

∞

𝑖=𝑁+1

|𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 | = ∑ (𝜆𝑖 − 𝜇𝑘)

∞

𝑖=𝑁+1

|𝑢𝑖𝑘 − 𝑢𝑘𝑖||𝑢𝑖𝑘 + 𝑢𝑘𝑖| 

                ≤ √ ∑ |𝑢𝑖𝑘 − 𝑢𝑘𝑖|
2

 

∞

𝑖=𝑁+1

√ ∑  (𝜆𝑖 − 𝜇𝑘)2|𝑢𝑖𝑘 − 𝑢𝑘𝑖|
2

∞

𝑖=𝑁+1

 

       <
𝐶

(𝑘 − 1)√𝑁 + 1
 .                                                                                              (17) 

 

Hence 

                  ∑ |𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 |

∞

𝑖=𝑁+1

<
𝐶

(𝑘 − 1)√𝑁 + 1[𝑁2 − (𝑘 − 1)2]
                                                                  (18) 

Now we shall evaluate the second sum on the right side of equality (9),                                                                                                       

∑ 𝜆𝑘 ∑ |𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 |

∞

𝑖=𝑁+1

𝑁

𝑘=1

= 𝜆𝑁 ∑ |𝑢𝑖𝑁
2 − 𝑢𝑁𝑖

2 |

∞

𝑖=𝑁+1

+ ∑ 𝜆𝑘 ∑ |𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 |

∞

𝑖=𝑁+1

𝑁−1

𝑘=1
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                   = 𝜆𝑁|𝑢𝑁+1𝑁
2 − 𝑢𝑁𝑁+1

2 | + 𝜆𝑁 ∑ |𝑢𝑖𝑁
2 − 𝑢𝑁𝑖

2 |

∞

𝑖=𝑁+2

+ ∑ 𝜆𝑘 ∑ |𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 |

∞

𝑖=𝑁+1

𝑁−1

𝑘=1

           (19) 

By inequality (16) we have 

 

𝜆𝑁|𝑢𝑁+1𝑁
2 − 𝑢𝑁𝑁+1

2 | = 𝜆𝑁|𝑢𝑁+1𝑁 − 𝑢𝑁𝑁+1||𝑢𝑁+1𝑁 + 𝑢𝑁𝑁+1|                                 

                                  

                                                         <
𝐶𝑁2

𝑁2(𝑁 + 1)2 |𝑢𝑁+1𝑁 − 𝑢𝑁𝑁+1| → 0       (𝑁 → ∞)                              (20) 

By the expression (18) we evaluate the second and third sum on the right side of equality (19) 

                    

𝜆𝑁 ∑ |𝑢𝑖𝑁
2 − 𝑢𝑁𝑖

2 |

∞

𝑖=𝑁+2

<
𝐶𝑁2

(𝑁 − 1)√𝑁 + 2[(𝑁 + 2)2 − (𝑁 + 1)2]
→ ∞ (𝑁 → ∞)                               (21) 

and 

∑ 𝜆𝑘 ∑ |𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 |

∞

𝑖=𝑁+1

𝑁−1

𝑘=1

<
𝐶𝑁

√𝑁 + 1
∑

1

𝑁2 − (𝑘 − 1)2

𝑁

𝑘=2

~𝐶
ln 𝑁

√𝑁
→ 0 (𝑁 → ∞).                              (22) 

From the expressions (19), (20),(21) and (22) we have 

lim
𝑁→∞

∑ ∑ 𝜆𝑘(𝑢𝑖𝑘
2 − 𝑢𝑘𝑖

2 )

∞

𝑖=𝑁+1

=

𝑁

𝑘=1

0                                                                                                      (23) 

Thus from the expressions (9), (14), and (23) we obtain formula (8). Therefore formula (3) have proved. 

3. CONCLUSION  

(𝜑𝑘 , 𝐿𝜑𝑘) = 𝜆𝑘            and                 (𝜓𝑘 , 𝐿𝜓𝑘) = 𝜇𝑘 + (𝜓𝑘 , 𝑝𝜓𝑘). 

 

If we use these into formula (3) then we obtain 

 

              ∑[(𝜓𝑘 , 𝐿𝜓𝑘) − (𝜑𝑘 , 𝐿𝜑𝑘)] =

𝑁

𝑘=1

∑(𝜇𝑘 − 𝜆𝑘)

𝑁

𝑘=1

+ ∑(𝜓𝑘 , 𝑝𝜓𝑘)

𝑁

𝑘=1

→ 0 ,            (𝑁 → ∞).         (24) 

 

Now we shall calculate 

lim
𝑁→∞

∑(𝜓𝑘, 𝑝𝜓𝑘).

𝑁

𝑘=1

 

 

According to condition 2. we have for even number  𝑁   
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                ∑(𝜓𝑘 , 𝑝𝜓𝑘)

𝑁

𝑘=1

=
1

𝜋
∫ 𝑝(𝑥)

𝜋

0

 𝑑𝑥 +
𝑁

𝜋
∫ 𝑝(𝑥)

𝜋

0

 𝑑𝑥 = 0                                       (25) 

 

Similarly we have for odd number  N 

                         

∑(𝜓𝑘, 𝑝𝜓𝑘)

𝑁

𝑘=1

= −
1

𝜋
∫ 𝑝(𝑥)

𝜋

0

cos 2𝑁𝑥  𝑑𝑥 → 0 ,                                       (𝑁 → ∞) .                   (26) 

 

From the expressions (25) and (26) we have 

 

lim
𝑁→∞

∑(𝜓𝑘, 𝑝𝜓𝑘)

𝑁

𝑘=1

= 0    

Hence from the expressions (24) and (26) we have 

lim
𝑁→∞

∑(𝜆𝑘 − 𝜇𝑘)

𝑁

𝑘=1

= 0. 

So we have proved the following theorem. 

 

THEOREM : The following formula is true when we considered 𝑝(𝑥) is a continuous function and 

conditions 1.,2. are fulfilled 

 

∑(𝜆𝑛 − 𝜇𝑛)

∞

𝑛=1

= 0  .                                                                                (27) 
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