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ABSTRACT 

In a series of papers, B.E. Rhoades and M. Yildirim previously investigated the spectra and fine spectra for factorable 
matrices, considered as bounded operators over various sequence spaces. In the present paper approximation point spectrum, 

defect spectrum and compression spectrum of factorable matrices are investigated. 
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1. INTRODUCTION 

Let ( )B X  denote the linear space of all bounded linear 

operators on X . Given an operator ( )L B X∈ , the set  

 

            ( ) { }: :   bijectionL I Lρ λ λ= ∈Κ −          (1) 

 

is called the resolvent set of L  (where 

RC == Kor    K ), its complement  

 

                           ( ) ( ): \L Lσ ρ= Κ                           (2) 

 

the spectrum of L . By the closed graph theorem, the 

inverse operator 

          ( ) ( ) ( )( )1
; :    LR L I Lλ λ λ ρ−

= − ∈           (3) 

 

is always bounded; this operator is usually called 

resolvent operator of L  at λ . 

 

 

 

1.1. Subdivision of the spectrum: The point spectrum, 

continuous spectrum and residual spectrum 

 

Let X  be a Banach space over Κ  and ( )L B X∈ . 

Recall that a number λ ∈Κ is called eigenvalue of L  if 

the equation 

 

                                    Lx xλ=                                    (4) 

 

has a nontrivial solution x X∈ . Any such x  is then 

called eigenvector, and the set of all eigenvectors is a 

subspace of X  called eigenspace. 

 

Throughout the following, we will call the set of 

eigenvalues  

 

  ( ) { }: :   for some  0p L Lx x xσ λ λ= ∈Κ = ≠    (5) 

 

We say that λ ∈Κ  belongs to the continuous spectrum 

( )c Lσ  of L  if the resolvent operator (3) is defined on a 

dense subspace of X  and is unbounded. Furthermore, 

we say that λ ∈Κ  belongs to the residual spectrum 
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( )r Lσ  of L  if the resolvent operator (3) exists, but its 

domain of definition (i.e. the range ( )R I Lλ −  of 

( )I Lλ −  is not densein X ; in this case ( );R Lλ  may 

be bounded or unbounded. Together with the point 

spectrum (5), these two subspectra form a disjoint 

subdivision 

 

            ( ) ( ) ( ) ( )p r cL L L Lσ σ σ σ= ∪ ∪                  (6) 

 

of the spectrum of L . 

 

1.2.The approximate point spectrum, defect spectrum 

and compression spectrum 

 

Given a bounded linear operator L  in a Banach space 

X , we call a sequence ( )k k
x  in X  a Weyl sequence 

for L  if 1kx =  and 0kLx →  as k → ∞ . 

 

In what follows, we call the set 

 

( ) { }: : there is a Weyl sequence for 
ap

L I Lσ λ λ= ∈Κ −  

                                                                                        (7) 

 

the approximate point spectrum of L . Moreover, the 

subspectrum 

 

   ( ) { }: :   is not surjectiveL I Lδσ λ λ= ∈Κ −     (8) 

 

is called defect spectrum of L . 

 

The two subspectra (7) and (8) form a (not necessarily 

disjoint) subdivision 

 

                   ( ) ( ) ( )apL L Lδσ σ σ= ∪                      (9) 

 

of the spectrum. There is another subspectrum, 

 

       ( ) ( ){ }: :  Xco L R I Lσ λ λ= ∈Κ − ≠             (10) 

 

which is often called compression spectrum in the 

literature and which gives rise to another (not necessarily 

disjoint) decomposition 

 

                ( ) ( ) ( )ap coL L Lσ σ σ= ∪                      (11) 

 

of the spectrum. Clearly, ( ) ( )p apL Lσ σ⊆  and 

( ) ( )co L Lδσ σ⊆ . Moreover, comparing these 

subspectra with those in (6) we note that 

 

                 ( ) ( ) ( )\r co pL L Lσ σ σ=                      (12) 

and 

 

        ( ) ( ) ( ) ( )\c p coL L L Lσ σ σ σ = ∪             (13) 

 

Sometimes it is useful to relate the spectrum of a bounded 

linear operator to that of its adjoint. Building on classical 

existence and uniqueness results for linear operator 

equations in Banach spaces and their adjoints. 

 

Proposition 1 ([6], Proposition 1.3). The spectra and 

subspectra of an operator ( )L B X∈  and its adjoint 

( )* *L B X∈  are related by the following relations: 

 

(a) ( ) ( )* ,L Lσ σ=  

(b) ( ) ( )* ,c apL Lσ σ⊆  

(c) ( ) ( )* ,ap L Lδσ σ=  

(d) ( ) ( )* ,apL Lδσ σ=  

(e) ( ) ( )* ,p coL Lσ σ=  

(f) ( ) ( )* ,co pL Lσ σ⊇  

(g) ( ) ( ) ( ) ( ) ( )* * .ap p p apL L L L Lσ σ σ σ σ= ∪ = ∪

 

 

1.3.Goldberg’s Classification of Spectrum 

 

If X  is a Banach space, ( )B X  denotes the collection 

of all bounded linear operators on X  and ( )T B X∈ , 

then there are three possibilities for ( )R T , the range of 

T : 

 

(I) ( ) ,R T X=  

(II) ( ) ( ),   but  ,R T X R T X= ≠  

(III) ( ) .R T X≠  

 

and three possibilities for 1
:T

−  

 

(1) 
1

T
−

exists and continuous, 

(2) 
1

T
−

 exists but discontinuous, 

(3) 
1

T
−

 does not exist. 

 

If these possibilities are combined in all possible ways, 

nine different states are created. These are labelled by: 

. , , , , , , , , 321321321 IIIIIIIIIIIIIIIIII  If an operator is in 

state 
2III  for example, then ( ) XTR ≠  and 

1
T

−  exist 

but is discontinuous (see [13]).  

 

If λ  is a complex number such that 

11 or    IILITILIT ∈−=∈−= λλ   then ( )XL,ρλ∈ . 

All scalar values of λ  not in ( )XL,ρ  comprise the 

spectrum of L . The further classification of ( )XL,σ  

gives rise to the fine spectrum of L .That is, ( )XL,σ  can 

be divided into the subsets ( ) ( )XLIXLI , Ø,, 32 σσ =  

( ) ( ) ( ) ( ) ( )., ,, ,, ,, ,, 32132 XLIIIXLIIIXLIIIXLIIXLII σσσσσ
For example, if LIT −= λ  is in a given state, 

2III (say), 

then we write ( ).,2 XLIII σλ∈  
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By the definitions given above, we can write following 

table 

 

1 2 3 

Table 1 
( );   exists

and is bounded

R Lλ

 

( );   exists

and is unbounded

R Lλ

 

( )    ;

does not exists

R Lλ
 

I

 
( )R I L Xλ − =  ( )Lλ ρ∈  _ ( )p

Lλ σ∈

( )ap
Lλ σ∈  

II

 ( )R I L Xλ − =  ( )Lλ ρ∈  
( )c
Lλ σ∈

( )ap
Lλ σ∈

( )Lδλ σ∈  

( )p
Lλ σ∈

( )ap
Lλ σ∈

( )Lδλ σ∈  

III

 ( )R I L Xλ − ≠  

( )r
Lλ σ∈

( )Lδλ σ∈

( )co
Lλ σ∈

 

( )r
Lλ σ∈

( )ap
Lλ σ∈

( )Lδλ σ∈

( )co
Lλ σ∈  

( )p
Lλ σ∈

( )ap
Lλ σ∈

( )Lδλ σ∈

( )co
Lλ σ∈  

 

Let 
00 v ;v ; ; ; bbcc

p
l  denote the space of all null 

sequences; convergent sequences; sequences such that 

;∞<∑k kx  sequences such that ;1 ∞<−∑ +k kk xx   

.: 00 cbvbv ∩=  respectively.  

 

An infinite matrix A  is said to be conservative if it is a 

selfmap of c , the space of convergent sequences. 

Necessary and sufficient conditions for A  to be 

conservative are the well-known Kojima-Schur 

conditions; i.e., 

 

(i) ;sup:
0

∞<= ∑
∞

=k nkn aA  

(ii) ,:lim knkn a α=  exists for each k , and 

(iii) ∞<= ∑ nkn at lim:  exists. 

 
Associated with each conservative matrix A  is a 

function χ  defined by ( ) ( )  0, If . ≠−= ∑ AtA k χαχ  

A  is called coregular, and, if ( ) 0=Aχ  then A  is 

called conull. A matrix ( )nkaA =  is said to be regular if 

xxA limlim =  for each cx∈ . If 0=kα  for each k  

and 1=t  in (iii), then the operator A  is called regular. 

 

The spectrum and fine spectrum of several operators on 

some sequence spaces have been investigated recently. 

For example: [1]-[5], [7], [8] and [11]. Now we define 

factorable matrix as follows.  

 

A lower triangular matrix A  is said to be factorable if 

knnk baa =  for all .0 nk ≤≤  

 

The choices ( )1/1 += nan
 and each 

( ) ( )1p 1 ,1 >+== − p

nk nab  and each 
nnk aab ==  ,1  and 

each ,1=kb  and ,  , kknn pbPa ==  where { }kp  is a 

nonnegative sequence with ,:  ,0
00 ∑ =

=>
n

k kn pPp  

generate C  (the Cesáro matrix of order one), the p-

Cesáro matrices and terraced matrices defined by Rhaly, 

and the weighted mean matrices, respectively. 

 

B. E. Rhoades and M. Yildirim have calculated spectrum 

and fine spectrum of factorable matrices on 

0  and    , cc
p

l  in [23], [24] and [25]. It is the purpose of 

this paper to determine the approximate point spectra, 

defect spectra and compression spectra of factorable 

matrices over 
0c . As corollaries we obtain the known 

corresonding results for weighted mean matrices, teraced 

matrices and C . 

 

In previous work B. E. Rhoades determined the fine 

spectra of certain classes of weighted mean matrices, 

considered as bounded linear operators over 

00 v  and  ,  ,  , bcc
p

l  (See, e.g., [10], [20], [21], [22].) 

M. Yildirim has considered spectral questions for certain 

classes of Rhaly matrices (See, e.g. [15], [19], [26], [27], 

[28], [29], [30]). The Spectrum of C , on various spaces, 

has been computed in [9], [12], [14], [16], [17], [18], 

[31]. For many of our results we shall consider factorable 

matrices which belong to { AAF ::=  is a factorable 

lower triangular matrix with nonnegative entries and 

10 ≤≤ nnba  diogonal entries and with at most a finite 

number of zeros on the main diogonal}. Define 









≥
−

≤≤==== 0  ,
2

0::  ,  ,lim ncEbacba nnnnnn γ
γ

λλγ

and { }.0  :: ≥= ncS n
 

 

Theorem 1. Let FA∈  be regular such that 
nc lim=γ  

exists and is less than 1 and γ≥nc  for all sufficiently 

large n  ,then 

( ) .
2

1

2

1
:, 0 EcAap ∪









−
−

=
−

−=
γ
γ

γ
λλσ  

 

Proof. If FA∈ be regular such that 
nc lim=γ  exists 

and is less than 1 and γ≥nc  for all sufficiently large 

n  ,then, ( ) Ø, 03 =cAI σ and ( ) Ø, 02 =cAIII σ  follow from 

[25] Corollary 2.1, Corollary 3.1 and Theorem 3.2.-3.5. 

Since ( ) ( ) ( ),,\,, 0100 cAIIIcAcAap σσσ =  

 

( )

,
2

1

2

1
:

1
2

:

\
2

1

2

1
:\

2

1

2

1
:, 0

E

c

S

ScA

n

ap

∪








−
−

=
−

−=









<<
−

=∪





















−
−

<
−

−












∪









−
−

≤
−

−=

γ
γ

γ
λλ

λ
γ

γ
λ

γ
γ

γ
λλ

γ
γ

γ
λλσ

 

 

is obvious from [25] Corollary 2.1, Corollary 3.1 and 

Theorem 3.2. ¤ 
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Theorem 2. Let FA∈  be regular such that 
nc lim=γ  

exists and is less than 1 and γ≥nc  for all sufficiently 

large n ,then 

 

( ) .
2

1

2

1
:, 0 ScA ∪









−
−

≤
−

−=
γ
γ

γ
λλσ δ

 

 

Proof. If FA∈  be regular such that 
nc lim=γ  exists 

and is less than 1 and γ≥nc  sufficiently large n ,then, 

( ) Ø, 03 =cAI σ and ( ) Ø, 02 =cAIII σ  follow from [25] 

Corollary 2.1, Corollary 3.1 and Theorem 3.2.-3.5. Since 

( ) ( ) ( ),,\,, 0300 cAIcAcA σσσ δ =  and ( ) .Ø, 03 =cAI σ  

the equality 

 

( ) .
2

1

2

1
:, 0 ScA ∪









−
−

≤
−

−=
γ
γ

γ
λλσ δ

 

 

is true. ¤ 

 

Theorem 3. Let FA∈  be regular such that 
nc lim=γ  

exists and is less than 1 and γ≥nc  for all sufficiently 

large n ,then 

 

( ) .
2

1

2

1
:, 0 ScAco ∪









−
−

<
−

−=
γ
γ

γ
λλσ  

 

Proof. If FA∈ be regular such that 
nc lim=γ  exists 

and is less than 1 and γ≥nc  for all sufficiently large n 

,then, ( ) Ø, 03 =cAI σ and ( ) Ø, 02 =cAIII σ  follow from 

[25] Corollary 2.1, Corollary 3.1 and Theorem 3.2.-3.5. 

From table 1 

 

( ) ( ) ( ) ( )0302010 ,,,, cAIIIcAIIIcAIIIcAco σσσσ ∪∪=  

 

Since ( ) Ø, 02 =cAIII σ  then from [25] Corollary 2.1 

Corollary 3.1 and Theorem 3.2-3.3, we get 

 

( )

.
2

1

2

1
:

2
0:1

2
:

2

1

2

1
:, 0

S

cc

ScA

nn

co

∪








−
−

<
−

−=









−
≤≤=∪









<<
−

=∪












∪









−
−

<
−

−=

γ
γ

γ
λλ

γ
γ

λλλ
γ

γ
λ

γ
γ

γ
λλσ

¤ 

 

The following corollaries can be obtained by Proposition 

1. 

 

Corollary 1. The following equalities are true; 

 

(a) ( ) ,
2

1

2

1
:, 1* SAap ∪









−
−

≤
−

−=
γ
γ

γ
λλσ l

 

(b) ( ) ,
2

1

2

1
:, 1* EA ∪









−
−

=
−

−=
γ
γ

γ
λλσ δ l

 

(c) ( ) ,
2

1

2

1
:, 1* SAp ∪









−
−

<
−

−=
γ
γ

γ
λλσ l

 

 

where * A  denotes adjoint of A .  
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