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Abstract. In this paper, certain recurrence relations for the moments of minimum order statistics of a random
sample of size n arising from exponential distribution are obtained. The usefulness of these relations in
evaluating the moments of exponential minimum order statistics is also discussed.
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Ustel Dagihmdan Minimum Sira Istatistiginin Momentleri I¢in
Yinelenme Iliskileri

Ozet. Bu ¢alismada, iistel dagilimdan elde edilen n birimlik bir rasgele 6rneklemin minimum sira istatistiginin
momentleri igin belli yinelenme iliskileri elde edilmistir. Ustel minimum sira istatistiginin momentleri
degerlendirilmesinde bu iligkilerin yararliligt ayrica tartisilmustir.

Anahtar Kelimeler: Ustel dagilim, Minimum sira istatistigi, Momentler, Yinelenme iliskileri.

1. INTRODUCTION

The use of recurrence relations for the moments of order statistics is quite well-known in the statistical
literature (see, for example [1] and [2]). For improved forms of these results, it can be seen in [3] and [4].
Balakrishnan et al. have reviewed many recurrence relations and identities for the moments of order
statistics arising from several specific continuous distributions such as normal, Cauchy, logistic, gamma
and exponential [5]. For some recent results on moments of the order statistics arising from some other
important specific distributions [6] and [7]. David and Nagaraja have given an account of the recurrence
relations for the moments of order statistics arising from arbitrary as well as some specific distributions
[8]. There are other studies on this subject (see, for example, [9], [10], [11], [12], [13] and [14]). Hence
the aim of this paper is to consider minimum order statistics of a random sample of size n drawn from
exponential distribution and derive some recurrence relations for the moments of the minimum order

statistics.

* Corresponding author. Email address: ~ mbekci@cumhuriyet.edu.tr
http://dergipark.gov.tr/csj  ©2016 Faculty of Science, Sivas Cumhuriyet University


https://orcid.org/0000-0001-9642-872X

701

Bekgi [ Cumhuriyet Sci. J., Vol.40-3 (2019) 700-707

2. MATERIALS AND METHODS
2.1. Minimum Order Statistics from Exponential Distribution

Let X be a random variable whose distribution function (d.f.) and probability density function (p.d.f.)

are F(x) and f(x) respectively. Let X,,X,,..., X, have independent and identical d.f. F(x) and p.d.f.
f(x). X, <X, <..<X,, denotes the order statistics of these random variables. For 1<r <n, the

In —

p.d.f.of X, isgiven by

(%) [FOOT ™ [1-F(x)]"" (%)

. n
(r=)'(n-r)!
For r =1, the p.d.f. of X, is given by
fL. () =n[1-F)]"" f(x)
Let X,,X,,..., X, have independent and identically distributed exponential distribution with 6 mean
parameter. Then, d.f. and p.d.f. are F(x) and f(x) respectively
F(x)=1-e™° , x>0, 0>0

69)
f(x):%e‘x/e , x>0, 0>0

The p.d.f. of X, isgiven by

_ —X/0 n11 —x/e_n -nx/0
f(x)=n[e™"] ge=ge 2)

Xy, ~ Exp(6/n)

2.2. Recurrence Relations for the Moments of Exponential Minimum Order Statistics

Theorem 1. Let X, X,,..., X, have independent and identically distributed exponential distribution with

O mean parameter (i.e., if Eq. (1) then). Then, the k™ (k=1,2,3,...) moments of minimum order

statistics (X, ) is given by

k
8 =E0ct) =k 2 ®

Proof.

uiy =E(X},) = Tkarn (x)dx = Txk N om0y — ETXke_nx/edX
0 o © 0o
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Let’s remember that Txa"le"x/ﬁdx =T'(a)B* and T'(at) = (. —1)! , v € Z" . Then,
0

w9 — E(x< )= 2T xke ™00y = Dk 4+ (Q]M _ k.(ﬁjk
n In e 0 e n - n

Corollary 1. By Theorem 1, the expected value (1" moment), 2" moment and the variance of X,, are

given by

0
MJ(_lrz = Ml:n = E(Xl:n) = H

e 2
8 =E0c) =22 |

n n n

Theorem 2. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the (k+1)"™ moments of X, is given by

. 0
pid = (k +1);u£? @)

Proof.

k+1
Wl B = (k+1)![9] ~ k) 2
n n

Theorem 3. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the (kK + ()" moments of X, is given by

¢
e = (k+0)...(k+) [%j Hep )

Proof.

(

. . 0 k+¢ )
0 =E<xznf>=<k+f>!(ﬁj :<k+e>...<k+1>(ﬁj W

Theorem 4. If X random variables have exponential distribution with 8 mean parameter (i.e., if Eq. (1)

then), the k" moments of X, , is given by
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e k
O gt L 6
Minia (n+1j (6)
Proof.
e k
W, =B ) = k!(n—ﬂj

Theorem 5. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the (k+1)"™ moments of X, , is given by

. 0
W = (k) [—ju;zal %
n+1
Proof.
e k+1 9
kD) — B Y= (k+D))| — | =(k+1)| — |u
uln+l ( ]_n+1) ( ) n+1 ( ) n+1 Mi_n+1

Theorem 6. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the (kK +£)" moments of X, , is given by

. 0 )
2 = 0.0 22 i, ®

Proof.

N . e k+¢ e (
W0 Z E(XE) = (Kt f)!(—j (ke f)...(k+1)[—j W,
n+1 n+1

Theorem 7. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the k™ moments of X, . is given by

e k
W =k![ j ©

Ln+m

Proof.

e k
W ZE(XE, )= k![ j
n+m
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Theorem 8. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the (k+ ()" moments of X is given by

Ln+m

. IR
= e 0t 0, 10
n+m

Proof.

(

k+¢
m&z=eoqu=wk+o{—ﬁ—j =4k+0mW+D(—E—juﬁm
n+m n+m

Theorem 9. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq. (1)

then), the k™ moments of X, , is given by

k
w _[_N (k) 11
Hina ( n +1) My (11)

Proof.

0 ) 0
® — kIl —— | and u® =k =
Mynia (n +1) My n

(k) _ (k)
ul:n+l - Cl“l‘n

k k
k!(iJ :clk!(ﬁj
n+1 n

k
R L
' [n+1)

Theorem 10. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq.

(1) then), the K™ moments of X, . is given by

Ln+m

k
n
=] 2 @

Proof.

k k
mmm=k( 0 j mdm2=k{9j
n+m n

(k) _ (k)
Minsem = CZl'll:n
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Theorem 11. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq.

(1) then), the (k + €)™ moments of X, , is given by

k+(¢
+ n +
2 =0 g 03

Proof.

k+( k+(
) = (k+f)![ij and ) = (k+f)![9]
n+1 ' n

(k+0) _ (k+0)
Wing = Csul:n

(k+€)!( 0 j+ :cs(k+f)!(9j+
1 n

n+
k+(
c = n
* {n+1

Theorem 12. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq.

(1) then), the (K + €)™ moments of X, is given by
n k+(
e (19
n+m

Proof.

(k+0) 0 Kt (k+0) 0 k+(
o =K+ 0 —— 1  and pi? =(k+0)! =
n+m n

(k+0) (k+0)

M]_'n+m = C4“:L'n

(k+1z)!(i] + :c4(k+f)!(9) +
n+m n

k+(
o [
* ln+m
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Theorem 13. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq.

(1) then), the (k +£)" moments of X, is given by
k
(0 _ (k+€)...(k[+1) o N e (15)
(n+m) n+m

Proof.

0 6 k+( © e k
W =K+ ——| and p’ =kl —
n+m n

(k+0) _ (k)
Winem = Csul:n

kv = j”:cskg[ﬁj
n+m n

. :(k+€)...(k+1)e(( n ]k

® (n+m)‘ n+m

Theorem 14. If X random variables have exponential distribution with 6 mean parameter (i.e., if Eq.

(1) then), the (k + €)™ moments of X, is given by

+ n+m)~
M = (K+0)...(k+1)0° (nTz)M‘k’ (16)

In+m

Proof.

0 e k+( © e k
MJ_'n = (k + f)I - and ”’1:n+m = kl
n n+m

(k+0) __ (k)
“':L'n - C6“].'n+m

ke 2] —cp -2
n n+m

k
c, =(k+ﬁ)...(k+1)e‘(”n+T”[‘)

3. CONCLUSION

In this study, the k™ moments of X, and some recurrence relations related to this k" moments are

presented. The recurrence relations for the moments of minimum order statistics are important in the
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theory of order statistics. The moments of minimum order statistics can be obtained by some other

moments of minimum order statistics.
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