Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 1, 14–28. https://doi.org/10.31197/atnaa.632075 Available online at www.atnaa.org Research Article

Fixed points of Suzuki \mathcal{Z} -contraction type maps in b-metric spaces

Gutti Venkata Ravindranadh Babu^a, Dasari Ratna Babu^b

^aDepartment of Mathematics, Andhra University, Visakhapatnam-530 003, India. ^bPresent address : Department of Mathematics, Andhra University, Visakhapatnam-530 003, India. Permanent address : Department of Mathematics, PSCMRCET, Vijayawada-520 001, India.

Abstract

In this paper, we introduce Suzuki \mathcal{Z} -contraction type (I) maps, Suzuki \mathcal{Z} -contraction type (II) maps, for a single selfmap and prove the existence and uniqueness of fixed points. Our results extend / generalize the results of Kumam, Gopal and Budhia [22] and Padcharoen, Kumam, Saipara and Chaipunya [25] from the metric space setting to *b*-metric spaces. We provide examples in support of our results.

Keywords: Fixed points; *b*-metric space; *b*-continuous; Suzuki \mathcal{Z} -contraction type maps. 2010 MSC: 47H10, 54H25.

1. Introduction

In 1975, in the direction of generalization of contraction condition, Dass and Gupta [18] initiated a contraction condition involving rational expression and established the existence of fixed points in complete metric spaces. In 2008, Suzuki [28] proved two fixed point theorems, one of which is a new type of generalization of the Banach contraction principle and does characterize the metric completeness.

On the other hand, in the direction of generalization of metric spaces, Bourbaki [15] and Bakhtin [9] initiated the idea of *b*-metric spaces. The concept of *b*-metric space or metric type space was introduced by Czerwik [16] as a generalization of metric space. Afterwards, many authors studied the existence of fixed points for a single-valued and multi-valued mappings in *b*-metric spaces under certain contraction conditions. For more details, we refer [1, 3, 4, 5, 6, 10, 11, 12, 13, 14, 17, 20, 23, 27].

Email addresses: gvr_babu@hotmail.com (Gutti Venkata Ravindranadh Babu), ratnababud@gmail.com (Dasari Ratna Babu)

Received October 11 2019, Accepted: November 11, 2019, Online: November 18, 2019.

- (i) $0 \le d(x, y)$ and d(x, y) = 0 if and only if x = y,
- $(ii) \ d(x,y) = d(y,x),$
- (*iii*) there exists $s \ge 1$ such that $d(x, z) \le s[d(x, y) + d(y, z)]$.

In this case, the pair (X, d) is called a *b*-metric space with coefficient *s*.

Every metric space is a *b*-metric space with s = 1. In general, every *b*-metric space is not a metric space.

Definition 1.2. [11] Let (X, d) be a *b*-metric space.

- (i) A sequence $\{x_n\}$ in X is called b-convergent if there exists $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$. In this case, we write $\lim_{n \to \infty} x_n = x$.
- (ii) A sequence $\{x_n\}$ in X is called b-Cauchy if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.
- (*iii*) A *b*-metric space (X, d) is said to be a complete *b*-metric space if every *b*-Cauchy sequence in X is *b*-convergent in X.
- (*iv*) A set $B \subset X$ is said to be b-closed if for any sequence $\{x_n\}$ in B such that $\{x_n\}$ is b-convergent to $z \in X$ then $z \in B$.

In general, a *b*-metric is not necessarily continuous. In this paper, we denote $\mathbb{R}^+ = [0, \infty)$ and \mathbb{N} is the set of all natural numbers.

Example 1.3. [19] Let $X = \mathbb{N} \cup \{\infty\}$. We define a mapping $d: X \times X \to \mathbb{R}^+$ as follows:

 $d(m,n) = \begin{cases} 0 & \text{if } m = n, \\ |\frac{1}{m} - \frac{1}{n}| & \text{if one of } m, n \text{ is even and the other is even or } \infty, \\ 5 & \text{if one of } m, n \text{ is odd and the other is odd or } \infty, \\ 2 & \text{otherwise.} \end{cases}$

Then (X, d) is a *b*-metric space with coefficient $s = \frac{5}{2}$.

Definition 1.4. [11] Let (X, d_X) and (Y, d_Y) be two *b*-metric spaces. A function $f : X \to Y$ is a *b*-continuous at a point $x \in X$, if it is *b*-sequentially continuous at *x*. i.e., whenever $\{x_n\}$ is *b*-convergent to *x* we have fx_n is *b*-convergent to fx.

The following lemmas are useful in proving our main results.

Lemma 1.5. [8] Suppose (X, d) is a metric space. Let $\{x_n\}$ be a sequence in X such that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. If $\{x_n\}$ is not a Cauchy sequence then there exist an $\epsilon > 0$ and sequences of positive integers $\{m_k\}$ and $\{n_k\}$ with $n_k > m_k \ge k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$. For each k > 0, corresponding to m_k , we can choose n_k to be the smallest positive integer such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$, $d(x_{m_k}, x_{n_k-1}) < \epsilon$. In this case,

- (i) $\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = \epsilon$,
- (*ii*) $\lim_{k \to \infty} d(x_{n_k-1}, x_{m_k}) = \epsilon$,
- (*iii*) $\lim_{k \to \infty} d(x_{m_k+1}, x_{n_k}) = \epsilon$,

 $(iv) \lim_{k \to \infty} d(x_{m_k+1}, x_{n_k-1}) = \epsilon.$

Lemma 1.6. [26] Suppose (X, d) is a b-metric space with coefficient $s \ge 1$ and $\{x_n\}$ be a sequence in X such that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. If $\{x_n\}$ is a not Cauchy sequence then there exist an $\epsilon > 0$ and sequences of positive integers $\{m_k\}$ and $\{n_k\}$ with $n_k > m_k \ge k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$. For each k > 0, corresponding to m_k , we can choose n_k to be the smallest positive integer such that $d(x_{m_k}, x_{n_k}) \ge \epsilon, d(x_{m_k}, x_{n_k-1}) < \epsilon$ and

(i)
$$\epsilon \leq \liminf_{k \to \infty} d(x_{m_k}, x_{n_k}) \leq \limsup_{k \to \infty} d(x_{m_k}, x_{n_k}) \leq s\epsilon,$$

(ii)
$$\frac{\epsilon}{s} \le \liminf_{k \to \infty} d(x_{m_k+1}, x_{n_k}) \le \limsup_{k \to \infty} d(x_{m_k+1}, x_{n_k}) \le s^2 \epsilon$$
,

(*iii*)
$$\frac{\epsilon}{s} \le \liminf_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \le \limsup_{k \to \infty} d(x_{m_k}, x_{n_k+1}) \le s^2 \epsilon$$
,

(*iv*) $\frac{\epsilon}{s^2} \leq \liminf_{k \to \infty} d(x_{m_k+1}, x_{n_k+1}) \leq \limsup_{k \to \infty} d(x_{m_k+1}, x_{n_k+1}) \leq s^3 \epsilon.$

Lemma 1.7. [2] Let (X, d) be a b-metric space with coefficient $s \ge 1$.

Suppose that $\{x_n\}$ and $\{y_n\}$ are b-convergent to x and y respectively. Then we have $\frac{1}{s^2}d(x,y) \leq \liminf d(x_n,y_n) \leq \limsup d(x_n,y_n) \leq s^2d(x,y).$

$$(x,y) \leq \liminf_{n \to \infty} d(x_n, y_n) \leq \limsup_{n \to \infty} d(x_n, y_n) \leq s^2 d(x, y_n)$$

In particular, if x = y, then we have $\lim_{n \to \infty} d(x_n, y_n) = 0$. Moreover for each $z \in X$ we have

$$\frac{1}{s}d(x,z) \le \liminf_{n \to \infty} d(x_n,z) \le \limsup_{n \to \infty} d(x_n,z) \le sd(x,z).$$

In 2015, Khojasteh, Shukla and Radenović [21] introduced simulation function and defined \mathcal{Z} -contraction with respect to a simulation function.

Definition 1.8. [21] A simulation function is a mapping $\zeta:\mathbb{R}^+\times\mathbb{R}^+\to(-\infty,\infty)$ satisfying the following conditions:

- (*i*) $\zeta(0,0) = 0;$
- (*ii*) $\zeta(t,s) < s-t$ for all s, t > 0;

(*iii*) if $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = l \in (0, \infty)$ then

$$\limsup_{n \to \infty} \zeta(t_n, s_n) < 0.$$

Remark 1.9. [7] Let ζ be a simulation function. If $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = l \in (0, \infty) \text{ then } \limsup_{n \to \infty} \zeta(kt_n, s_n) < 0 \text{ for any } k > 1.$

The following are examples of simulation functions.

Example 1.10. [7] Let $\zeta : \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ be defined by

- (i) $\zeta(t,s) = \lambda s t$ for all $t, s \in \mathbb{R}^+$, where $\lambda \in [0,1)$;
- (*ii*) $\zeta(t,s) = \frac{s}{1+s} t$ for all $s, t \in \mathbb{R}^+$;
- (*iii*) $\zeta(t,s) = s kt$ for all $t, s \in \mathbb{R}^+$, where k > 1;

(*iv*)
$$\zeta(t,s) = \frac{1}{1+s} - (1+t)$$
 for all $s, t \in \mathbb{R}^+$.

(v) $\zeta(t,s) = \frac{1}{k+s} - t$ for all $s, t \in \mathbb{R}^+$ where k > 1.

Definition 1.11. [21] Let (X, d) be a metric space and $f : X \to X$ be a selfmap of X. We say that f is a \mathcal{Z} -contraction with respect to ζ if there exists a simulation function ζ such that

$$\zeta(d(fx, fy), d(x, y)) \ge 0$$

for all $x, y \in X$.

Theorem 1.12. [21] Let (X, d) be a complete metric space and $f : X \to X$ be a \mathcal{Z} -contraction with respect to a certain simulation function ζ . Then for every $x_0 \in X$, the Picard sequence $\{f^n x_0\}$ converges in X and lim $f^n x_0 = u(say)$ in X and u is the unique fixed point of f in X.

Recently, Olgun, Bicer and Alyildiz [24] proved the following result in complete metric spaces.

Theorem 1.13. [24] Let (X,d) be a complete metric space and $f: X \to X$ be a selfmap on X. If there exists a simulation function ζ such that

$$\zeta(d(fx, fy), M(x, y)) \ge 0$$

for all $x, y \in X$, where $M(x, y) = \max\{d(x, y), d(x, fx), d(y, fy), \frac{d(x, fy) + d(y, fx)}{2}\}$, then for every $x_0 \in X$, the Picard sequence $\{f^n x_0\}$ converges in X and $\lim_{n \to \infty} f^n x_0 = u(say)$ in X and u is the unique fixed point of f in X.

The following theorem is due to Kumam, Gopal and Budhia [22].

Theorem 1.14. [22] Let (X,d) be a complete metric space and $f: X \to X$ be a selfmap on X. If there exists a simulation function ζ such that

$$\frac{1}{2}d(x,fx) < d(x,y) \implies \zeta(d(fx,fy),d(x,y)) \ge 0$$

for all $x, y \in X$, then for every $x_0 \in X$, the Picard sequence $\{x_n\}$, where $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ converges to the unique fixed point of f.

In 2018, Padcharoen, Kumam, Saipara and Chaipunya [25] proved the following theorem in complete metric spaces.

Theorem 1.15. [25] Let (X, d) be a complete metric space and $f : X \to X$ be a selfmap on X. If there exists a simulation function ζ such that

$$\frac{1}{2}d(x,fx) < d(x,y) \implies \zeta(d(fx,fy),M(x,y)) \ge 0$$

for all $x, y \in X$, where $M(x, y) = \max\{d(x, y), d(x, fx), d(y, fy), \frac{d(x, fy) + d(y, fx)}{2}\}$, then for every $x_0 \in X$, the Picard sequence $\{x_n\}$, where $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ converges to the unique fixed point of f.

Motivated by the works of Kumam, Gopal and Budhia [23] and

Padcharoen, Kumam, Saipara and Chaipunya [25], we extend Theorem 1.14 and Theorem 1.15 to *b*-metric spaces for the maps satisfying Suzuki \mathcal{Z} -contraction type maps.

In Section 2, we introduce Suzuki \mathcal{Z} -contraction type (I) maps, Suzuki \mathcal{Z} -contraction type (II) maps, for a single selfmap and provide examples of these maps. In Section 3, we prove the existence and uniqueness of fixed points of Suzuki \mathcal{Z} -contraction type maps. Examples are provided in support of our results in Section 4.

2. Suzuki \mathcal{Z} -contraction type maps

The following we introduce Suzuki \mathcal{Z} -contraction type (I) and Suzuki \mathcal{Z} -contraction type (II) maps for a single selfmap in *b*-metric spaces as follows:

Definition 2.1. Let (X, d) be a *b*-metric space with coefficient $s \ge 1$ and $f: X \to X$ be a selfmap. We say that f is a Suzuki \mathcal{Z} -contraction type (I) map, if there exists a simulation function ζ such that

$$\frac{1}{2s}d(x,fx) < d(x,y) \text{ implies that } \zeta(s^4d(fx,fy),M_1(x,y)) \ge 0$$
(2.1.1)

for all distinct $x, y \in X$, where

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,fy), \frac{d(x,fy) + d(y,fx)}{2s}\}.$$

Remark 2.2. It is clear that from definition of simulation function that $\zeta(u, v) < 0$, for all $u \ge v > 0$. Therefore if f satisfies (2.1.1), then

$$\frac{1}{2s}d(x,fx) < d(x,y) \text{ implies that } s^4d(fx,fy) < M_1(x,y).$$

for all distinct $x, y \in X$.

Example 2.3. Let X = (0, 1) and let $d : X \times X \to \mathbb{R}^+$ defined by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ (x + y)^2 & \text{if } x \neq y. \end{cases}$ Then clearly (X, d) is a *b*-metric space with coefficient s = 2.

We define $f: X \to X$ by $f(x) = \frac{1}{16(1+x)}$ for all $x \in (0,1)$ and $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$

by $\zeta(t,s) = \frac{1}{4}s - t, t, s \ge 0$. Without loss of generality, we assume that $y \le x$. We have

$$\frac{1}{2s}d(x,fx) = \frac{1}{4}(x + \frac{x}{16(1+x)})^2 \le \frac{1}{4}(x + \frac{x}{(1+x)})^2 \le (x+y)^2 = d(x,y)$$

Here

$$M_{1}(x,y) = \max\{d(x,y), d(x,fx), d(y,fy), \frac{d(x,fy)+d(y,fx)}{2s}\} = \max\{(x+y)^{2}, (x+\frac{x}{16(1+x)})^{2}, (y+\frac{y}{16(1+y)})^{2}, \frac{(x+\frac{y}{16(1+y)})^{2}+(y+\frac{x}{16(1+x)})^{2}}{4}\}.$$

Now we consider

$$s^{4}d(fx, fy) = 16\left(\frac{x}{16(1+x)} + \frac{y}{16(1+y)}\right)^{2} = \frac{1}{16}\left(\frac{x}{(1+x)} + \frac{y}{(1+y)}\right)^{2} \\ \leq \frac{1}{16}\left(\frac{x}{(1+x)} + x\right)^{2} \leq \frac{1}{4}(x+y)^{2} \\ \leq \frac{1}{4}d(x,y) \leq \frac{1}{4}M_{1}(x,y).$$

Therefore f is a Suzuki \mathcal{Z} -contraction type (I) map.

Definition 2.4. Let (X, d) be a *b*-metric space with coefficient $s \ge 1$ and $f: X \to X$ be a selfmap. We say that f is a Suzuki \mathcal{Z} -contraction type (II) map, if there exists a simulation function ζ such that

$$\frac{1}{2s}d(x,fx) < d(x,y) \text{ implies that } \zeta(s^4d(fx,fy), M_2(x,y)) \ge 0$$
(2.4.1)

for all distinct $x, y \in X$, where

$$M_2(x,y) = \max\{d(x,y), \frac{d(y,fy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\}.$$

Remark 2.5. It is clear that from definition of simulation function that $\zeta(u, v) < 0$, for all $u \ge v > 0$. Therefore if f satisfies (2.4.1), then

$$\frac{1}{2s}d(x,fx) < d(x,y) \text{ implies that } s^4d(fx,fy) < M_2(x,y),$$

for all distinct $x, y \in X$.

Example 2.6. Let X = (0,1) and let $d: X \times X \to \mathbb{R}^+$ defined by $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ (x+y)^2 & \text{if } x \neq y. \end{cases}$ It is clear that (X,d) is a b-metric space with coefficient s = 2. Let $f: X \to X$ by $f(x) = \frac{x(10+x)}{256}$ for all $x \in (0,1)$ and $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty, \infty)$ by $\zeta(t,s) = \frac{1}{4}s - t, t \geq 0, s \geq 0$. Without loss of generality, we assume that $y \leq x$. We have

$$\frac{1}{2s}d(x,fx) = \frac{1}{4}(x + \frac{x(10+x)}{256})^2 \le \frac{1}{4}(x + \frac{x(10+x)}{16})^2 \le (x+y)^2 = d(x,y).$$

Here

$$M_{2}(x,y) = \max\{d(x,y), \frac{d(y,fy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^{2}(1+d(x,y))}\}$$
$$= \max\{(x+y)^{2}, \frac{(y+\frac{y(10+y)}{256})^{2}[1+(x+\frac{x(10+x)}{256})^{2}]}{1+(x+y)^{2}}, \frac{(y+\frac{x(10+x)}{256})^{2}[1+(x+\frac{x(10+x)}{256})^{2}]}{4(1+(x+y)^{2})}\}.$$

Now we consider

$$s^{4}d(fx, fy) = 16\left(\frac{x(10+x)}{256} + \frac{y(10+y)}{256}\right)^{2} = \frac{1}{16}\left(\frac{x(10+x)}{16} + \frac{y(10+y)}{16}\right)^{2}$$
$$\leq \frac{1}{16}\left(\frac{x(10+x)}{16} + y\right)^{2} \leq \frac{1}{4}(x+y)^{2} \leq \frac{1}{4}d(x,y) \leq \frac{1}{4}M_{2}(x,y).$$

Therefore f is a Suzuki \mathcal{Z} -contraction type (II) map.

3. Main results

Theorem 3.1. Let (X, d) be a complete b-metric space with coefficient $s \ge 1$ and $f: X \to X$ be a Suzuki \mathcal{Z} -contraction type (I) map. Then f has a unique fixed point in X.

Proof. We take $x_0 \in X$ and let $\{x_n\}$ be the Picard sequence, that is, $x_n = fx_{n-1} = f^n x_0$ for $n \in \mathbb{N}$. If there exists $n \in \mathbb{N}$ such that $d(x_n, fx_n) = 0$ then $x = x_n$ becomes a fixed point of f, which completes the proof. So, without loss of generality, we suppose that $d(x_n, fx_n) > 0$ for all $n = 0, 1, 2, \ldots$. Since

$$\frac{1}{2s}d(x_n, fx_n) \le d(x_n, x_{n+1}),$$

from (2.1.1), we have

$$\zeta(s^4 d(x_{n+1}, x_{n+2}), M_1(x_n, x_{n+1})) = \zeta(s^4 d(fx_n, fx_{n+1}), M_1(x_n, x_{n+1})) \ge 0,$$
(3.1.1)

where

$$M_{1}(x_{n}, x_{n+1}) = \max\{d(x_{n}, x_{n+1}), d(x_{n}, fx_{n}), d(x_{n+1}, fx_{n+1}), \frac{1}{2s}[d(x_{n}, fx_{n+1}) + d(x_{n+1}, fx_{n})]\}$$

= $\max\{d(x_{n}, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_{n}, x_{n+2})}{2s}\}$
= $\max\{d(x_{n}, x_{n+1}), d(x_{n+1}, x_{n+2})\}.$

If $d(x_n, x_{n+1}) < d(x_{n+1}, x_{n+2})$ then $M_1(x_n, x_{n+1}) = d(x_{n+1}, x_{n+2})$. Therefore from (3.1.1), we have

$$0 \leq \zeta(s^4 d(x_{n+1}, x_{n+2}), M_1(x_n, x_{n+1})) = \zeta(s^4 d(x_{n+1}, x_{n+2}), d(x_{n+1}, x_{n+2})) < d(x_{n+1}, x_{n+2}) - s^4 d(x_{n+1}, x_{n+2}),$$

which is a contradiction. Therefore $d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$ for all n = 0, 1, 2, ...Hence $\{d(x_n, x_{n+1})\}$ is a decreasing sequence of nonnegative real sequence. Thus there exists $r \ge 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$.

Suppose that r > 0. By using the condition (ζ_3) with $t_n = d(x_{n+1}, x_{n+2})$ and $s_n = d(x_n, x_{n+1})$, we have

$$0 \leq \limsup_{n \to \infty} \zeta(s^4 d(x_{n+1}, x_{n+2}), M_1(x_n, x_{n+1})) \\= \limsup_{n \to \infty} \zeta(s^4 d(x_{n+1}, x_{n+2}), d(x_n, x_{n+1})) < 0$$

a contradiction. Therefore

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(3.1.2)

Now we prove that $\{x_n\}$ is a *b*-Cauchy sequence.

On the contrary, suppose that $\{x_n\}$ is not b-Cauchy.

Case (i). s = 1.

In this case, by Lemma 1.5 there exist an $\epsilon > 0$ and sequence of positive integers $\{n_k\}$ and $\{m_k\}$ with $n_k > m_k \ge k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$ and $d(x_{m_k}, x_{n_k-1}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.5. Suppose that there exists a $k \ge k_1$ such that

$$\frac{1}{2}d(x_{m_k}, x_{m_k+1}) > d(x_{m_k}, x_{n_k}).$$
(3.1.3)

On letting as $k \to \infty$ in (3.1.3), we get that $\epsilon \leq 0$, which is a contradiction.

Therefore $\frac{1}{2}d(x_{m_k}, x_{m_k+1}) \le d(x_{m_k}, x_{n_k})$ and from (2.1.1), we have

$$\zeta(d(fx_{m_k}, fx_{n_k}), M_1(x_{m_k}, x_{n_k})) \ge 0,$$

where

$$M_1(x_{m_k}, x_{n_k}) = \max\{d(x_{m_k}, x_{n_k}), d(x_{m_k}, fx_{m_k}), d(x_{n_k}, fx_{n_k}), \frac{1}{2}[d(x_{n_k}, fx_{m_k}) + d(x_{m_k}, fx_{n_k})]\}.$$

On taking limits as $k \to \infty$ and using (3.1.2), we get

$$\lim_{n \to \infty} M_1(x_{m_k}, x_{n_k}) = \max\{\epsilon, 0, 0, \epsilon\} = \epsilon$$

By using (ζ_3) with $t_n = d(x_{m_k+1}, x_{n_k+1})$ and $s_n = M_1(x_{m_k}, x_{n_k})$, we have

$$0 \le \limsup_{k \to \infty} \zeta(d(x_{m_k+1}, x_{n_k+1}), M_1(x_{m_k}, x_{n_k})) < 0,$$

a contradiction.

Case (ii). s > 1.

In this case, by Lemma 1.6 there exist an $\epsilon > 0$ and sequences of positive integers $\{n_k\}$ and $\{m_k\}$ with $n_k > m_k \ge k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$ and $d(x_{m_k}, x_{n_k-1}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.6. Suppose that there exists a $k \ge k_1$ such that

$$\frac{1}{2s}d(x_{m_k}, x_{m_k+1}) > d(x_{m_k}, x_{n_k}).$$
(3.1.4)

On letting limit superior as $k \to \infty$ in (3.1.4), we get that $\epsilon \leq 0$, which is a contradiction. Therefore $\frac{1}{2s}d(x_{m_k}, x_{m_k+1}) \leq d(x_{m_k}, x_{n_k})$ and from (2.1.1), we have

$$\zeta(s^4 d(fx_{m_k}, fx_{n_k}), M_1(x_{m_k}, x_{n_k})) \ge 0$$

where

$$M_1(x_{m_k}, x_{n_k}) = \max\{d(x_{m_k}, x_{n_k}), d(x_{m_k}, fx_{m_k}), d(x_{n_k}, fx_{n_k}), \frac{1}{2s}[d(x_{n_k}, fx_{m_k}) + d(x_{m_k}, fx_{n_k})]\}$$

On taking limit superior as $k \to \infty$ and using (3.1.2), we get

$$\lim_{n \to \infty} M_1(x_{m_k}, x_{n_k}) \le \max\{s\epsilon, 0, 0, s\epsilon\} = s\epsilon.$$

Now we have

$$0 \leq \limsup_{k \to \infty} \zeta(s^4 d(fx_{m_k}, fx_{n_k}), M_1(x_{m_k}, x_{n_k})) \\ \leq \limsup_{k \to \infty} [M_1(x_{m_k}, x_{n_k}) - s^4 d(x_{m_k+1}, x_{n_k+1})] \\ = \limsup_{k \to \infty} M_1(x_{m_k}, x_{n_k}) - s^4 \liminf_{k \to \infty} d(x_{m_k+1}, x_{n_k+1}) \\ \leq s\epsilon - s^4 \frac{\epsilon}{s^2},$$

which is a contradiction. Therefore by Case (i) and Case (ii), we have $\{x_n\}$ is a *b*-Cauchy sequence in *X*. Since *X* is *b*-complete, there exists $x \in X$ such that $\lim_{n \to \infty} x_n = x$.

Now we prove that x is a fixed point of f. Suppose that $x \neq fx$. We now show that

either
$$(a): \frac{1}{2s}d(x_n, x_{n+1}) \le d(x_n, x)$$
 (or) $(b): \frac{1}{2s}d(x_{n+1}, x_{n+2}) \le d(x_{n+1}, x)$ (3.1.5)

hold.

On the contrary, suppose that

$$\frac{1}{2s}d(x_n, x_{n+1}) > d(x_n, x) \text{ and } \frac{1}{2s}d(x_{n+1}, x_{n+2}) > d(x_{n+1}, x) \text{ hold for some } n = \{0, 1, 2, \ldots\}$$

By *b*-triangular property, we have

$$\begin{aligned} d(x_n, x_{n+1}) &\leq s[d(x_n, x) + d(x, x_{n+1})] \\ &< s\frac{1}{2s}[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})] \\ &= \frac{1}{2}[d(x_n, x_{n+1}) + d(x_n, x_{n+1})] \\ &= d(x_n, x_{n+1}), \end{aligned}$$

which is a contradiction. Therefore the inequality (3.1.5) holds. **Subcase (a).** Suppose $\frac{1}{2s}d(x_n, x_{n+1}) \leq d(x_n, x)$. Since $\frac{1}{2s}d(x_n, fx_n) \leq d(x_n, x)$, from the inequality (2.1.1), we have

$$\zeta(s^4 d(fx_n, fx), M_1(x_n, x)) \ge 0,$$

where

$$M_1(x_n, x) = \max\{d(x_n, x), d(x_n, fx_n), d(x, fx), \frac{1}{2s}[d(x_n, fx) + d(x, fx_n)]\}.$$

On taking limit superior as $n \to \infty$, we get

$$\limsup_{n \to \infty} M_1(x_n, x) \le \max\{0, 0, d(x, fx), \frac{1}{2s} s d(x, fx)\} = d(x, fx).$$

Therefore

$$0 \leq \limsup_{n \to \infty} \zeta(s^4 d(fx_n, fx), M_1(x_n, x))$$

=
$$\limsup_{n \to \infty} M_1(x_n, x) - \liminf_{n \to \infty} s^4 d(x_{n+1}, fx)$$

$$\leq d(x, fx) - s^4 \frac{d(x, fx)}{s},$$

a contradiction. Therefore x = fx. **Subcase (b).** Suppose $\frac{1}{2s}d(x_{n+1}, x_{n+2}) \leq d(x_{n+1}, x)$. Since $\frac{1}{2s}d(x_{n+1}, fx_{n+1}) \leq d(x_{n+1}, x)$, from the inequality (2.1.1), we have

$$\zeta(s^4 d(fx_{n+1}, fx), M_1(x_{n+1}, x)) \ge 0.$$

Following on the similar lines as in Subcase (a), we have x is a fixed point of f. We now show that f has unique fixed point in X. Let x and y be two fixed points of f with $x \neq y$. Since $\frac{1}{2s}d(x, fx) < d(x, y)$, from the inequality (2.1.1), we have

$$\zeta(s^4 d(fx, fy), M_1(x, y)) \ge 0,$$

where

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,fy), \frac{1}{2s}[d(x,fy) + d(y,fx)]\} = d(x,y)$$

Therefore

$$0 \leq \limsup_{n \to \infty} \zeta(s^4 d(fx, fy), M_1(x, y)) \\= \limsup_{n \to \infty} M(x, y) - \liminf_{n \to \infty} s^4 d(x, y) \\\leq d(x, y) - s^4 d(x, y),$$

a contradiction.

Therefore x is the unique fixed point of f in X.

Even though, the proof of the following theorem is as that of Theorem 3.1, the importance of the rational term $\frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}$ in the inequality (2.4.1) is established in Example 4.3.

Theorem 3.2. Let (X, d) be a complete b-metric space with coefficient $s \ge 1$ and $f : X \to X$ be a Suzuki \mathcal{Z} -contraction type (II) map. Then f has a unique fixed point in X.

Proof. Take $x_0 = x \in X$ and let $\{x_n\}$ be the Picard sequence, that is, $x_n = fx_{n-1} = f^n x_0$ for all $n \in \mathbb{N}$. Without loss of generality, we suppose that $d(x_n, fx_n) > 0$ for n = 0, 1, 2, ...We have $\frac{1}{2s}d(x_n, fx_n) \leq d(x_n, x_{n+1})$. From (2.4.1), we have

$$\zeta(s^4 d(x_{n+1}, x_{n+2}), M_2(x_n, x_{n+1})) = \zeta(s^4 d(fx_n, fx_{n+1}), M_2(x_n, x_{n+1})) \ge 0$$
(3.2.1)

where

$$M_2(x_n, x_{n+1}) = \max\{d(x_n, x_{n+1}), \frac{d(x_{n+1}, fx_{n+1})[1+d(x_n, fx_n)]}{1+d(x_n, x_{n+1})}, \frac{d(x_{n+1}, fx_n)[1+d(x_n, fx_n)]}{s^2(1+d(x_n, x_{n+1}))}\} = \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}.$$

If $d(x_n, x_{n+1}) < d(x_{n+1}, x_{n+2})$ then $M_2(x_n, x_{n+1}) = d(x_{n+1}, x_{n+2})$. Therefore from (3.2.1), we have

$$0 \leq \zeta(s^4 d(x_{n+1}, x_{n+2}), M_2(x_n, x_{n+1})) = \zeta(s^4 d(x_{n+1}, x_{n+2}), d(x_{n+1}, x_{n+2})) < d(x_{n+1}, x_{n+2}) - s^4 d(x_{n+1}, x_{n+2}),$$

a contradiction. Therefore $d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$ for all n = 0, 1, 2, ... Hence $\{d(x_n, x_{n+1})\}$ is a decreasing nonnegative sequence of reals.

Thus there exists $r \ge 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$. Suppose that r > 0. By using the condition (ζ_3) with $t_n = d(x_{n+1}, x_{n+2})$ and $s_n = d(x_n, x_{n+1})$, we have

$$0 \le \limsup_{n \to \infty} \zeta(s^4 d(x_{n+1}, x_{n+2}), M_2(x_n, x_{n+1})) = \limsup_{n \to \infty} \zeta(s^4 d(x_{n+1}, x_{n+2}), d(x_n, x_{n+1})) < 0,$$

a contradiction. Therefore

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0. \tag{3.2.2}$$

We now prove that $\{x_n\}$ is a *b*-Cauchy sequence. On the contrary suppose that $\{x_n\}$ is not *b*-Cauchy. **Case (i).** s = 1.

In this case, by Lemma 1.5 there exist an $\epsilon > 0$ and sequence of positive integers $\{n_k\}$ and $\{m_k\}$ with $n_k > m_k \ge k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$ and $d(x_{m_k}, x_{n_k-1}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.5. Suppose that there exists a $k \ge k_1$ such that

$$\frac{1}{2}d(x_{m_k}, x_{m_k+1}) > d(x_{m_k}, x_{n_k}).$$
(3.2.3)

On letting as $k \to \infty$ in (3.2.3), we get that $\epsilon \leq 0$, which is a contradiction.

Therefore $\frac{1}{2}d(x_{m_k}, x_{m_k+1}) \le d(x_{m_k}, x_{n_k})$ and from (2.4.1), we have

$$\zeta(d(fx_{m_k}, fx_{n_k}), M_2(x_{m_k}, x_{n_k})) \ge 0$$

where

$$M_2(x_{m_k}, x_{n_k}) = \max\{d(x_{m_k}, x_{n_k}), \frac{d(x_{n_k}, fx_{n_k})[1 + d(x_{m_k}, fx_{m_k})]}{1 + d(x_{m_k}, x_{n_k})}, \frac{d(x_{n_k}, fx_{m_k})[1 + d(x_{m_k}, fx_{m_k})]}{1 + d(x_{m_k}, x_{n_k})}\}.$$

On taking limits as $k \to \infty$ and using (3.2.2), we get

$$\lim_{n \to \infty} M(x_{m_k}, x_{n_k}) = \max\{\epsilon, 0, \frac{\epsilon}{1+\epsilon}\} = \epsilon.$$

By using (ζ_3) with $t_n = d(x_{m_k+1}, x_{n_k+1})$ and $s_n = M_2(x_{m_k}, x_{n_k})$, we have

$$0 \le \limsup_{k \to \infty} \zeta(d(x_{m_k+1}, x_{n_k+1}), M_2(x_{m_k}, x_{n_k})) < 0$$

which is a contradiction.

Case (ii). s > 1.

In this case, by Lemma 1.6 there exist an $\epsilon > 0$ and and sequence of positive integers $\{n_k\}$ and $\{m_k\}$ with $n_k > m_k \ge k$ such that $d(x_{m_k}, x_{n_k}) \ge \epsilon$ and $d(x_{m_k}, x_{n_k-1}) < \epsilon$ satisfying (i)-(iv) of Lemma 1.6. Suppose that there exists a $k \ge k_1$ such that

$$\frac{1}{2s}d(x_{m_k}, x_{m_k+1}) > d(x_{m_k}, x_{n_k}).$$
(3.2.4)

On taking limit superior as $k \to \infty$ in (3.2.4), we get that $\epsilon \leq 0$, which is a contradiction.

Therefore $\frac{1}{2s}d(x_{m_k}, x_{m_k+1}) \le d(x_{m_k}, x_{n_k})$ and from (2.4.1), we have

$$\zeta(s^4 d(fx_{m_k}, fx_{n_k}), M_2(x_{m_k}, x_{n_k})) \ge 0,$$

where

$$\begin{split} M_2(x_{m_k}, x_{n_k}) &= \max\{d(x_{m_k}, x_{n_k}), \frac{d(x_{n_k}, fx_{n_k})[1 + d(x_{m_k}, fx_{m_k})]}{1 + d(x_{m_k}, x_{n_k})} \\ & \frac{d(x_{n_k}, fx_{m_k})[1 + d(x_{m_k}, fx_{m_k})]}{s^2(1 + d(x_{m_k}, x_{n_k}))}\}. \end{split}$$

On taking limit superior as $k \to \infty$ and using (3.2.2), we get

$$\lim_{k \to \infty} M_2(x_{m_k}, x_{n_k}) \le \max\{s\epsilon, 0, \frac{s^2\epsilon}{s^2(1+\epsilon)}\} = s\epsilon$$

Now we have

$$0 \leq \limsup_{k \to \infty} \zeta(s^4 d(fx_{m_k}, fx_{n_k}), M_2(x_{m_k}, x_{n_k}))$$

$$\leq \limsup_{k \to \infty} [M_2(x_{m_k}, x_{n_k}) - s^4 d(x_{m_k+1}, x_{n_k+1})]$$

$$= \limsup_{k \to \infty} M_2(x_{m_k}, x_{n_k}) - s^4 \liminf_{k \to \infty} d(x_{m_k+1}, x_{n_k+1})$$

$$\leq s\epsilon - s^4 \frac{\epsilon}{s^2},$$

which is a contradiction. Therefore by Case (i) and Case (ii), we have $\{x_n\}$ is a *b*-Cauchy sequence in *X*. Since *X* is *b*-complete, there exists $x \in X$ such that $\lim_{n \to \infty} x_n = x$.

Now we prove that x is a fixed point of f. Suppose that $x \neq fx$. We now show that either

(a) :
$$\frac{1}{2s}d(x_n, x_{n+1}) \le d(x_n, x)$$
 or (b) : $\frac{1}{2s}d(x_{n+1}, x_{n+2}) \le d(x_{n+1}, x)$ (3.2.5)

hold.

On the contrary suppose that

$$\frac{1}{2s}d(x_n, x_{n+1}) > d(x_n, x) \text{ and } \frac{1}{2s}d(x_{n+1}, x_{n+2}) > d(x_{n+1}, x) \text{ for some } n = \{0, 1, 2, \ldots\}$$

By *b*-triangular property, we have

$$\begin{aligned} d(x_n, x_{n+1}) &\leq s[d(x_n, x) + d(x, x_{n+1})] < s\frac{1}{2s}[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})] \\ &= \frac{1}{2}[d(x_n, x_{n+1}) + d(x_n, x_{n+1})] = d(x_n, x_{n+1}), \end{aligned}$$

which is a contradiction. Therefore the inquality (3.2.5) holds. **Subcase (a).** Suppose $\frac{1}{2s}d(x_n, x_{n+1}) \leq d(x_n, x)$. Since $\frac{1}{2s}d(x_n, fx_n) \leq d(x_n, x)$, from the inequality (2.4.1), we have

$$\zeta(s^4 d(fx_n, fx), M_2(x_n, x)) \ge 0,$$

where

$$M_2(x_n, x) = \max\{d(x_n, x), \frac{d(x, fx)[1 + d(x_n, fx_n)]}{1 + d(x_n, x)}, \frac{d(x, fx_n)[1 + d(x_n, fx_n)]}{s^2(1 + d(x_n, x))}\}.$$

On taking limit superior as $n \to \infty$, we get

$$\limsup_{n \to \infty} M_2(x_n, x) \le \max\{0, d(x, fx), \frac{d(x, fx)}{s}\} = d(x, fx).$$

Therefore

$$0 \leq \limsup_{\substack{n \to \infty \\ n \to \infty}} \zeta(s^4 d(fx_n, fx), M_2(x_n, x))$$

$$= \limsup_{\substack{n \to \infty \\ s \to \infty}} M_2(x_n, x) - \liminf_{\substack{n \to \infty}} s^4 d(x_{n+1}, fx)$$

$$\leq d(x, fx) - s^4 \frac{d(x, fx)}{s},$$

a contradiction. Therefore x = fx. **Subcase (b).** Suppose $\frac{1}{2s}d(x_{n+1}, x_{n+2}) \leq d(x_{n+1}, x)$. Since $\frac{1}{2s}d(x_{n+1}, fx_{n+1}) \leq d(x_{n+1}, x)$, from the inequality (2.4.1), we have

$$\zeta(s^4 d(fx_{n+1}, fx), M_2(x_{n+1}, x)) \ge 0$$

On the similar lines as in Subcase (a), here also it follows that x is a fixed point of f.

Uniqueness of fixed point of f follows as in the proof of Theorem 3.1.

4. Examples

The following is an example in support of Theorem 3.1.

Example 4.1. Let $X = \mathbb{R}^+$ and let $d : X \times X \to \mathbb{R}^+$ defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 4 & \text{if } x, y \in [0,1], \\ 5 + \frac{1}{x+y} & \text{if } x, y \in (1,\infty), \\ \frac{66}{25} & \text{otherwise.} \end{cases}$$

Then clearly (X,d) is a complete b-metric space with coefficient $s = \frac{25}{24}$. Here we observe that when $x = \frac{10}{9}, z = 1 \in [1,\infty)$ and $y \in (0,1)$, we have $d(x,z) = 5 + \frac{1}{x+z} = \frac{104}{19}$ and $d(x,y) + d(y,z) = \frac{66}{25} + \frac{66}{25} = \frac{132}{25}$ so that $d(x,z) \neq d(x,y) + d(y,z)$. Hence d is a b-metric with $s = \frac{25}{24}$ but not a metric.

We define $f: X \to X$ by $f(x) = \begin{cases} 2 & \text{if } x \in [0,1) \\ \frac{1}{x} & \text{if } x \in [1,\infty). \end{cases}$ and $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty,\infty)$ by $\zeta(t,s) = \frac{99}{100}s - t$, $t, s \in \mathbb{R}^+$.

Then ζ is a simulation function. Without loss of generality, we assume that $y \leq x$. **Case (i).** $x, y \in [0, 1)$. Since $\frac{1}{2s}d(x, fx) = \frac{12}{25}(\frac{66}{25}) \leq 4 = d(x, y)$, we have d(fx, fy) = 0 and clearly the inequality (2.1.1) holds in this case.

Case (ii). $x, y \in (1, \infty)$.

Since $\frac{1}{2s}d(x,fx) = \frac{12}{25}(\frac{66}{25}) \le 5 + \frac{1}{(x+y)} = d(x,y)$, we have $d(fx,fy) = 4, d(x,y) = 5 + \frac{1}{(x+y)}, d(x,fx) = \frac{66}{25}, d(y,fy) = \frac{66}{25}, d(x,fy) = \frac{66}{25}, d(y,fx) = \frac{66}{25}$ and

$$M_1(x,y) = \max\{d(x,y), d(x,fx), d(y,fy,\frac{1}{2s}[d(x,fy) + d(y,fx)])\}$$
$$= \max\{5 + \frac{1}{(x+y)}, \frac{66}{25}, \frac{66}{25}, \frac{12}{25}[\frac{66}{25} + \frac{66}{25}]\} = 5 + \frac{1}{(x+y)}.$$

We consider

$$\zeta(s^4 d(fx, fy), M_1(x, y)) = \frac{99}{100} M_1(x, y) - s^4 d(fx, fy) = \frac{99}{100} (5 + \frac{1}{(x+y)}) - (\frac{25}{24})^4 (4) \ge 0$$

 $\begin{aligned} \textbf{Case (iii).} & x \in (1,\infty), y \in [0,1).\\ Since \ \frac{1}{2s}d(x,fx) &= \frac{12}{25}(\frac{66}{25}) \leq \frac{66}{25} = d(x,y).\\ d(fx,fy) &= \frac{66}{25}, d(x,y) = \frac{66}{25}, d(x,fx) = \frac{66}{25}, d(y,fy) = \frac{66}{25}, d(x,fy) = 5 + \frac{1}{(x+y)}, d(y,fx) = 4 \text{ and} \\ M_1(x,y) &= \max\{d(x,y), d(x,fx), d(y,fy), \frac{1}{2s}[d(x,fy) + d(y,fx)]\}\\ &= \max\{\frac{66}{25}, \frac{66}{25}, \frac{66}{25}, \frac{62}{25}, \frac{12}{25}[5 + \frac{1}{(x+y)} + 4]\} = \frac{12}{25}[9 + \frac{1}{(x+y)}]. \end{aligned}$

We consider

$$\begin{aligned} \zeta(s^4 d(fx, fy), M_1(x, y)) &= \frac{99}{100} M_1(x, y) - s^4 d(fx, fy) \\ &= \frac{99}{100} (\frac{12}{25} [9 + \frac{1}{(x+y)}]) - (\frac{25}{24})^4 (\frac{66}{25}) \ge 0. \end{aligned}$$

$$\begin{aligned} \textbf{Case (iv). } x &= 1, y \in [0, 1).\\ Since \ \frac{1}{2s}d(x, fx) &= 0 < 4 = d(x, y).\\ d(fx, fy) &= \frac{66}{25}, d(x, y) = 4, d(x, fx) = 0, d(y, fy) = \frac{66}{25}, d(x, fy) = \frac{66}{25}, d(y, fx) = 4 \text{ and}\\ M_1(x, y) &= \max\{d(x, y), d(x, fx), d(y, fy), \frac{1}{2s}[d(x, fy) + d(y, fx)]\}\\ &= \max\{4, 0, \frac{66}{25}, \frac{12}{25}[\frac{66}{25} + 4]\} = 4. \end{aligned}$$

We consider

$$\begin{aligned} \zeta(s^4 d(fx, fy), M_1(x, y)) &= \frac{99}{100} M_1(x, y) - s^4 d(fx, fy) \\ &= \frac{99}{100} (4) - (\frac{25}{24})^4 (\frac{66}{25}) \ge 0. \end{aligned}$$

From all the above cases, f is a Suzuki \mathcal{Z} -contraction type (I) map. Therefore f satisfies all the hypotheses of Theorem 3.1 and 1 is the unique fixed point of f.

Remark 4.2. Theorem 3.1 and Example 4.1 extend and generalize Theorem 1.14 to *b*-metric spaces. Also Theorem 3.1 extends Theorem 1.15 to *b*-metric spaces.

The following is an example in support of Theorem 3.2.

Example 4.3. Let $X = [0, \infty)$ and let $d: X \times X \to \mathbb{R}^+$ defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 4 & \text{if } x, y \in [0,1], \\ 5 + \frac{1}{x+y} & \text{if } x, y \in (1,\infty), \\ \frac{27}{10} & \text{otherwise.} \end{cases}$$

Then clearly (X,d) is a complete b-metric space with coefficient $s = \frac{489}{480}$. Here we observe that when x = $\frac{11}{10}, z = \frac{12}{10} \in (1, \infty)$ and $y \in (0, 1]$, we have

$$d(x,z) = 5 + \frac{1}{x+z} = \frac{125}{23}$$
 and $d(x,y) + d(y,z) = \frac{27}{10} + \frac{27}{10} = \frac{54}{10}$

so that $d(x,z) \neq d(x,y) + d(y,z)$. Hence d is a b-metric with $s = \frac{489}{480}$ but not a metric. We define $f: X \to X$ by $f(x) = \begin{cases} 2 & \text{if } x \in [0,1) \\ \frac{2}{x^2+1} & \text{if } x \in [1,\infty). \end{cases}$ We define $\zeta: \mathbb{R}^+ \times \mathbb{R}^+ \to (-\infty,\infty)$ by $\zeta(s,t) = \frac{99}{100}t - s, t \ge 0, s \ge 0$. Then ζ is a simulation function.

Without loss of generality, we assume that $x \ge y$.

Case (i). $x, y \in [0, 1)$. $\frac{1}{2s}d(x, fx) = (\frac{480}{978})(\frac{27}{10}) \le 4 = d(x, y)$. Since d(fx, fy) = 0 the inequality (2.4.1) holds in this case. Case (ii). $x, y \in (1, \infty)$. We have $\frac{1}{2s}d(x, fx) = (\frac{480}{978})(\frac{27}{10}) \le 5 + \frac{1}{x+y} = d(x, y)$,

$$d(fx, fy) = 4, d(x, y) = 5 + \frac{1}{x + y}, d(x, fx) = \frac{27}{10}, d(y, fy) = \frac{27}{10}, d(y, fx) = \frac{27}{10},$$

and

$$\begin{split} M_2(x,y) &= \max\{d(x,y), \frac{d(y,fy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\} \\ &= \max\{5 + \frac{1}{x+y}, \frac{\frac{27}{10}[1+\frac{27}{10}]}{6+\frac{1}{x+y}}, \frac{\frac{27}{10}[1+\frac{27}{10}]}{(\frac{489}{480})^2(6+\frac{1}{x+y})}\} \\ &= 5 + \frac{1}{x+y}. \end{split}$$

We consider

$$\begin{aligned} \zeta(s^4 d(fx, fy), M_2(x, y)) &= \frac{99}{100} M_2(x, y) - s^4 d(fx, fy) \\ &= \frac{99}{100} (5 + \frac{1}{x+y}) - (\frac{489}{480})^4 (4) \ge 0. \end{aligned}$$

Case (iii). $x \in (1, \infty), y \in [0, 1)$. We have $\frac{1}{2s}d(x, fx) = (\frac{480}{978})(\frac{27}{10}) \le \frac{27}{10} = d(x, y)$,

$$d(fx, fy) = \frac{27}{10}, d(x, y) = \frac{27}{10}, d(x, fx) = \frac{27}{10}, d(y, fy) = \frac{27}{10}, d(y, fx) = 4$$

and

$$\begin{split} M_2(x,y) &= \max\{d(x,y), \frac{d(y,fy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\} \\ &= \max\{\frac{27}{10}, \frac{\frac{27}{10}[1+\frac{27}{10}]}{1+\frac{27}{10}}, \frac{4[1+\frac{27}{10}]}{(\frac{489}{480})^2(1+\frac{27}{10})}\} \\ &= \frac{4}{(\frac{489}{480})^2}. \end{split}$$

We consider

$$\zeta(s^4 d(fx, fy), M_2(x, y)) = \frac{99}{100} M_2(x, y) - s^4 d(fx, fy) = \frac{99}{100} (\frac{4}{\frac{489}{480}^2}) - (\frac{489}{480})^4 (\frac{27}{10}) \ge 0.$$

Case (iv). $x = 1, y \in [0, 1)$. We have $\frac{1}{2s}d(x, fx) = 0 \le 4 = d(x, y)$,

$$d(fx, fy) = \frac{27}{10}, d(x, y) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fy) = \frac{27}{10}, d(y, fx) = 4, d(x, fx) = 0, d(y, fx) = 0,$$

and

$$M_2(x,y) = \max\{d(x,y), \frac{d(y,fy)[1+d(x,fx)]}{1+d(x,y)}, \frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}\}$$

= $\max\{4, \frac{27}{50}, \frac{4}{(\frac{489}{450})^2(5)}\} = 4.$

We consider

$$\zeta(s^4 d(fx, fy), M_2(x, y)) = \frac{99}{100} M_2(x, y) - s^4 d(fx, fy) = \frac{99}{100} (4) - (\frac{489}{480})^4 (\frac{27}{10}) \ge 0.$$

From all the above cases, f is a Suzuki Z-contraction type (II) map. Therefore f satisfies all the hypotheses of Theorem 3.2 and 1 is the unique fixed point of f.

Here we observe from Case (iii) that, if we omit the term $\frac{d(y,fx)[1+d(x,fx)]}{s^2(1+d(x,y))}$ from the inequality (2.4.1), then the inequality (2.4.1) fails to hold so that Theorem 3.2 is not possible to apply.

5. Acknowledgements

The authors thank the referees for their valuable comments and suggestions which improved the quality and presentation of this paper.

References

- H. Afshari, H. Aydi and E. Karapınar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Math. J., 32(3)(2016), 319-332.
- [2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Mathematica Slovaca, 64(4)(2014), 941-960.
- [3] U.Aksoy, E. Karapinar and I. M. Erhan, Fixed points of generalized α -admissible contractions on *b*-metric spaces with an application to boundary value problems, J. Nonlinear and Convex Anal., **17(6)**(2016), 1095-1108.
- [4] H.H. Alsulami, S. Gülyaz, E. Karapınar and I. M. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Mathematics, 14(1)(2016), 1087-1103.
- [5] H. Aydi, M-F. Bota, E. Karapınar and S. Mitrović, A fixed point theorem for set-valued quasi contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
- [6] H. Aydi, M-F. Bota, E. Karapınar and S. Moradi, A common fixed point for weak φ-contractions on b-metric spaces, Fixed Point Theory, 13(2)(2012), 337-346.
- [7] G.V.R. Babu, T.M. Dula and P.S. Kumar, A common fixed point theorem in b-metric spaces via simulation function, J. Fixed Point Theory, 12(2018), 15 pages.
- [8] G.V.R. Babu and P. D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai J. Math., 9(1)(2011), 1-10.
- [9] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped. Inst. Unianowsk, 30(1989), 26-37.
- [10] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(3)(2009), 285-301.
- [11] M. Boriceanu, M-F Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8(2)(2010), 367-377.
- [12] M-F. Bota, C. Chifu and E. Karapınar, Fixed point theorems for generalized $(\alpha_* \psi)$ -Ćirić-type contractive multivalued operators in *b*-metric spaces J. Nonlinear Sci. Appl. **9(3)**(2016), 1165-1177.

- [13] M-F. Bota and E. Karapinar, A note on "Some results on multi-valued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math. 11(9)(2013), 1711–1712.
- [14] M-F. Bota, E. Karapınar and O. Mlesnite, Ulam-Hyers stability results for fixed point problems via α - ψ -contractive mapping in (b)-metric space, Abstract and Appl. Anal., 2013, Article Id: 825293, 6 pages.
- [15] N. Bourbaki, Topologie Generale, Herman: Paris, France, 1974.
- [16] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
- [17] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico (DellUniv. di Modena), 46(1998), 263-276.
- [18] B.K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure and Appl. Math., 6(1975), 1455-1458.
- [19] N. Hussain, V. Paraneh, J.R. Roshan and Z. Kadelburg, Fixed points of cycle weakly (ψ, φ, L, A, B)-contractive mappings in ordered *b*-metric spaces with applications, Fixed Point Theory Appl., 2013(2013), 256, 18 pages.
- [20] N. Hussain, J.R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013(2013), 486, 21 pages.
- [21] F. Khojasteh, S. Shukla and S. Redenović, A new approach to the study fixed point theorems via simulation functions, Filomat 29(6)(2015), 1189-1194.
- [22] P. Kumam, D. Gopal and L. Budhia, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8(1)(2017), 113-119.
- [23] P. Kumam and W. Sintunavarat, The existence of fixed point theorems for partial q-set valued quasi-contractions in b-metric spaces and related results, Fixed point theory appl., 2014(2014): 226, 20 pages.
- [24] M. Olgun, O. Bicer and T. Alyildiz, A new aspect to Picard operators with simulation functions, Turk. J. Math., 40(2016), 832-837.
- [25] A. Padcharoen, P. Kumam, P. Saipara and P. Chaipunya, Genaralized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Mathematics, 42(3)(2018), 419-430.
- [26] J.R. Roshan, V. Parvaneh and Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7(2014), 229-245.
- [27] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, J. Math. Anal., 7(4)(2016), 1-12.
- [28] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.