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Abstract 

In this article the electromagnetic waves scattered from an inhomogeneous medium are considered when 

the electromagnetic waves are polarized in the case of transverse electric. Using the Rellich lemma, the 

uniqueness of the solution of the direct scattering problem is proved. In order to show the existence of 

the solution of this problem, the operator equations are constructed and the Riesz theory which provides 

the existence of the inverse operator is used. Furthermore, for solution of the inverse scattering problems, 

an interior boundary value problem is considered. Finally, a linear integral equation is obtained whose 

the solution yield the support of the scattering object. 

Keywords: Electromagnetic wave, Far-field pattern, Linear method, Scattering theory. 

 

1. Introduction 

 
The scattering problems of time-harmonic waves which are acoustic or  electromagnetic  waves are 

the basic problems in the  scattering  theory.  These problems  have been considered  by many writers  as 

direct and indirect  scattering problems [2-19, 22-24 ]. 

 

Before the inverse scattering problems with regard to the direct scattering problems, the most 

important questions are the uniqueness and the existence of the solution of the direct scattering problem. 

Gerlach and Kress [17] , Colton, Kress and Monk [8] have proved the uniqueness of the solution by using 

Green’s theorems and the unique continuation property of solution. Furthermore,  they have showed the 

existence of solution by using the jump relations of the single-layer and double-layer in the potential 

theory and the integral equations. For the transmission boundary value problem, this results have been 

proved by Colton and Piana [9] . 

 

In the inverse scattering theory, the most importance thing is scattered far-field model. In the 1980’s, 

the inverse scattering problem of determining the unknown scattering obstacle from information about the 

far- field data was considered by Angel, Colton and Kirsch [2] , Tobocman [23] and many more 
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mathematicians. Integral equations or Green’s formulas were used to reformulate the inverse obstacle 

problem by these researchers. 

 

For the solution of the inverse scattering problem, a method is the linear method which was 

suggested, firstly,  by Colton and Kirsch [10].  Then the method is used by Colton, Kress and  Monk [8], 

Colton and Piana [9], Colton, Piana and Potthast [11], Colton, Giebermann and Monk [12], Colton, Coyle 

and Monk [13], Cakoni, Colton and Monk [3], Cakoni, Colton and Haddar [4], Cakoni and Colton [5], 

Colton [14] and Colton and Kress [15]. This method is mathematically established by placing a network on 

the unknown domain  by solving a linear integral equation for each point on this network and then 

determining the shape of the domain from  the information about the solutions for this set of integral 

equations. To apply this method, first, the far field operatör     2 2:F L L    is defined by 

 

      ˆ ˆ( ) ( ,d) d dFg x u x g ds



  ,          ˆ,dx    

       

where  2 : 1x IR x    . Then the Regulation method [16] is used to solving of the linear integral 

equation    ˆ ˆ( ) ( , )Fg x x y  , where 
4

ˆ.ˆ( , )
8

i

ikx ye
x y e

k







   is the far-field model of the function 

     1

0,
4

i
x y H k x y    for x y  [1]. According to this method, for 0  , there exists a function 

   2.,g g y L    such that  Fg    and  both  .,g y   and   .,gv y  become 

unbounded as y  approaches the boundary of the scatterer,  where      .d d dikx

gv x e g ds



   is the 

Herlogtz wave function with  kernel  .,g y  [16]. The Herlogtz kernel  .,g y is determined from 

     ˆ ˆ( ) ( ,d) d dFg x u x g ds



   for y  on a grid containing the scatterer. Thus, the boundary of the 

unknown domain can be found as the locus of points y ,  where  
 2.,

L
g y


begins to increase sharply. 

 

 Now, we consider the following problem: 

 

         We investigated an electromagnetic scattering problem in an inhomogenous medium when the 

incident wave is polarized parallel to the axis of infinite cylinder representing the scatterer and the 

magnetic field has only one component in the direction of the axis to the cylinder. This is the referred to 

as the transverse electric mode (briefly, TE mode) in scattering theory [9,22,24]. The electromagnetic 

waves can be obtained by using the Maxwell equations [16]. We assume that D  is a simply-connected 

bounded domain in 
2IR with  2C D  and which the domain is the cross section of the cylinder. For the  

time-harmonic electromagnetic waves, the scattering is defined by the Maxwell equations  

 

0 0 0curlE ikH         0 0 0curlH ikE  ,            in 
2 \IR D                                                     (1) 
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0curlE ikH             0curlH ikn x E  ,     in  D                                                  (2) 

    

and the boundary conditions 

0H H    ,       on  D                              (3)                                                          

     0 0

0

1k k
curlE E curlE E

n
     

 
         ,  on D                               (4)          

where k  is positive wave number and   is outward unit normal vector on D . Let  0 0,E H  and  ,E H  

be electromagnetic fields outside and inside the cylinder, respectively. Let be  0,C D   and 

Im 0  .   n x  is the index of refraction defined by 

 

   
 

0

1 i x
n x x




 

 
  

 
                                     

where  is the constant permittivity in 
2 \IR D ,  x and  x  are the permittivity and the 

conductivity   of  the  cylinder, respectively, and   is the frequency of  the electromagnetic waves. We 

assume that  n x  satisfies the following conditions:  

 

           (i)    2 2n x C IR  and   0 0n x n   for 
2 \x IR D , where  0 1n IR   

 

           (ii)  Im 0n x  and   0 : Im 0D x D n x    .                                                        (5)  

    

If the electromagnetic wave is polarized in the  transverse electric mode, the scalar fields 0u  and u  can 

be defined as    
1 2 30 0 0 0 0, , 0,0,H H H H u   and    1 2 3, , 0,0,H H H H u  . Thus,  the Maxwell 

equations 1-2  and  the boundary conditions  3-4  are equivalent to the Helmholtz equations and the 

boundary conditions in the following 

 
2

0 0 0u k u   ,       in 
2 \IR D                                                                                                  (6) 

 

21
. 0u k u

n

 
    
 

,       in  D                                                                                                    (7) 

 

0 0u u  ,      on  D                                                                                                                    (8) 

 

0
0

0 0

1 1
0

u u
k u u

n n


 

  
    

   
,        on  D .                                                                        (9) 

 

0
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The exterior field 0u  can be written in the form 

 

 0( ) ( )i su x u x u x  ,      

                                                               

where  2d : 1x IR x    and   .di ikxu x e  is the incident plane wave with incident direction d. 

The scattered wave  
su  satisfies the Sommerfeld radiation condition  

 

          lim 0
s

s

r

u
r iku

r

 
  

 
                                                                                                            (10) 

 

uniformly in all directions ˆ
x

x
x

  with xr  . This condition guarantees that the scattered wave  has the 

asymptotic behaviour 

 

               
3

2ˆ,d
ikr

s e
u x u x O r

r



         

                                                                                         

as r x  ,  where  u
 is known as the far-field pattern of the scattered wave and is defined in the 

form 

 

          
 

   
ˆ.4

ˆ.ˆ( ,d)
8

i ikx y
ikx y

D

e e u
u x u y y e ds y

yk



 








  
  

  
  , x̂  [16]. 

 

2. The Direct Scattering Problem 

 
The scattering of time-harmonic plane waves by a simply connected bounded domain  

2D IR  is 

formed with the following direct scattering problem. For given )(,1 DCf  
 and )(, ,0 DCg    from 

Hölder spaces with exponent 0 1  , this problem is to find a pair of functions 

   2 2 1 2

0 \ \u C IR D C IR D   and    2 1u C D C D   such that 

 
2

0 0 0u k u   ,          in 
2 \IR D                                                                                               (11) 

 

21
.( ) 0u k u

n
    ,      in  D                                                                                                   (12) 

 

 
0u u f   ,         on  D                                                                                                           (13) 

      

0
0

0 0

1 1u u
k u u g

n n


 

  
    

   
,      on  D ,                                                                      (14) 
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where  k  is positive  wave  number  and   is the unit outward  to D . 0n  and n  are defined in the 

conditions (i)-(ii) of (5). 0u  satisfies the Sommerfeld radiation condition  (10),  i.e. 

 

          0
0lim 0

r

u
r iku

r

 
  

 
,                                                                                                            (15) 

  

where xr  .  For simplicity, we will always suppose that Im 0   on D . 

 

Theorem 2.1.  The solution of  the boundary value problem  11-15  is unique. 

 

Proof.  We suppose that the solution of  the problem 11-15  is  not unique.  Let 
21 000 uuu   and  

21 uuu  . Thus  0u  and u  satisfy the homogeneous boundary value problem 6-9.  

We first show that   

 

2

0lim 0

r

r
u ds





 ,                                                                                                           (16) 

 

where r denotes the circle with the  radius r  and centered in the origin and ds  is the arc lenght. To 

achieve this, from the Sommerfeld radiation condition 15, we have  

 

2 2
220 0 0

0 0 0lim 2 Im lim 0

r r

r r

u u u
k u k u ds iku ds

   

 

    
      

     
  .                           (17) 

 

We take r  large enough such that 
rD . Applying Green’s theorem [16] in the domain  

 ryDIRyDr  <   :   \    = 2 ,  we  have 

 

 
2 22

0 0

r rD D

k u dy gradu dy    = 0
0 ( )

r

u
u ds y








0

0 ( )

D

u
u ds y







 .       

        

Taking  imaginary parts of  this equation,  from the equation 17,  we  obtain    

 

            

2
220 0

0 0lim 2 Im

r

r

D

u u
k u ds k u ds

 

 

  
   

   
  .                                                      (18) 

 

Applying Divergence theorem [18]  to the function 
1

 
  

u u
n

 
 

 
,  from  the condition  (i) of (5)  and  

boundary conditions  8-9,  we get 
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            
2 2 2 22 0

0 0 0

0

1
  

D D

u k
k u u dy u k u u ds y

n n







  
             .                

 

Taking imaginary parts of  this equation, we have 

 

             
2 20

0 0

0

1 1
Im  Im Im  1

D D D

u
u dy u ds y k u ds y

n n



 

 
    

     .                               (19) 

 

From the condition  (ii) of  5,  the left-hand of equation 19  is positive or zero. Since Im 0   on D , 

again from the condition (i) of  5,  the last integral in the right-hand of equation 19  is negative or zero. 

Thus we obtain 

 

 0
0Im ( ) 0

D

u
u ds y







 .                                    

                                         

The equation 18 becomes 

 

2
220

0lim 0

r

r

u
k u ds





 
  

  
 .                                                                       (20) 

 

Since the left-hand of equation 20  is positive or zero,  we get the equation 16. From Rellich’s lemma 

[16], 0 0u   in DIR \2
  and so 00

0 







u
u  in 

2 \IR D  from the Theorem 3.12 in [7]. From the 

conditions 8-9, we obtain 0







u
u  on D . From the unique continuation principle (see : Theorem 

8.6 in [16] ), we obtain 0u  in D .  

 

          We will now apply the Riesz’s theory (the inverse operator’s existence) for compact operators 

[7,18]  to  demonstrate  the existence  of solution to the boundary value problem 11-15. With the change 

of variables ( ) ( ) ( )u x n x w x , the boundary value problem 11-15 takes form 

 

2

0 0 0u k u   , in  
2 \IR D                                                                                                        (21)  

 

 2 0w k n p w    ,       in  D                                                                                                (22) 

 

0 0u n w f  ,          on  D                                                                                                     (23) 

 

0
0

0 0

1 1u w
k u w g

n n


 

  
    

    

,        on  D                                                                (24) 
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where   

 

   
 

1
p x n x

n x
    .                                                                                                              (25) 

 Then for  DC  ,  and  DC1 ,  let’s define the following functions 

 

0
0 0

( , )
( )  ( ) ( , ) ( ) ( )

( )
D

x y
u x y x y y ds y

y
 




 
  

  ,          
2 \x IR D                                        (26) 

 

0 1

( , )
( )  ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( )
D D

x y
w x n y x y y ds y x y y y dy

y
   




 
    

   ,
2IRx \ D    (27) 

                                                                                                                                                   

where   
2 2

0( ) [ ( ) ( )]x k n k n x p x     and the functions    (1)

0 0,
4

i
x y H k x y    and 

   (1)

0 0,
4

i
x y H k n x y   ,  yx   in 

2IR  are the fundemantal solutions of the Helmholtz 

equations which are 
2 0u k u    and 

2

0 0u k n u   , respectively, where 
(1)

0H  is the Hankel function 

of the first kind and the zero order. The functions 0u  defined by equation 26  and w  defined by equation 

27  satisfies the problem  21-24 and the Sommerfeld radiation condition 15. 

 

          We introduce the following integral operators: 

 

The operators , ,K S T  and  
ıK  are defined  from  ( )C D   to  ( )C D ,  such that 

 

( , )
( )( ) 2 ( ) ( )

( )
D

x y
K x y ds y

y
 







 ,             Dx                                                         (28) 

 

( )( ) 2 ( , ) ( ) ( )

D

S x x y y ds y 



  ,   Dx                                                                      (29) 

 

( , )
( )( ) 2 ( ) ( )

( ) ( )
D

x y
T x y ds y

x y
 

 


 


  ,  Dx                                                               (30) 

 

( )( ) 2 ( , ) ( ) ( )
( )

ı

D

K x x y y ds y
x

 





 

  ,   Dx                                                              (31) 

The operators K 
 and  S 

 are defined  from  ( )C D   to  ( )C D ,  such that 

 



 

8 

 

Ikonion Journal of Mathematics                                                                                2019, 1(2) 

( , )
( )( ) 2 ( ) ( )

( )
D

x y
K x y ds y

y
 










 ,    Dx                                                                        (32)   

  

( )( ) 2 ( , ) ( ) ( )

D

S x x y y ds y 



  ,     Dx                                                                             (33)  

 

The operators  S  and  
ıK   are defined  from  ( )C D   to  ( )C D ,  such that 

 

 
1 1( )( ) 2 ( , ) ( ) ( )

D

S x x y y y dy    ,   Dx                                                                       (34) 

 

 
1 1( )( ) 2 ( , ) ( ) ( )

( )

ı

p

D

K x x y y y dy
x

  



 

  ,   Dx                                                          (35) 

 

Finally, the operatör  S


 be defined from  ( )C D   to  ( )C D ,  such that 

 

1 1( )( ) 2 ( , ) ( ) ( )p

D

S x x y y y dy     , Dx .                                                                       (36) 

 

Let 0 0 0, ,K S T  and 
ıK0  show  the operators corresponding to TSK ,,  and 

ıK , respectively,  with   

replaced by 0 . 

 

Theorem 2.2. The functions 0u  and w  defined by equations 26-27 are restricted to DIR \2
and D , 

respectively. Then the functions  DC  ,  and  DC1  satisfy the following  integral equations 

 

    0 0 0 0 0 0 1( ) (1 ) ( ) 2K n K n S n S n S f          ,  on  D                                                 (37) 

 

     0 0 1

0 0 0

1 1 1
( ) 1ı ı ıT T K K K

n n n
   

   
        

   
   

       

                      0 0 1

0 0

1 1
2 2k K K S S S g

n n
    

  
        

    

,   on  D          (38) 

 

0 1 12 0n K S S         ,     in  D .                                                                             (39) 

 

Proof. Firstly, we will obtain the integral equation 37. When DxDIRx  \2
, the limit value of 

0u  in equation 26  is  
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  0
0 0

( , ) 1
 ( ) ( ) ( ) ( , ) ( ) ( )

( ) 2
D D

x y
u x y ds y x x y y ds y

y
  





 


   

  . 

                          

When DxDx  , the limit value of w  in equation 27  is 

 

0

( , ) 1
( )  ( ) ( ) ( ) ( , ) ( ) ( )

( ) 2
D D

x y
w x n y ds y x x y y ds y

y
  





 

 


    
 

 
    

                                                                                                1( , ) ( ) ( )
D

x y y y dy   . 

 

From the condition 23 and the operators  28, 29,34,  we obtain 

 

0 0 0 0 02 ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )f x K x x S x n K x n x n S x           0 1( )( )n S x . 

 

Thus, for x D  , the equation 37 is obtained. 

 

Now, we will obtain the integral equation  38. We take the derivative of the function 0u  in the 

direction  . When 
2IRx \ D x D , the limit value of 



 0u
 is  

 

0 0
0

( , ) 1
( )  ( ) ( ) ( , ) ( ) ( ) ( )

( ) ( ) ( ) 2
D D

u x y
x y ds y x y y ds y x

x y x
  

   



 

  
   

     .   

               

We take the derivative of  the function w  in the direction  . When DxDx  , the limit value of 



w
 is 

 

0

( , )
( )  ( ) ( ) ( , ) ( ) ( )

( ) ( ) ( )
D D

w x y
x n y ds y x y y ds y

x y x
 

   



 

   
  

      

         1

1
( ) ( , ) ( ) ( )

2 ( )
D

x x y y y dy
x

  



  

  .        

                   

From the condition 24 and the operators 28, 31, 34, 35 we have 

 

                               1

0 0

0 0 0

( )( )( )( ) ( )
2 ( )( ) ( )( ) ( ) ( )( )

ıı
ı

K xK x x
g x T x K x x T x

n n n

 
                                              
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      
     1

0 0

0 0

( )( ) ( ) ( )( )
S xS x

x k K x x S x K x x
n n


     

 
       

  

. 

Thus, for x D  , the equation 38 is obtained. 

 

Finally, for the integral equation  39,  if we write the operators 32, 33 and 36   in the function w  

defined by equation 27, then we obtain 

 

     0 12 ( ) ( ) ( ) ( )w x n K x S x S x       . 

                                                             

 Since 
2 1( ) ( ) ( )w x C D C D   and )()(1 DCx  , we can write )()( 1 xxw  . Thus, we satisfy the 

equation 39 for  x D  .  

 

Equations 37 - 39 can be written in operator notation as  

 






































0

2

2

 

1

g

f

BA







 ,                                                       (40) 

 

where the matrixes A  and B  are described in the following forms 

 

 

 0

0

1 0 0

1
2 1 0

0 0 2

n I

A kI I
n

I



 
 

  
     

  
  

                                                                                                      

 

and 

     

0 0 0 0 0

0 0 0 0

0 0 0

0

1 1 1
    ı ı ı

K n K S n S n S

B T T k K K K K k S S K kS
n n n

n K S S



 



  

  

   
 
    

            
   

    
 
  

.          

 

The operator A  clearly has a bounded inverse [2,4]. The operators in the matrix B are weakly singular 

operators . Thus,  the operator B  is compact in the space      DCDCDC   [7].  

 

In the following theorem,  we will denote  that the A B  operator is injective.  

 

Theorem 2.3. The boundary value problem 11-15 has a unique solution. 
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Proof. Let us consider the problem 21-24. From the uniqueness theorem 2.1, if 0 gf  then 00 u  

in DIR \2
 and 0u  in D . Since wnu  ,  then 0w  in D ,  where  the functions 0u  and w  are 

defined by equations  26  and  27,  respectively.  From the equation 39 ,  we have 
1 0w    for Dx  

and  so  01  . Thus, the equations 37 and 38 reduce to 

 

            0)()1()( 00000   SnSnKnK ,        

                                                                         

 0 0 0 0

0 0 0

1 1 1
( ) 1 2 0ı ıT T K K k K K S S

n n n
      

      
                

            

.    

 

Using the jump relations of potential theory [16], we obtain   

 

 

00 uu                










 

00 uu
,       on  D                                                                

 

 0nww  
       











  ww
,      on  D .      

                                

Since 00 u  in DIR \2
 and 0w  in D , then  0

0 0
u w

u w
 

 
  
   
 

. Thus, we have  

 

0
1

0

0   w
n

u       0 0
u w

 

  
 

 
,         on  D                                                                (41) 

 

Since 0n  is real, from the Divergence theorem and equation 41,  we have 

 

0
0 0Im Im 0

D D

uw
w ds n u ds

 


 

 


 

   .                                                                              

 

Since the function w  is radiating solution of the Helmholtz equation for DIRx \2 , from the Rellich’s 

lemma, 0w  in D\2IR  and  so 0






w
.  Since 0











w
w  on D  and  from equation 41, 

00
0 











u
u . Then we obtain 0 .Since 01   , the BA   operatör is injective [18].   

Since B  is compact and BA   is injective, the inhomogeneous system 40  has a unique solution  

1,,   from the fundamental results of the Riesz’s theory for compact operators  (see: Theorem 1.16,  

Corollary 1.17 and Corollary 1.20 in [7]). Finally the boundary-value problem 21-24  has a unique 

solution. 
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 To formulate the linear method,  firstly, we consider  the interior boundary-value problem. 

 

3. The Interior Boundary Value Problem  

 

The interior boundary value problem is to find the functions 
2 1

0 , ( ) ( )u u C D C D   to the 

differential equations  

 
2

0 0 0u k u   ,       in  D                                                                                                         (42) 

 

            0
1

. 2 







 uku

n
,         in  D                                                                                                (43) 

 

  and the boundary conditions  

 

          fuu 0 ,             on   D                                                                                                       (44)  

 

         0
0

0 0

1 1u u
k u u g

n n


 

  
    

   
,     on  D  .                                                                       (45) 

 

Theorem 3.1 Let  }0)(Im:{0  xnDxD  be  different from empty set. The solution of the interior 

boundary value problem  42–45  is unique. 

 

Proof. Let     2 1

0,u u C D C D  be the solution of the homogeneous interior boundary value 

problem, that is, assume 0f g  . Then,  applying of the Divergence theorem to the function  

1
 

  
u u

n

 
 

 
 and using the condition (i) of 5 and homogeneous boundary conditions, we obtain  

 

        
2 221 1

   ( )
  

D D

u
u k u dy u ds y

n n 


 
        

20
0 0

0

1
y  + 1 ( )

D D

u
u ds k u ds y

n



 

 
  

     

                                                   
2 2 22

0

0

1 1
  1

D D

u k u dy k u ds y
n n

 



  
       

     .          

   

Taking imaginary parts of this equation, we have 

 

          2 2 2

0

0

1 1 1
Im  Im  Im 1 ( )

    
D D D

u dy u dy k u ds y
n n n

 



 
      

    .                    (46) 
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Since 
1

Im 0
n
  in D , the left-hand of equation 46 is negative or zero. Since 

1
Im 0

n
  in D  and 

 Im 0    on D , due to the condition (i) of  5,  the right side of equation 46 is pozitive or zero. 

Thus, we get 

 

21
Im  0

 
D

u dy
n
  .  

  

          Since 
1

Im 0
n
  in 

0D D , then 0u  . Since u  satisfies  the equation  43, then 0u  in D. 

From the unique continuation principle, we  have 0
u

u
v


 


  on D . Also since  0u  satisfies  the  

equation 42,  from  the homogeneous boundary conditions  and  the  Helmholtz representation, 0 0u   

in D .   

 

We will show the existence of  the solution of  the interior boundary value problem 42-45. Again, 

using the change of variables ( ) ( ) ( )u x n x w x , the interior boundary value problem 42-45 takes form 

 

         
2

0 0 0u k u   ,         in  D                                                                                                       (47) 

 
2( ) 0w k n p w    ,    in  D                                                                                                 (48) 

 

fwnu  00 ,      on   D                                                                                                     (49) 

 

0
0

0 0

1 1u w
k u w g

n n


 

  
    

    

,   on    D                                                                 (50) 

 

where  the function p  is defined by equation 25. Now, for  DC  ,  ve  DC1  ,  we use 

the function  0u x  for  
2 \x IR D   defined by equation 26  and   let’s define the following function, 

 

   0 1

( , )
( )  ( ) ( , ) ( ) ( ) ,  ( )

( )
D D

x y
w x n y x y y ds y x y y y dy

y
   




 
    

   ,  

                                                                                                           
2 \x IR D                  (51) 

 

where the functions 
0,  ve   are defined as Section 2. 

 

Theorem 3.2. Let the functions 0u  and w  defined by equations 26 and 51 , respectively, are restricted 

to D .  
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Then the functions  DC  ,  and  DC1  satisfy the integral equations 

 

0 0 0 0 0 0 1( ) (1 ) ( ) 2K n K n S n S n S f           ,      on  D                               (52) 

 

0 0 1

0 0 0

1 1 1
( ) 1ı ı ıT T K K K

n n n
   

   
        

   
   

  

                                   0 0 1

0 0

1 1
2k K K S S S g

n n
   

  
       

    

,  on D           (53) 

 

0 1 12 0n K S S          ,     in   D .                                                                         (54) 

  

To prove,  the similar way as Theorem 2.2 can be done . 

 

Theorem 3.3  The interior boundary value problem  42-45  has a unique solution. 

 

 Proof. For the proof, we will examine the interior boundary value problem 47-50. From the uniqueness 

theorem 3.1, if 0 gf  then 00  wu  in D . Since 0 1 2n K S S w       , from the 

equation 54,  
1 0  . Thus, the equations 52 and 53  reduce to 

 

0)()1()( 00000   SnSnKnK   

 

and                                                                        

 0 0 0 0

0 0 0

1 1 1
( ) 1 0ı ıT T K K k K K S S

n n n
     

      
               

            

 .    

         

From the jump relations, we obtain  

 

           

00 uu                 










 

00 uu
,           on   D  

                                

0nww  
         











  ww
,            on   D . 

                                

Since  00  wu   in D , then 0
0 0

u w
u w

 

 
  
   
 

 . Thus, we  have  

 

0
1

0

0   w
n

u          00 







 



wu
,          on   D .                                
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Thanks to 0n  positive  real constant in  condition (i)  of  5, we obtain  

 

0
0

0

1
Im Im

D D

u w
u ds w ds

n 

 
 

 

 
 

   .                                                                              (55) 

 

The two integrals in equation 55  is  pozitive or zero. Since 0u  and w  are radiating solution of the  

Helmholtz equation  for DIRx \2 , from the Rellich’s lemma,  we have either 0 0u   or 0w  . Thus  

we have  either 00
0 











u
u  or 0











w
w   on D .  Then, we obtain 0 . Thus, the 

existence of the solution of the  interior boundary value problem  47-50  is obtained from the fundamental 

results of the Riesz’s theory. 

 

4. The Linear Method for The Inverse Scattering Problem 

 

We will formulate  the  linear  method for the solution of  the inverse scattering problem defined 

by the boundary value problem  6-10. This problem is associated  with the determine the support D of 

  0n x n from the information about the far-field pattern ˆ( , )u x d  in the section 1. For 0  , there 

exists a solution  2

yg L   such that 

 

              

 2

4
ˆ.ˆ( ,d) d d

8

i

ikx y

y

L

e
u x g ds e

k










 

   for y D .      

                                              

When  y D  , both  
 2y L

g


 and  
 2g L D

v  become unbounded [10,11].  

 

        First of all, we  shall form the  integral equation for  the linear method. We will come up with a 

basic solution that provides equation 48.  Let be  :y x y D      . We take the integral 

 

               , , ,

D

I x z x y m y y z dy   ,               
2z IR                                                          (56) 

 

where    2 1C D C D  . Let  ,I x z  be the solution of equation 48 and  

  

             
 

0 2

p y
m y n n y

k
                                                                                                         (57) 

 

Let be 
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                     
\

, , , , ,

D

I x z x y m y y z dy x y m y y z dy

  

           1 2, ,I x z I x z  . 

                                                                                                 

Since    2

0, , 0x y k n x y     for x y ,   then we get    2

0 2 , 0k n I x z  . Hence 

 

       2 2

0 0 1, ,k n I x z k n I x z       

           2

0, , , ,x y m y y z dy k n x y m y y z dy

  

        .  (58)    

 

Applying the divergence theorem to the first integral on the right-hand of equation 58,  we get 

 

               , , , ,xx y m y y z dy x y y m y y z ds y

 



 

        ,           x y    

 

           (1)

0 0 ,
4

y

i
H k n x y y m y y z ds y







 
    

   

 

       

2

(1)

0 0

0

,
4

i
H k n m x x z d



    



    

  

 

      

2

0 (1)

1 0

0

,
4

ik n
H k n m x x z d



        . 

 

Thus, from    (1)

0 1 0
0

2
lim

i
n H k n

k
 



 
   

 
 given in [20] ,  we have     

                   

         
0

lim , , ,x y m y y z dy m x x z







    .                                                              (59) 

 

Applying the mean value theorem [1] to the second integral on the right-hand of equation 58,  we get 

 

                     , , , ,x y m y y z dy x a m a a z dy

  

      ,  0 x a     

 

           
       

2
1

0 0 ,
4

i
H k n x a m a a z


   . 
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Therefore  

 

      
0

lim , , 0x y m y y z dy







                                                                                         (60) 

 

From equations  59, 60 and function 57, the equation 58 takes  the form 

 

            
 

       2

2
, ,

p x
k n x m x I x z m x x z

k

  
        

  
 .  

                                                       

Since  ,I x z  satisfies the equation 48  and  ,x y  is a solution of the Helmholtz equation,  

 

                2, , ,x z x z k I x z                                       

 

satisfies the equation 48.  If we write the integral 56  in the last equation,  then  we obtain the  Lippmann 

Schwinger integral equation [16] 

 

                       2 2

0, , , ,

D

x z x z x y k n k n y p y y z dy        
   .                                  

 

Thus  ,x z  is a basic solution for the equation 48.  From the Theorem 8.3  given in [16],  the solution 

of   ,x z is a solution of  the following problem 

 

 2 0w k n p w    ,           
2x IR                                                                                      (61) 

 

     , sw x x z w x                                                                                                            (62) 

 

lim 0
s

s

r

w
r ikw

r

 
  

 
.                                                                                                        (63) 

 

With the change of variables      u x n x w x ,  the problem 61-63  is takes form 

 

21
. 0u k u

n

 
    
 

,         
2x IR                                                                                          (64) 

 

       , su x n x x z u x   ,                                                                                              (65) 

 

where   su x  satisfies the Sommerfeld radiation condition 10. 
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From the Theorem 8.7 given in [16]  and  the  condition (ii) of 5,  the problem 64-65  has at most one 

solution. Thus,  the orijinal problem 61-63  has  at  most one solution  and  the  Fredholm alternative 

[18]  guarantee the existence  of  a fundamental solution for the equation 48. 

 

           Secondly, we will give the following  lemma. 

 

Lemma 4.1.  Let D  be a bounded domain with  2C D ,  x D  and  2 :RB x IR x x R     

If  the  function    2 1u C D C D   is the solution of the following equation 

 

21
. 0u k u

n

 
    
 

        in D ,                                                                                              (66) 

 

then there exists a constant 0C   such that  

 

 
 

 \ RC D C D B
C D

u
u C u

 


 
  

  

 .                                                                                   (67) 

 

 Proof. The proof can be done  in the similar way  to proof of  Lemma 4.4 given in [19].  Let 

 0,C D   be  positive  function  with support  \ RD B  .  Now,  we  will  show  that  any solution 

of  equation (66)  satisfying  the boundary condition  

 

          
u

ku g



 


                                                                                                                          (68) 

 

must vanish identically in D . We suppose  that the solution of the problem 66 and 68 is not unique i.e. 

let 21 uuu  . Thus the function u  satisfy the homogeneous boundary condition 

 

         0
u

ku



 


.                                                                                                                             (69) 

 

We take the homogeneous  problem  66 and 69. By applying the divergence theorem to the function  

1
u u

n

 
 

 
  and  then taking imaginary parts, we  have 

 

           
2 2 22

0

1 1
Im  Im

D D

k u u dy k u ds y
n n





 
    
   .                                                         (70) 
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From 
1

Im 0
n
 , the left-hand of  equation 70  is negatif or zero. From Im 0   and 

0n IR  on D ,  

the  right-hand  of  equation 70  is positive or zero. Moreover, since 0  , 0u   on  \ RD B ,  the 

boundary condition  69  implies  that  0
u







.  From  the unique continuation principle,  we  obtain that 

0u   in D . Thus,  the problem 66 and 68  has  at most one solution.  

 

             To show existence of  the solution of the boundary value problem 66 and 68,  we  use  the inverse 

operator’s existence  theorem [18].  Firstly, we define the function 

 

 
 

 1

0

, ,
n x

x y x y
n

                                                                                                         

 

and  let  this function  be the fundamental solution to equation 66. With the function    in the operators  

S  and 
ıK  which were defined in the operators 29 and 31 replaced by 1 .  Therefore,  for  C D  

, we  define  the function  

 

       1 ,

D

u x x y y ds y



  ,           
2 \x IR D  .  

                                

The function u  restricted to D  solves the problem 66 and 68. The function   satisfies the integral 

equation 

 

          2ıK kS g           on D .                                                                                              (71) 

 

This integral equation is obtained from the jump relations and the boundary condition 68. If 0g  , 

since 0u   in D , from the unique continuation principle, then 0
u

u



 
 


. From the continuity of 

the single-layer potential and the uniqueness of  the solution of  the exterior Dirichlet problem given in 

[16],  we have that  0
u

u u



  
  


.  From  the jump relations, we obtain that 

u u


 

  
  

 
.  

Thus, 0  . This ensures the existence of the solution. That is, since the homogeneous equation 

  0ıI K kS      has to the solution 0  ,  the operatör 
ıI K kS   is injective. Thus, from 

the inverse operator’s existence theorem, the  inhomogeneous equation 71 for all  g C D   has a 

unique solution and the solution depends continuously on the function g . Since the inverse operator 

     
1

:ıI K kS C D C D


      exists and bounded, then the constant 
1 0C   exists such that 

 

   1C D C D
u C g

 
 .                                                                                                              (72) 
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From  the boundary condition 68  and since the function   is  support  \ RD B , then 

 

 
   

 \ RC D C D B
C D C D

u u
g ku c u

  
 

 
   

 
,      0c  .     

                                             

Writing the last  inequality  in the inequality 72, we get the inequality 67. 

Teorem 4.2. If  the sequences 
0, ju  and 

ju  are solutions of  the interior boundary value problem 

 

2

0, 0, 0j ju k u   ,       in D                                                                                                     (73) 

 

21
. 0j ju k u

n

 
    
 

,     in D                                                                                               (74) 

 

    0, 0 .,j j ju u y   ,        on  D                                                                                         (75) 

 

 
 00,

0, 0

0 0

.,1 1
.,

jj j

j j j

yu u
k u u k y

n n
 

  

   
       

   
,     on  D                      (76) 

 

Then 

 

 10,lim j C Dj
u


  ,                                                                                                                  (77) 

 

where  the sequences jy  are defined by      

    

          j

R
y y y

j
                                                                                                                       (78) 

 

for 0R   is sufficently small and y
 is a point on D . 

 

Proof.  We assume that there exists a positive constant 
1c such that  

 

 10, 1j C D
u c


 ,        j                                                                                                      (79) 

 

For 0R   sufficently small and y D , we  take  the set of points in  
2 \IR D  defined with the 

sequences 

 

 j

R
z y y

j
    .  
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  Let’s define the sequence  

 

   .,j j ju u n z        in D .                                                                                            (80) 

 

From the boundary condition 75  and the sequence 80, we obtain 

 

   0, 0 0., .,j j j ju u y n z      
 

    on  D .                                                            (81) 

 

Again from the boundary condition 76  and  the derivative of  the  sequence 80  in the direction  , we 

obtain 

 

   00,

0,

0 0 0

., .,1 1 1j jj j

j j

y zu u
k u u

n n n


   

     
       

       

    

                                                                         0

0

1
., .,j jk y z

n


 
    

  

    on  D .              (82) 

 

The right-hand of equations 81 and 82 are  defined,  respectively,  by the sequences  

 

   0 0., .,j j jf y n z        on  D ,              

                                                                       

         
   

   0

0

0 0

., .,1 1
., .,

j j

j j j

y z
g k y z

n n


 

  
      

    

         on  D .       

                 

Let the disk rB  and   be as defined as the Lemma 4.1. Then there exists a constant 2 0c   such that  

 

 
   0 0 2\

. \ . \

sup ., sup .,
R

R R

j j jC D B
D B D B

f y n z c


 

     .                                                      (83) 

 

The norm of sequence jg  is given by the following inequality 

 

         
 

   

 

   
 

0

0

0 0

., .,1 1
., .,

j j

j j jC D

C DC D

y z
g k y z

n n


 



  
      

    

. 

 

Taking  the first norm  on  the right-hand of  the above inequation  and  using as in the  proof of Lemma 

4.2  [8],  there exists a constant 3 0c   such that  

 

   

 

0

3

0

., .,1j j

C D

y z
c

n 


 
 

 
 . 
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Thus, the  with support \ RD B ,  there exists a constant 4 0c   such that  

 

        
 

   3 0 4
. \

0

1
sup ., .,  

R

j j jC D
D B

g c k y z c
n






 
      

  

.                                                   (84) 

From the Lemma 4.1,  there exists a constant 5 0c   such that  

 

   
 

5
\ R

j

j j
C D C D B

C D

u
u c u

 



 
  
 
 

 .                                                                              (85) 

 

From the boundary condition 75,  the assumption 79 and the inequality 83,  we obtain  

 

     0, 1 2\ \\ R RR
j j jC D B C D BC D B

u u f c c
 

    .                                                                   (86) 

 

From the boundary conditions 75, 76,  the equation 81,  the assumption 79,  the inequalities 84 and 86, 

there exists a constant 6 0c   such that  

 

   
   

0,

0 0, 0

j j

j j j C DC D
C DC D

u u
n ku ku n g 

  


 
    

 
        

                    

 
   

0,

0 0, 0 4 6\ \R R

j

j jC D B C D B
C D

u
n ku ku n c c 

  


 
      

  

.            (87)                  

 

When we write  the inequalities  86 and 87 in the inequality 85, we obtain  the following inequality  

 

 
7 7, 0j

C D
u c c


  .                                                                                                       (88) 

 

For  the sequence jf  ,  we have  

 

          
 

   
 

0 0., .,j j jC D C D
f y n z

 
   

     0, 0,1j j j j C DC D C D
u u u u

 
     . 

 

From the assumption 79  and  the inequality  88,  
 j C D

f


 is bounded which is a contradiction. Because  

jf  is nondefined in RD B   and bounded  according to the norm on  \ RC D B .  Therefore,    

 10, j C D
u


is unbounded  as j  . 
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To formulate the linear method for the solution of the inverse scattering problem, we will benefit 

from the information about the far-field  model  ˆ( , )u x d , where ˆ
x

x
x

  and d  are unit vector on the 

unit circle  . Recall that for this end, the Herglotz wave function in the form 

 

             .d d dikx

gv x e g ds



                                                                                                  (89)   

 

is a solution of  the Helmholtz equation , where  2g L   is the kernel of 
gv . Our aim is to show that 

there exists a function     2., jg g y L    such that  

 

    

 2

4
ˆ.

ˆ( ,d) d d
8

j

i

ikx y

L

e
u x g ds e

k










 

         for  0  ,                                           

 

where jy D  is defined by  sequence 78. We will also show that it is   
 2

lim ., j
j L

g y
 

  . Thus, 

the boundary  of  D is characterized by points where the norm  
 2

., j
L

g y


 is unlimited.  

 

Theorem 4.3 There exists    2., jg g y L    such that  

 

   

 2

4
ˆ.

ˆ( ,d) d d
8

j

i

ikx y

L

e
u x g ds e

k










 

  ,     for   0                                          (90) 

 

 and   
 2

lim (., )j Lj
g y


  .  Moreover,  if  gv   is  the Herglotz  wave  function  defined  by  function 

89,  then  
 2

lim .,g j
j L D

v y


  . 

 

 

Proof. From Theorem 3.3,  the  interior boundary value problem 73-76  has  a solution  which  is not  

generally  a  Herglotz  wave  function.  However, a  Herglotz  wave function 0, jU  with kernel g  is 

shown to exist and  this function approaches 0, ju  in  1C D  given in [8,11]. Let 0u  be  show  the total 

field, solving  the original exterior boundary value problem 6-10, and the functions 0u
 and u

 be defined 

   0 0
ˆ,u y u y x     and    ˆ,u y u y x   ,  respectively. From the reciprocity relation [16]  and  the 

far-field pattern ˆ( ,d),  u x
we obtain  
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       ˆ ˆ( ,d) d d ( d, ) d du x g ds u x g ds 

 

     

                                           
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d. 0
0  d d

8

i ik y
ik y

D

ue e
u y e y ds y g ds

k



 


 

 

   
   

    
   

 

         
4

0, 0
0 0,  

8

i

j

j

D

U ue
u y y y U y ds y

k



 






 
  

   .          (91)            

Since 
0, 0,j jU u  in  1C D ,  the integral on the right-hand of equation 91 become 

 

                   0, 0,0 0
0 0, 0 0,

j j

j j

D D

U uu u
u y y y U y ds y u y y y u y ds y

   

 
 

 

     
     

        .    

 

Applying the conditions 75-76 and then the conditions 8-9 , respectively, the last equation is in the form 

below 

 

                   0, 0
0 0,

0

1j j

j j

D D

U uu u
u y y y U y ds y u y y y u y ds y

n   

 
 

 

     
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                                                                  0 0
0 0, ,j j

D

u
u y y y y y y ds y

 






  
   

   .  (92) 

 

Let's apply the Divergens theorem to the first integral on the right hand of equation 92. We get 
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     
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         2 2ˆ ˆ, , 0j j

D

u y x k u y u y k u y x dy       
  .      (93)     

        

From the Helmholtz representation and the  Green’s formula, the last integral in the right-hand of 

equation 92 is  

 

            ˆ.0 0
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From the equations 93 and 94,  the equation 92 is in the form below 

 

         
ˆ.0, 0

0 0,  jikx yj

j

D

U u
u y y y U y ds y e
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When we write the equation 95 in the equation 91,  we get   

             
4

ˆ.
ˆ( ,d) d d

8

j

i

ikx ye
u x g ds e

k











 .  

Hence   there is a function  2g L   that satisfies the equation 90. We assume that  
 2

., j
L

g y


is 

bounded as j  . Hence 
 10, j C D

U  is bounded. This implies  that 
 10, j C D

u is  bounded  as j 

. This result is contradict with the Theorem 4.2.  Thus,  the theorem is proved. 
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