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1. Introduction

We recall the following interesting Opial type inequalities in [1]:

Theorem 1.1. Let x : [a,b]⊂ R→ R is an absolutely continuous function such that x′ ∈ L2 [a,b] .
i) If x(a) = x(b) = 0, then

b∫
a

∣∣x(t)x′(t)∣∣dt ≤ b−a
4

b∫
a

∣∣x′(t)∣∣2 dt (1.1)

ii) If x(a) = 0(or x(b) = 0) , then

b∫
a

∣∣x(t)x′(t)∣∣dt ≤ b−a
2

b∫
a

∣∣x′(t)∣∣2 dt. (1.2)

Therefore, some very interesting generalizations are given by B. G. Pachpatte who works with several functions in Opial type inequalities.
We give the following case

b∫
a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt ≤ (b−a)
2

 b∫
a

∣∣ f ′(t)∣∣2 + ∣∣g′(t)∣∣2 dt


where f ,g ∈C1 ([a,b]) with f (a) = g(a) = 0 (see, [1], [10]).
Opial’s inequality and its generalizations, extensions and discretizations, play a fundamental role in establishing the existence and uniqueness
of initial and boundary value problems for ordinary and partial differential equations as well as difference equations. Over the last twenty
years a large number of papers have been appeared in the literature which deals with the simple proofs, various generalizations and discrete
analogues of Opial inequality and its generalizations, see [1]-[17]. Now, we give the following case that is one of them:
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2. Main Results

Theorem 2.1. Let f ,g : [a,b]⊂R→R be differentiable function such that f (a) = g(a) = 0(or f (b) = g(b) = 0) . Suppose that φ be convex
and increasing functions on [0,∞) with φ(0) = 0, then we have the following inequality

b∫
a

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (|g(t)|)+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (| f (t)|)
]

dt (2.1)

≤ φ

 b∫
a

∣∣ f ′(t)∣∣dt

φ

 b∫
a

∣∣g′(t)∣∣dt

 .

Proof. Consider the following functions, for t ∈ [a,b] and f (a) = g(a) = 0,

y(t) =
t∫

a

∣∣ f ′(s)∣∣ds, z(t) =
t∫

a

∣∣g′(s)∣∣ds

such that we also define the functions

F(t) = φ (y(t)) = φ

 t∫
a

∣∣ f ′(s)∣∣ds

 , G(t) = φ (z(t)) = φ

 t∫
a

∣∣g′(s)∣∣ds


such that y′(t) = | f ′(t)| , z′(t) = |g′(t)| , y(t)≥ | f (t)| and z(t)≥ |g(t)| . Thus, by chain rule of differentiation and by using the convexity of
φ , we get

F ′(t) = φ
′ (y(t))

∣∣ f ′(t)∣∣≥ φ
′ (| f (t)|)

∣∣ f ′(t)∣∣ (2.2)

and

G′(t) = φ
′ (z(t))

∣∣g′(t)∣∣≥ φ
′ (|g(t)|)

∣∣g′(t)∣∣ . (2.3)

Multiplying both sides of (2.2) and (2.3) by G(t) and F(t), respectivly, and adding side by side, we get

F ′(t)G(t)+F(t)G′(t)≥ φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (z(t))+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (y(t)) . (2.4)

and then integrating both sides of this inequality (2.4) over [a,b] with respect to t, we obtain that

b∫
a

[
F ′(t)G(t)+F(t)G′(t)

]
dt

= F(b)G(b)−F(a)G(a)

= φ (y(b))φ (z(b))−φ (y(a))φ (z(a))

≥
b∫

a

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (z(t))+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (y(t))
]

dt.

Since φ(0) = 0 and φ is an increasing function, we have

b∫
a

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (|g(t)|)+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (| f (t)|)
]

dt

≤ φ

 b∫
a

∣∣ f ′(t)∣∣dt

φ

 b∫
a

∣∣g′(t)∣∣dt


which completes the proof. Similar to the above proof, choosing the following functions for t ∈ [a,b] and f (b) = g(b) = 0

y1(t) =
b∫

t

∣∣ f ′(s)∣∣ds, z1(t) =
b∫

t

∣∣g′(s)∣∣ds

such that then we have

F1(t) = φ (y1(t)) = φ

 b∫
t

∣∣ f ′(s)∣∣ds

 , G1(t) = φ (z1(t)) = φ

 b∫
t

∣∣g′(s)∣∣ds


such that y′1(t) =−| f ′(t)| , z′1(t) =−|g′(t)| , y1(t)≥ | f (t)| and z1(t)≥ |g(t)| . It follows that

−
[
F ′1(t)G1(t)+F1(t)G′1(t)

]
≥ φ

′ (| f (t)|)
∣∣ f ′(t)∣∣φ (z1(t))+φ

′ (|g(t)|)
∣∣g′(t)∣∣φ (y1(t)) . (2.5)

This completes the proof of the inequality (2.1).
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Remark 2.2. If we choose f (t) = g(t) in Theorem 2.1, we have

b∫
a

φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (| f (t)|)dt ≤ 1
2

φ

 b∫
a

∣∣ f ′(t)∣∣dt

2

. (2.6)

If we take φ(t) = t in the inequality (2.6), then we have the following inequality

b∫
a

∣∣ f ′(t)∣∣ | f (t)|dt ≤ 1
2

 b∫
a

∣∣ f ′(t)∣∣dt

2

.

By using Cauchy-Schwarz inequality, it follows that

b∫
a

∣∣ f ′(t)∣∣ | f (t)|dt ≤ (b−a)
2

b∫
a

∣∣ f ′(t)∣∣2 dt

which is the inequality (1.2).

Remark 2.3. If we take φ(t) = t in the inequality (2.1), then we have the following inequality

b∫
a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt ≤

 b∫
a

∣∣ f ′(t)∣∣dt

 b∫
a

∣∣g′(t)∣∣dt

 . (2.7)

By using Cauchy-Schwarz inequality in the right hand sides of inequality (2.7), it follows that

b∫
a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt ≤ (b−a)

√√√√√
 b∫

a

| f ′(t)|2 dt

 b∫
a

|g′(t)|2 dt

.

By using AGM inequality, we get

b∫
a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt ≤ (b−a)
2

 b∫
a

∣∣ f ′(t)∣∣2 + ∣∣g′(t)∣∣2 dt


which is proved by Pacpatte in [10].

Remark 2.4. If we take φ(t) = t p

p for 1≤ p < ∞ in the inequality (2.1), then we have the following inequality

b∫
a

[
| f (t)|p−1 ∣∣ f ′(t)∣∣ |g(t)|p + |g(t)|p−1 ∣∣g′(t)∣∣ | f (t)|p]dt

≤ 1
p

 b∫
a

∣∣ f ′(t)∣∣dt

p b∫
a

∣∣g′(t)∣∣dt

p

.

It follows from the Hölder’s inequality with indices p and p
p−1 , in the right hand sides of above inequality, and by using AGM inequality we

get

b∫
a

[
| f (t)|p−1 ∣∣ f ′(t)∣∣ |g(t)|p + |g(t)|p−1 ∣∣g′(t)∣∣ | f (t)|p]dt

≤ (b−a)2p−2

p

 b∫
a

∣∣ f ′(t)∣∣p dt

 b∫
a

∣∣g′(t)∣∣p dt


≤ (b−a)2p−2

p

 b∫
a

[∣∣ f ′(t)∣∣p + ∣∣g′(t)∣∣p]dt

2

.

Theorem 2.5. Let f ,g : [a,b]⊂ R→ R be differentiable function such that f (a) = f (b) = 0 and g(a) = g(b) = 0. If φ is an convex and an
increasing function on [0,∞) with φ(0) = 0, then we have the inequality∫ b

a

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (|g(t)|)+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (| f (t)|)
]

dt (2.8)

≤ φ

(∫ a+b
2

a

∣∣ f ′(t)∣∣dt

)
φ

(∫ a+b
2

a

∣∣g′(t)∣∣dt

)

+φ

(∫ b

a+b
2

∣∣ f ′(t)∣∣dt
)

φ

(∫ b

a+b
2

∣∣g′(t)∣∣dt
)
.
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Proof. Consider the following functions, for t ∈ [a,b] and f (a) = f (b) = 0 and g(a) = g(b) = 0,

y(t) =
t∫

a

∣∣ f ′(s)∣∣ds, z(t) =
t∫

a

∣∣g′(s)∣∣ds

y1(t) =
b∫

t

∣∣ f ′(s)∣∣ds, z1(t) =
b∫

t

∣∣g′(s)∣∣ds,

F(t) = φ (y(t)) = φ

 t∫
a

∣∣ f ′(s)∣∣ds

 , G(t) = φ (z(t)) = φ

 t∫
a

∣∣g′(s)∣∣ds


and

F1(t) = φ (y1(t)) = φ

 b∫
t

∣∣ f ′(s)∣∣ds

 , G1(t) = φ (z1(t)) = φ

 b∫
t

∣∣g′(s)∣∣ds


such that

y′(t) =
∣∣ f ′(t)∣∣ , z′(t) =

∣∣g′(t)∣∣ , y(t)≥ | f (t)| and z(t)≥ |g(t)|

and

y′1(t) =−
∣∣ f ′(t)∣∣ , z′1(t) =−

∣∣g′(t)∣∣ , y1(t)≥ | f (t)| and z1(t)≥ |g(t)| .

If we write the inequality (2.4) and (2.5) on the intervals
[
a, a+b

2

]
and

[
a+b

2 ,b
]
, respectively we have

∫ a+b
2

a

[
F ′(t)G(t)+F(t)G′(t)

]
dt

= F
(

a+b
2

)
G
(

a+b
2

)
−F(a)G(a)

= φ

(
y(

a+b
2

)

)
φ

(
z(

a+b
2

)

)
−φ (y(a))φ (z(a))

≥

a+b
2∫

a

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (z(t))+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (y(t))
]

dt.

and

−
∫ b

a+b
2

[
F ′1(t)G1(t)+F1(t)G′1(t)

]
dt

= −F1(b)G1(b)+F1

(
a+b

2

)
G1

(
a+b

2

)
= −φ (y1(b))φ (z1(b))+φ

(
y1

(
a+b

2

))
φ

(
z1

(
a+b

2

))
≥

∫ b

a+b
2

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (z1(t))+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (y1(t))
]

dt.

Since φ(0) = 0 and φ is an increasing function, we have

∫ a+b
2

a

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (|g(t)|)+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (| f (t)|)
]

dt (2.9)

≤ φ

(∫ a+b
2

a

∣∣ f ′(t)∣∣dt

)
φ

(∫ a+b
2

a

∣∣g′(t)∣∣dt

)

and ∫ b

a+b
2

[
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (|g(t)|)+φ
′ (|g(t)|)

∣∣g′(t)∣∣φ (| f (t)|)
]

dt (2.10)

≤ φ

(∫ b

a+b
2

∣∣ f ′(t)∣∣dt
)

φ

(∫ b

a+b
2

∣∣g′(t)∣∣dt
)
.

Adding to inequalities (2.9) and (2.10), we obtain the required inequality (2.8).
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Remark 2.6. If we choose f (t) = g(t) in Theorem 2.5, we have

2
∫ b

a
φ
′ (| f (t)|)

∣∣ f ′(t)∣∣φ (| f (t)|)dt ≤

[
φ

(∫ a+b
2

a

∣∣ f ′(t)∣∣dt

)]2

+

[
φ

(∫ b

a+b
2

∣∣ f ′(t)∣∣dt
)]2

. (2.11)

If we take φ(t) = t in the inequality (2.11), then we have the following inequality

2
∫ b

a

∣∣ f ′(t)∣∣ | f (t)|dt ≤

(∫ a+b
2

a

∣∣ f ′(t)∣∣dt

)2

+

(∫ b

a+b
2

∣∣ f ′(t)∣∣dt
)2

.

By using Cauchy-Schwarz inequality, it follows that

b∫
a

∣∣ f ′(t)∣∣ | f (t)|dt ≤ (b−a)
4

b∫
a

∣∣ f ′(t)∣∣2 dt

which is the inequality (1.1).

Remark 2.7. If we take φ(t) = t in the inequality (2.8), then we have the following inequality∫ b

a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt (2.12)

≤

(∫ a+b
2

a

∣∣ f ′(t)∣∣dt

)(∫ a+b
2

a

∣∣g′(t)∣∣dt

)
+

(∫ b

a+b
2

∣∣ f ′(t)∣∣dt
)(∫ b

a+b
2

∣∣g′(t)∣∣dt
)
.

By using Cauchy-Schwarz inequality in the right hand sides of inequality (2.12) and using AGM inequality, it follows that

b∫
a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt

≤ (b−a)
2


√√√√√√


a+b
2∫

a

| f ′(t)|2 dt




a+b
2∫

a

|g′(t)|2 dt

+

√√√√√√
 b∫

a+b
2

| f ′(t)|2 dt


 b∫

a+b
2

|g′(t)|2 dt




≤ (b−a)
4

 b∫
a

∣∣ f ′(t)∣∣2 + ∣∣g′(t)∣∣2 dt


which is provided by Pacpatte in(for m = 0 in Theorem 4, [10]).

Remark 2.8. If we take φ(t) = t p

p for 1≤ p < ∞ in the inequality (2.8), then we have the following inequality

b∫
a

[
| f (t)|p−1 ∣∣ f ′(t)∣∣ |g(t)|p + |g(t)|p−1 ∣∣g′(t)∣∣ | f (t)|p]dt

≤ 1
p

(∫ a+b
2

a

∣∣ f ′(t)∣∣dt

)p(∫ a+b
2

a

∣∣g′(t)∣∣dt

)p

+
1
p

(∫ b

a+b
2

∣∣ f ′(t)∣∣dt
)p(∫ b

a+b
2

∣∣g′(t)∣∣dt
)p

.

It follows from the Hölder’s inequality with indices p and p
p−1 , in the right hand sides of above inequality, and by using AGM inequality we

get

b∫
a

[
| f (t)|p−1 ∣∣ f ′(t)∣∣ |g(t)|p + |g(t)|p−1 ∣∣g′(t)∣∣ | f (t)|p]dt

≤ (b−a)2p−2

p22p−2

{(∫ a+b
2

a

∣∣ f ′(t)∣∣p dt

)(∫ a+b
2

a

∣∣g′(t)∣∣p dt

)

+

(∫ b

a+b
2

∣∣ f ′(t)∣∣p dt
)(∫ b

a+b
2

∣∣g′(t)∣∣p dt
)}

≤ (b−a)2p−2

p22p−1


(∫ a+b

2

a

∣∣ f ′(t)∣∣p dt

)2

+

(∫ a+b
2

a

∣∣g′(t)∣∣p dt

)2

+

(∫ b

a+b
2

∣∣ f ′(t)∣∣p dt
)2

+

(∫ b

a+b
2

∣∣g′(t)∣∣p dt
)2
}
.
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By using Cauchy-Schwarz inequality

b∫
a

[
| f (t)|p−1 ∣∣ f ′(t)∣∣ |g(t)|p + |g(t)|p−1 ∣∣g′(t)∣∣ | f (t)|p]dt (2.13)

≤ (b−a)2p−1

p22p

∫ b

a

[∣∣ f ′(t)∣∣2p
+
∣∣g′(t)∣∣2p

]
dt

If we take p = 1 in the inequality (2.13), then we have the following inequality

b∫
a

[∣∣ f ′(t)∣∣ |g(t)|+ ∣∣g′(t)∣∣ | f (t)|]dt ≤ (b−a)
4

b∫
a

[∣∣ f ′(t)∣∣2 + ∣∣g′(t)∣∣2]dt

which is presented by Pacpatte in(for m = 0 in Theorem 4, [10]). If we take p = 2 in the inequality (2.13), then we have the following
inequality

b∫
a

[
| f (t)|

∣∣ f ′(t)∣∣ |g(t)|2 + |g(t)| ∣∣g′(t)∣∣ | f (t)|2]dt ≤ (b−a)3

32

∫ b

a

[∣∣ f ′(t)∣∣4 + ∣∣g′(t)∣∣4]dt.
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