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Abstract

In this article, by using new different approach method, we establish some generalization of Opial like inequality for convex mappings.
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1. Introduction
We recall the following interesting Opial type inequalities in [1]:

Theorem 1.1. Let x: [a,b] C R — R is an absolutely continuous function such that X' € L [a, b] .
i) If x(a) = x(b) = 0, then

b

b
/ () (1) | dt < b;“/{x’(t)}zdz (1.1)

a

ii) If x(a) = 0 (or x(b) = 0), then
b b b
/|x(t)x’(t)|dt < %“/Mt)}zdz. (1.2)

Therefore, some very interesting generalizations are given by B. G. Pachpatte who works with several functions in Opial type inequalities.
We give the following case

(b—a)
2

b b
[Iroliso+1g ol o) a < [1r O +1g o a

where f,g € C! ([a,b]) with f(a) = g(a) = 0 (see, [1], [10]).

Opial’s inequality and its generalizations, extensions and discretizations, play a fundamental role in establishing the existence and uniqueness
of initial and boundary value problems for ordinary and partial differential equations as well as difference equations. Over the last twenty
years a large number of papers have been appeared in the literature which deals with the simple proofs, various generalizations and discrete
analogues of Opial inequality and its generalizations, see [1]-[17]. Now, we give the following case that is one of them:
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2. Main Results

Theorem 2.1. Let f,g: [a,b] C R — R be differentiable function such that f(a) = g(a) = 0(or f(b) = g(b) = 0). Suppose that ¢ be convex
and increasing functions on [0,o0) with ¢ (0) = 0, then we have the following inequality

b
/[¢’(\f(f)\)|f’(t)\¢(|g(t +9" (ls@)) ' ()] 9 (1£())] dr 2.1

¢(jwwwa¢(jw@uﬁ.

Proof. Consider the following functions, for # € [a,b] and f(a) = g(a) =0,

—/t‘f/(s)’ds, z(t)—/t}g’(S)\dS

such that we also define the functions

H0—¢@O»—¢</Uﬁﬂm)7an—¢&0»—¢</k%)ﬁ)

such thaty'(t) = |f'(z)], 2 (¢) = |g'(¢)|, y(t) > | f(z)| and z(¢) > |g(¢)|. Thus, by chain rule of differentiation and by using the convexity of
¢, we get

F'(t)= 9" ) [ @) = ¢" (L)) [ ()] 22
and

G'(t)=9'(z(1)|g' ()] = o' (Ig(®)) |¢'(1)]. 2.3)
Multiplying both sides of (2.2) and (2.3) by G(¢) and F (¢), respectivly, and adding side by side, we get

F'()G(0)+F()G (1) > 6" (IF(0)]) [ 7'(0)| ¢ (z(1)) + ¢ (1))} |8/ ()| ¢ (¥(1)) - 2.4

and then integrating both sides of this inequality (2.4) over [a,b] with respect to 7, we obtain that

b

/ [F'(1)G(t) + F(1)G'(t))] dt
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O[] ¢ z(t) + 9" ())& (0)] @ (v(2))] dt

%
—
=

Since ¢(0) = 0 and ¢ is an increasing function, we have

b

/[¢’(\f(t)\)!f’(f)|¢(|g(t )+0" (ls@))[¢' )| ¢ (1F(1)])] ar

¢ <‘7|f/(f)|df> ¢ (/b!g’(t)}dt)

which completes the proof. Similar to the above proof, choosing the following functions for 7 € [a,b] and f(b) = g(b) =0

b b
0= [176)lds, 20 = [l¢o)]ds

such that then we have

b b
(1) (/}f/ |ds), Gi(t)=9(zu()=9¢ (/’g’(SﬂdS)

such that y| (t) = — |/ (t)], 2y (t) = — g’ (*)], »1(r) > | f(t)| and z1 (¢) > |g(¢)|. It follows that
= [F(O)Gi1 () +Fi ()G ()] = ¢" (IF O [ £/ ()]0 (z1(2))+ 0" (Ig(D)]) |g' (1) ¢ (1)) - (2.5)
This completes the proof of the inequality (2.1). O
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Remark 2.2. If we choose f(t) = g(t) in Theorem 2.1, we have

/¢ (FOD I ®)]0 (5 0) dz<[ (/If |dt>]. 26

If we take §(t) =t in the inequality (2.6), then we have the following inequality

b 1 b 2
/\f’(t)l\f(t)\dts 3 (/\f’(r)\dz) :

By using Cauchy-Schwarz inequality, it follows that

b b
[lrolrola <22 176k

which is the inequality (1.2).
Remark 2.3. [f we take ¢(t) =t in the inequality (2.1), then we have the following inequality

b b b
[Irolls@i+ ¢ olirond < ( / If’(l)ldl> ( / }g'mrdr) . @

a

By using Cauchy-Schwarz inequality in the right hand sides of inequality (2.7), it follows that

/b[lf Dllg@1+ ¢ O] lr ()] de < (b (/f’ dt) </|g 2dt>

(/|f OF +[g0) )

Remark 2.4. [f we take ¢ (1) = %for 1 < p < o in the inequality (2.1), then we have the following inequality

By using AGM inequality, we get

b
/!f )| 2]+ |¢/@)] 1£0)]

which is proved by Pacpatte in [10].

b
/ AP £ @8O + 1501 /@)1 ]

b P /b 4
;(a/|f’(z)|dt) (a/|g’(t)\dz) )

It follows from the Holder’s inequality with indices p and %, in the right hand sides of above inequality, and by using AGM inequality we
get

b
/ FOP £ OO + 107 [ 0)| LFOIF ] de

i (/}f }"dz) (/! /(z)l”dr)

2
—a 2p—2
% (/ Hf/([)|l’+’gl(t)|[’] dl) .

a

IN

IN

Theorem 2.5. Let f,g: [a,b] C R — R be differentiable function such that f(a) = f(b) = 0 and g(a) = g(b) = 0. If ¢ is an convex and an
increasing function on [0,0) with ¢(0) = 0, then we have the inequality

[ 16U 7010 G +o' (0D ¢ 0] 0 (0] e X
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Proof. Consider the following functions, for z € [a,b] and f(a) = f(b) =0 and g(a) = g(b) =0,

such that

=)

and

=1

2(0) =g (0], y(t) = |f(1)] and 2(r) > |g(1))|

|, 21(1) = =g ()], y1(1) 2 [£(1)] and z1(r) > |g(1)]-

atb

If we write the inequality (2.4) and (2.5) on the intervals [a —] and [#,b} , respectively we have

and

Since ¢(0) =

and

atb

AZ[W®G®+FmGwnm
F <a+b) G<a42rb) I

- (““’)(

+b

/T I @] ¢ @)+ (1)) &' (0)] ¢ (v(2))] e

a

)) 0 (@) 9 (@)

(A%

—/; [F{(1)G1(t) + A1 (1)G (1)] dr

2

—Fi(b)Gi(b)+F ( erb)G, (%;b)

e ()6 (2)

[ 16/ ODLF @0 (20 +6 (806 [6)] 6 051 .

2

(A%

0 and ¢ is an increasing function, we have

atb

/a2 0" (IF DI @) (Is()D)+¢" (g [ ()] ¢ (1F ()] de 2.9

< o ((/a * »ﬂmm) 0 (/a N \g’mdz)

b
/m[¢’(\f(t)\)|f’(t)|¢(lg(t )+0" (ls@))[¢'@)| ¢ (1f(1)])] ar (2.10)

o[ rona)s ([ ota).

Adding to inequalities (2.9) and (2.10), we obtain the required inequality (2.8). O
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Remark 2.6. If we choose f(t) = g(t) in Theorem 2.5, we have

2+ {(]) (/; f’(t)|dt)r. (2.11)

If we take ¢ (t) =t in the inequality (2.11), then we have the following inequality

2/ab 1£(0)] £ () dr < (/agb yf'(z)ydt>2+ (/; !f’(t)ydt)z,

By using Cauchy-Schwarz inequality, it follows that

. ath

b >
2 [C6 170D |7 W] o (5 < {cp ( / \f’(r>|dz>

b b
Jirolsola< 22 [0 Pa

which is the inequality (1.1).

Remark 2.7. If we take ¢(t) =t in the inequality (2.8), then we have the following inequality

[ @)1+ [0 o) 1)

atb
2
< /
a

By using Cauchy-Schwarz inequality in the right hand sides of inequality (2.12) and using AGM inequality, it follows that

a+b

|f’(z)|dt> (/a : |g’(;)\dz> + (/; }f’(t)}dt) (/i, }g'(z)ydt).

2

b
S Ole0l+1g 0170 dr

b—a
< A [iropal | [wopa|+ || [iropa]| [gopra
a a atb ey
> 2
<

b
o (/ |f’<z>|2+|g/<r>2dz>

which is provided by Pacpatte in(for m = 0 in Theorem 4, [10]).

Remark 2.8. [f we take ¢(t) = %for 1 < p < o in the inequality (2.8), then we have the following inequality

A OP 7 @10 + 18617 ¢/ 0)] LA dr

1 ath / » o | )
S P(/a det) </a |8 (t)!dz>
% </; |f/(t)’dt) " (/; \g’(t)!dt) g

It follows from the Holder’s inequality with indices p and %, in the right hand sides of above inequality, and by using AGM inequality we
get

Se—_

b

e 17 oleor +1so ¢/ @ 1] d

a

< bt { (/ N }f’m”dt) (/ N |g’<t>>"dt>
(Lirors) ([ eore)

(17 ara) ([ wora)
(frara)+(fyara)}

2

IN
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By using Cauchy-Schwarz inequality

b

@ 17 ol + 1@ ¢/ @) 1)) de 2.13)
—_a) 1l b

oo [ ror + o)

If we take p = 1 in the inequality (2.13), then we have the following inequality

b

b

JIrolisor+golrona < 72 [P0 +lgof]a

a

a

which is presented by Pacpatte in(for m = 0 in Theorem 4, [10]). If we take p =2 in the inequality (2.13), then we have the following
inequality

b
[ [0l Ol +1s0l ¢ 0] 170R]ar < @2 [ Trof+ ol a.
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