
 

 

Cumhuriyet Science Journal 

CSJ 

 

 

 

  

  

e-ISSN: 2587-246X 

  ISSN: 2587-2680 
Cumhuriyet Sci. J., Vol.40-3 (2019) 612-623  

 

 

* Corresponding author. Email address:  mhgursoy@gmail.com 

http://dergipark.gov.tr/csj     ©2016 Faculty of Science, Sivas Cumhuriyet University 

 

Double Actions of Groups 

Mustafa Habil GÜRSOY  

İnönü University, Faculty of Arts Sciences, Department of Mathematics, Malatya-44280, TURKEY  

 

Received: 01.12.2018; Accepted: 19.08.2019 http://dx.doi.org/10.17776/csj.491048 

 

Abstract. In this work, we present the concept of double action of a group 𝐺 on a set 𝑋 as a new concept in 

literature, which opens up the way for applying rich amount of algebraic topological facts and methods in the 

algebraic topology. Besides of this, we give some expository examples of this new concept. We also express 

the definition of a double action via permutations as similar to the definition of an action on a set of groups via 

permutations. We investigate some characterizations about the double actions. Also we prove an adaptation of 

Cayley’s theorem in the case of the double action.  

Keywords: Group; action; double action. 

Grupların Çift Etkileri 

Özet. Bu çalışmada, literatürde yeni bir kavram olarak bir G grubunun bir X kümesi üzerine çift etkisi kavramını 

sunuyoruz, ki bu kavram cebirsel topolojide cebirsel topolojik gerçeklerin ve metotların zengin bir uygulama 

yolunu açacaktır. Bunun yanısıra, bu yeni kavramın bazı açıklayıcı örneklerini veriyoruz. Ayrıca 

permütasyonlar yardımıyla grupların bir küme üzerine etkisi tanımına benzer olarak permütasyonlar yardımıyla 

bir çift etkinin tanımını ifade ediyoruz. Çift etkiler hakkında bazı karakterizasyonları inceliyoruz. Ayrıca çift 

etki durumunda Cayley’s teoreminin bir uyarlamasını ispatlıyoruz. 

 

Anahtar Kelimeler: Grup; etki; çift etki. 

 

1. INTRODUCTION  

The concept of action is an important tool in many area of mathematics, especially in algebraic topology. 

For instance, some categorical equivalences have been shown using the action of groupoid [2, 4]. Besides 

of the group actions, the actions of other algebraic structures such as algebra, ring, algebroid and groupoid 

are also studied [1, 5]. 

An action of a group 𝐺 on a set 𝑋 is a map ∙ ∶  𝐺 × 𝑋 → 𝑋 satisfying the conditions 𝑒 .𝑥 = 𝑥 and 𝑔.(ℎ.𝑥) =

(𝑔ℎ).𝑥 for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋, where 𝑒 is the identity of 𝐺. On the other hand, we can also define the 

action by using the concept of permutation, namely, an action of a group 𝐺 with identity 𝑒 on a set 𝑋 is 

the choice of a permutation 𝜏𝑔: 𝑋 → 𝑋 for each 𝑔 ∈ 𝐺 such that 𝜏𝑒 is the identity and, 𝜏𝑔 ∘ 𝜏ℎ = 𝜏𝑔ℎ 

for all 𝑔, ℎ ∈ 𝐺. Furthermore, two basic concepts come to mind when dealing with group action: orbit and 

stabilizer. If there exists an action of 𝐺 on 𝑋, then the set 𝑂𝑟𝑏𝐺𝑥 = {𝑔.𝑥 | 𝑔 ∈ 𝐺} is called the orbit of 𝑥. 

The stabilizer of 𝑥 is the set 𝐺𝑥 = {𝑔 ∈ 𝐺 | 𝑔.𝑥 = 𝑥} which is a subgroup of 𝐺.  

In this work, we deal with double actions of groups on sets. We investigate double situations of the 

concepts mentioned above. For this aim, we give definition of double action of a group on a set. In more 
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detail, we define the double action as follows: Let us suppose that a group 𝐺 has two actions on a set 𝑋 

on the left as ” · ” and ” ° ”. Then, for every 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋, if 𝑔.(ℎ∘𝑥) = ℎ∘(𝑔.𝑥) holds, then we say 

that 𝐺 acts doubly on 𝑋 on the left by means of ” · ” and ” ∘”. Using the concept of permutation, we can 

redefine the double action as follows. We say that 𝐺 acts doubly on 𝑋, if it is possible to correspond a 

permutation 𝜂𝑔
ℎ of 𝑋 × 𝑋 to each pair of elements (𝑔, ℎ) ∈ 𝐺 × 𝐺 such that 𝜂𝑔

ℎ ∘ 𝜂𝑘
𝑚 = 𝜂𝑔𝑘

ℎ𝑚 for every 

(𝑔, ℎ), (𝑘, 𝑚) ∈ 𝐺 × 𝐺. Also, we present the concepts of double orbit and stabilizer for double actions. 

Let 𝐺 be a group doubly acting on a set 𝑋 by means of ” · ” and ” ∘” and let 𝑥 ∈ 𝑋. Then, the double 

orbit of 𝑥 is the set 𝐷𝑂𝑟𝑏𝐺(𝑥) =  {𝑦 ∈ 𝑋 ∶ 𝑔.𝑥 = 𝑦 = ℎ∘𝑥, 𝑔, ℎ ∈ 𝐺}, and the stabilizer of 𝑥 is the set 

𝐺𝑥 = {(𝑔, ℎ) ∈ 𝐺 × 𝐺: 𝑔.𝑥 = ℎ∘𝑥 = 𝑥, 𝑔, ℎ ∈ 𝐺} which is the subgroup of the product group 𝐺 × 𝐺. 

Furthermore, we present the equivalence of two double actions, namely, we say that double actions of 𝐺 

on sets 𝑋 and 𝑋′ are equivalent if there is a bijection 𝜙: 𝑋 → 𝑋′ such that 𝜙(𝑔.𝑥) =

𝑔.(𝜙(𝑥)) and 𝜙(ℎ∘𝑥) = ℎ∘(𝜙(𝑥)) for every 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋. Additionally, we define the concepts of 

transitive, effective, free and regular double actions. Besides of these, we prove an adaptation of Cayley’s 

theorem in the case of double action of groups. 

We consider that the concept of double action as a new concept will bring a new look to problems 

particularly those in algebraic topology. Moreover, the concept of double action for the above mentioned 

algebraic structures can be also defined. 

2.PRELIMINARIES 

This section of the paper is devoted to give basic facts related to the actions of groups on sets. 

Definition 1. Let 𝐺 be a group and 𝑋 a nonempty set. A left action of 𝐺 on 𝑋 is a map ∙ ∶ 𝐺 × 𝑋 →

𝑋 written as (𝑔, 𝑥)  ↦  𝑔.𝑥 satisfying 

i) 𝑒 .𝑥 =  𝑥 for all 𝑥 ∈  𝑋, where “e” denotes the identity element of the group 𝐺. 

ii) 𝑔.(ℎ.𝑥) = (𝑔ℎ).𝑥 for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 [2]. 

Given an action of 𝐺 on 𝑋, we call 𝑋 a 𝐺 − 𝑠𝑒𝑡. We denote the action by (𝐺,∙, 𝑋). Similarly, a right action 

of 𝐺 on 𝑋 is defined. In this case, the group elements are written on the right instead of the left. Namely, 

the first condition is written by 𝑥 .𝑔 =  𝑥, and the second condition is written by (𝑥 .𝑔).ℎ =  𝑥 .(𝑔ℎ). But, 

we will use the left action throughout the paper. 

Example 1. Let 𝐺 be a group and 𝑋 =  𝐺. Then 𝐺 acts on itself by left multiplication [2]. 

Example 2. Let 𝐺 be a group and 𝑋 =  𝐺. Then 𝐺 acts on itself by conjugation [2]. 

Example 3. The trivial action of any group 𝐺 on any set 𝑋 is defined by 𝑔.𝑥 = 𝑥 for all 𝑔 ∈ 𝐺 and all 

𝑥 ∈ 𝑋 [2]. 

Another way to think about an action of a group on a set is via the concept of symmetric group, which 

this alternative definition will give us a very important theorem related to the group action: Cayley’s 

theorem. For this aim, let us first recall the concept of symmetric group. 

Let 𝑋 be any set. A permutation of 𝑋 is a function 𝜏 ∶  𝑋 → 𝑋 which is invertible (i.e. it is both injective 

and surjective). The set of permutations of 𝑋 forms a group under composition of functions, called the 

symmetric group on 𝑋. We denote it by Sym(X). Indeed, since the identity function 𝐼𝑑𝑋 on X is a bijection 
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from 𝑋 to 𝑋, we have 𝐼𝑑𝑋  ∈  𝑆𝑦𝑚(𝑋), and so 𝑆𝑦𝑚(𝑋)  ≠  ∅. For any 𝜏, 𝜙 ∈  𝑆𝑦𝑚(𝑋), since the 

composition 𝜏 ∘  𝜙 is a bijection from 𝑋 to 𝑋, we have 𝜏 ∘ 𝜙 ∈  𝑆𝑦𝑚(𝑋). Also, it is clear that the 

operation ∘ has associative property. For all 𝜏 ∈  𝑆𝑦𝑚(𝑋), we have 𝜏−1  ∈  𝑆𝑦𝑚(𝑋). It follows 𝜏 ∘

 𝜏−1  =  𝐼𝑑𝑋  =  𝜏−1  ∘  𝜏 . Thus, (𝑆𝑦𝑚(𝑋),∘) is a group. 

It is clear that if we take a group 𝐺 instead of the set 𝑋, then we obtain group of the automorphisms of 𝐺. 

Now let us again define the action of a group 𝐺 on a set 𝑋 via the concept of permutation. 

Definition 2. An action of a group 𝐺 on a set 𝑋 is the choice of a permutation 𝜏𝑔 ∶ 𝑋 → 𝑋 for each 𝑔 ∈ 𝐺 

such that the following two conditions hold: 

i) 𝜏𝑒 is the identity, namely 𝜏𝑒(𝑥) = 𝑥 for each 𝑥 ∈ 𝑋, 

ii) for every 𝑔, ℎ ∈ 𝐺, 𝜏𝑔 ∘ 𝜏ℎ = 𝜏𝑔ℎ [3]. 

If we consider together the Definitions 1. and 2., then we can state the following proposition which is give 

the relation between the group 𝐺 and the symmetric group 𝑆𝑦𝑚(𝑋) of the permutations of 𝑋 via the 

concept of action of the group 𝐺 on the set 𝑋: 

Proposition 1. An action of a group 𝐺 on a set 𝑋 is the same as a group homomorphism from 𝐺 to 𝑆𝑦𝑚(𝑋) 

[3]. 

By this proposition, we can easily say that there is no difference between an action of a group 𝐺 on a set 

𝑋 and a homomorphism 𝑓 ∶  𝐺 →  𝑆𝑦𝑚(𝑋). 

We can now state Cayley’s theorem. 

Theorem 1. Every group 𝐺 is isomorphic to a group of permutations [3]. 

Definition 3. Let 𝐺 be a group acting on a set 𝑋. If 𝑥 ∈  𝑋, then the set 𝑂𝑟𝑏𝐺𝑥 = {𝑔.𝑥 | 𝑔 ∈ 𝐺} is 

called the orbit of 𝑥 or the orbit through 𝑥 [2]. 

 

The set of orbits under the action of 𝐺 forms a partition of 𝑋. Because they are the equivalence classes 

of the equivalence relation given by 

𝑦 ~ 𝑥 ⇔ 𝑦 = 𝑔.𝑥 for some 𝑔 ∈ 𝐺. 

The set of all orbits of 𝑋 under the action of 𝐺 is written as 𝑋/𝐺. 

Definition 4. Let 𝑋 be a 𝐺 − 𝑠𝑒𝑡. Let 𝑥 ∈  𝑋. The stabilizer of 𝑥 is the set 𝐺𝑥 = {𝑔 ∈  𝐺 | 𝑔.𝑥 =  𝑥} 

[2]. 

Proposition 2. The stabilizer 𝐺𝑥 of 𝑥 is a subgroup of 𝐺 [2]. 

Definition 5. Let 𝑋 be a 𝐺 − 𝑠𝑒𝑡. Then 

i) the action is transitive if 𝑋 ≠ ∅ and if for any 𝑥, 𝑦 ∈  𝑋, there exists 𝑔 ∈  𝐺 such that 𝑔.𝑥 =  𝑦. 

ii) the action is faithful if for any 𝑔, ℎ ∈  𝐺, there exists 𝑥 ∈  𝑋 such that 𝑔.𝑥 ≠  ℎ.𝑥. 
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iii) the action is free if for 𝑔, ℎ ∈  𝐺, if there exists 𝑥 ∈  𝑋 such that 𝑔.𝑥 =  ℎ.𝑥 implies 𝑔 =  ℎ. 

iv) the action is regular if it is both free and transitive. Equivalently, we have that for any 𝑥, 𝑦 ∈  𝑋 there 

exists a unique 𝑔 ∈  𝐺 such that 𝑔.𝑥 =  𝑦 [2]. 

3.DOUBLE ACTIONS OF GROUPS 

Definition 6. Let 𝐺 be a group and 𝑋 be a nonempty set. Let us suppose that 𝐺 has two actions on 𝑋 on 

the left as ” · ” and ” ° ”. For every 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋, if the interchange law 

                                                               𝑔.(ℎ∘𝑥)  =  ℎ∘(𝑔.𝑥)                                                                   (*) 

holds, then we say that 𝐺 acts doubly on 𝑋 on the left by means of ” · ” and ” ∘”. The action of 𝐺 on 𝑋 

defined by this way is called left double action. Then, the set 𝑋 is called a left 𝑑𝑜𝑢𝑏𝑙𝑒 𝐺 − 𝑠𝑒𝑡. We denote 

the left double action of 𝐺 on 𝑋 by (𝐺,· ,∘ , 𝑋). 

Let’s state that there is no need in the above definition for a condition similar to condition (i) related to 

the identity element given in Definition.1. Namely, since we have already had two actions such as ”·” and 

” ° ”, the equalities 𝑒 .𝑥 =  𝑥 and 𝑒∘𝑥 = 𝑥 are satisfied by themselves. And, when we take identity element 

“𝑒” in the interchange law (*), it is obvious that the interchange law is satisfied. 

Example 4. Let us define two different actions of a group 𝐺 on itself on the left as follows: 

· ∶  𝐺 ×  𝐺 →  𝐺 

(𝑔, 𝑥) ↦ 𝑔.𝑥 =  𝑔𝑥, 

and 

°: 𝐺 × 𝐺 → 𝐺 

(ℎ, 𝑥) ↦ ℎ∘𝑥 = 𝑥ℎ−1 

Then, the group 𝐺 acts doubly on itself on the left by means of ” · ” and ” ∘”. Namely, for all 𝑔, ℎ, 𝑥 ∈  𝐺, 

we have the equality 

𝑔.(ℎ∘𝑥)  =  𝑔.(𝑥ℎ−1)  =  𝑔(𝑥ℎ−1)  =  (𝑔𝑥)ℎ−1  =  ℎ∘(𝑔𝑥)  =  ℎ∘(𝑔.𝑥). 

That is, the condition (*) in Definition. 6 holds. Consequently, (𝐺,· ,∘ , 𝐺) is a left double action. 

Example 5. Let us consider the following two actions of a group 𝐺 on itself on the left. 

·  ∶  𝐺 ×  𝐺 →  𝐺 

(𝑔, 𝑥)  ↦  𝑔.𝑥 =  𝑔𝑥𝑔−1, 

and 

  ∘ ∶  𝐺 ×  𝐺 →  𝐺 

(ℎ, 𝑥)  ↦  ℎ∘𝑥 =  𝑥 
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Then, for every 𝑔, ℎ, 𝑥 ∈  𝐺, since 

𝑔.(ℎ∘𝑥)  =  𝑔.(𝑥)  =  𝑔𝑥𝑔−1  =  ℎ∘(𝑔𝑥𝑔−1)  =  ℎ∘(𝑔.𝑥) 

the group G acts doubly on itself on the left by means of ” · ” and ” ∘”. Thus, (𝐺,· ,∘ , 𝐺) is a left double 

action. 

Proposition 3. If a group 𝐺 is abelian, every left action of 𝐺 on the set 𝑋 is a left double action. 

Proof. The proof follows easily from that the second condition of the action and the commutativity of the 

group. Namely, let 𝐺 be an abelian group and 𝐺 acts on a nonempty set 𝑋 on the left. Let us denote the 

action by · ∶  𝐺 ×  𝑋 →  𝑋, (𝑔, 𝑥)  ↦  𝑔.𝑥. Then, for every 𝑔, ℎ ∈  𝐺 and 𝑥 ∈  𝑋, we have 

𝑔.(ℎ.𝑥)  =  (𝑔ℎ).𝑥 =  (ℎ𝑔).𝑥 =  ℎ.(𝑔.𝑥). 

Thus, the abelian group 𝐺 acts doubly on 𝑋 on the left by the action ” · ”, which completes the proof. 

Now, our current aim is to define double actions via permutations just as we have defined group 

actions via permutations. 

If (𝐺,· , 𝑋) is an action, then we have a homomorphism 

                                                 𝜃 ∶  𝐺 →  𝑆𝑦𝑚(𝑋) 

                                                           𝑔 ↦  𝜃(𝑔)  =  𝜑𝑔 ∶  𝑋 →  𝑋 

                                                                                          𝑥 ↦  𝜑𝑔(𝑥)  =  𝑔.𝑥 

such that 𝜃(𝑔ℎ) = 𝜑𝑔ℎ =  𝜑𝑔 ∘ 𝜑ℎ = 𝜃(𝑔) ∘ 𝜃(ℎ). 

 

Similarly, if (𝐺,∘ , 𝑋) is another action, then we have also a homomorphism 

                                            𝛤 ∶  𝐺 →  𝑆𝑦𝑚(𝑋) 

                                                   ℎ ↦  𝛤(ℎ)  =  𝜓ℎ ∶  𝑋 →  𝑋 

                                                                                     𝑥 ↦  𝜓ℎ(𝑥)  =  ℎ∘𝑥 

such that 𝛤(𝑔ℎ)  =  𝜓𝑔ℎ =  𝜓𝑔  ∘  𝜓ℎ  =  𝛤(𝑔)  ∘  𝛤(ℎ). 

After all, let (𝐺,· ,∘ , 𝑋) be a double action. Then, let us define 

                          𝛷 ∶  𝐺 ×  𝐺 →  𝑆𝑦𝑚(𝑋 ×  𝑋) 

                                  (𝑔, ℎ) ↦  𝛷(𝑔, ℎ) =  𝜂𝑔
ℎ ∶  𝑋 ×  𝑋 →  𝑋 ×  𝑋 

                                                                               (𝑥, 𝑦)  ↦  𝜂𝑔
ℎ  (𝑥, 𝑦)  =  (𝜑𝑔(𝑥), 𝜓ℎ(𝑦)) 

                                                                                                                =  (𝑔.𝑥, ℎ∘𝑦). 
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Unlike the homomorphisms 𝜃 and 𝛤 just mentioned above, it is not so difficult to understand that 𝛷 is 

defined on 𝐺 × 𝐺 because of its double state. 

It is obvious that the 𝑆𝑦𝑚(𝑋 × 𝑋) is a group. Namely, since 𝜂𝑒
𝑒(𝑥, 𝑦) = (𝑒 .𝑥, 𝑒∘𝑦) = (𝑥, 𝑦) for all 

(𝑥, 𝑦) ∈ 𝑋 × 𝑋, then 𝜂𝑒
𝑒 is the identity element of 𝑆𝑦𝑚(𝑋 × 𝑋), where (𝑒, 𝑒) is the identity of 𝐺 ×  𝐺. 

Also the multiplication of 𝑆𝑦𝑚(𝑋 ×  𝑋) is defined by 

𝜂𝑔
ℎ  ∘  𝜂𝑘

𝑚 (𝑥, 𝑦) =  𝜂𝑔
ℎ  (𝜂𝑘

𝑚 (𝑥, 𝑦)) 

                                                                                    =  𝜂𝑔
ℎ  (𝑘 .𝑥, 𝑚∘𝑦) 

                                                                                    =  (𝑔.(𝑘 .𝑥), ℎ∘(𝑚∘𝑦)) 

                                                                                    =  ((𝑔𝑘).𝑥, (ℎ𝑚)∘𝑦) 

                                                                                    =  𝜂𝑔𝑘
ℎ𝑚 (𝑥, 𝑦) 

for all (𝑔, ℎ), (𝑘, 𝑚) ∈ 𝐺 × 𝐺 and (𝑥, 𝑦) ∈ 𝑋 × 𝑋. 

The inverse of 𝜂𝑔
ℎ is defined by 𝜂𝑔−1

ℎ−1
 for any (𝑔, ℎ) ∈ 𝐺 × 𝐺. 

Now let us show that 𝛷 defined above is a homomorphism. 

For any (𝑔, ℎ), (𝑘, 𝑚) ∈ 𝐺 × 𝐺 and (𝑥, 𝑦) ∈ 𝑋 × 𝑋, 

                                𝛷((𝑔, ℎ)(𝑘, 𝑚))(𝑥, 𝑦)  =  𝛷(𝑔𝑘, ℎ𝑚)(𝑥, 𝑦) 

                                                                      =  𝜂𝑔𝑘
ℎ𝑚 (𝑥, 𝑦) 

                                                                      =  ((𝑔𝑘).𝑥, (ℎ𝑚)∘𝑦) 

                                                                      =  (𝑔.(𝑘 .𝑥), ℎ∘(𝑚∘𝑦)) 

                                                                      =  𝜂𝑔
ℎ  (𝑘 .𝑥, 𝑚∘𝑦) 

                                                                      =  𝜂𝑔
ℎ  (𝜂𝑘

𝑚 (𝑥, 𝑦)) 

                                                                      =  𝛷(𝑔, ℎ)𝛷(𝑘, 𝑚)(𝑥, 𝑦).                                                      (1) 

Hence, 𝛷 is a homomorphism. 

Considering all of these, we can also give a new definition of a double action of 𝐺 on 𝑋 as follows, 

equivalently to the Definition 6: 

Definition 7. Let 𝑋 be a set and 𝐺 a group. Then, we say that 𝐺 acts doubly on 𝑋, if it is possible to 

correspond a permutation 𝜂𝑔
ℎ of 𝑋 × 𝑋 to each pair of elements (𝑔, ℎ) ∈ 𝐺 × 𝐺 such 𝑡ℎ𝑎𝑡 𝜂𝑔

ℎ ∘ 𝜂𝑘
𝑚 = 𝜂𝑔𝑘

ℎ𝑚 

for every (𝑔, ℎ), (𝑘, 𝑚) ∈ 𝐺 × 𝐺. 
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In other words, if there exists a homomorphism from 𝐺 ×  𝐺 to 𝑆𝑦𝑚(𝑋 ×  𝑋), then it is called ”𝐺 acts 

doubly on 𝑋”. 

After this definition, we state the Cayley’s theorem in case of the double action.  

Theorem 2. Given a group 𝐺, the group 𝐺 ×  𝐺 is isomorphic to a group of permutations. 

Proof. For the proof, just as in the Theorem 1., we are going to utilize the advantage of the idea that the 

left-multiplication is a permutation in the light of the above explanations for the group 𝐺 ×  𝐺. 

Define a map 

𝛷 ∶  𝐺 ×  𝐺 →  𝑆𝑦𝑚(𝐺 ×  𝐺) 

(𝑔, ℎ)  ↦  𝛷(𝑔, ℎ)  =  𝑙𝑔
ℎ , 

where 𝑙𝑔
ℎ is defined by 𝑙𝑔

ℎ  (𝑘, 𝑚)  =  (𝑙𝑔(𝑘), 𝑙ℎ(𝑚))  =  (𝑔𝑘, ℎ𝑚) for all (𝑘, 𝑚)  ∈  𝐺 ×  𝐺. It can easily 

shown that 𝑙𝑔
ℎ is a permutation. 

We want to show that 𝛷 is an injective homomorphism. 

First, suppose that 𝛷(𝑔, ℎ)  =  𝛷(𝑘, 𝑚), then 𝑙 𝑔
ℎ =  𝑙𝑘

𝑚 as functions mapping 𝐺 × 𝐺 to 𝐺 ×  𝐺. For 

functions to be equal they must equal at every point, and hence 𝑙𝑔
ℎ  (𝑒, 𝑒)  =  𝑙𝑘

𝑚 (𝑒, 𝑒) implying (𝑔, ℎ)  =

 (𝑔𝑒, ℎ𝑒)  =  (𝑘𝑒, 𝑚𝑒)  =  (𝑘, 𝑚), and hence Φ is injective. 

It is easily seen that 𝛷 is a homomorphism just as similar to that one in the equation (1). 

Thus, we have an embedding of 𝐺 × 𝐺 into the group of all permutations of the set 𝐺 ×  𝐺. 

Definition 8. Let 𝐺 be a group doubly acting on a set 𝑋 by means of ” · ” and ” ∘” and let 𝑥 ∈ 𝑋. Then, 

the double orbit of 𝑥 or the double orbit through 𝑥, written 𝐷𝑂𝑟𝑏𝐺(𝑥), is the set 

𝐷𝑂𝑟𝑏𝐺(𝑥) = 𝑂𝑟𝑏(𝐺,∙)𝑥 ∩ 𝑂𝑟𝑏(𝐺,°)𝑥 =  {𝑦 ∈ 𝑋 ∶ 𝑔.𝑥 = 𝑦 = ℎ∘𝑥, 𝑔, ℎ ∈ 𝐺}. 

Example 6. Let us consider the double action (𝐺,· ,∘ , 𝐺) in the Example 5. with the symmetric group 𝐺 =

𝑆3. Then we have the orbits 𝑂𝑟𝑏(𝑆3,∙)(𝑒) = {𝑒}, 𝑂𝑟𝑏(𝑆3,∙)((12)) = 𝑂𝑟𝑏(𝑆3,∙)((13)) = 𝑂𝑟𝑏(𝑆3,∙)((23)) =

{(12), (13), (23)}, 𝑂𝑟𝑏(𝑆3,∙)((123)) = 𝑂𝑟𝑏(𝑆3,∙)((132)) = {(123), (132)} and 𝑂𝑟𝑏(𝑆3,°)(𝑒) = {𝑒}, 

𝑂𝑟𝑏(𝑆3,°)((12)) = {(12)}, 𝑂𝑟𝑏(𝑆3,°)((13)) = {(13)}, 𝑂𝑟𝑏(𝑆3,°)((23)) = {(23)}, 𝑂𝑟𝑏(𝑆3,°)((123)) =

{(123)}, 𝑂𝑟𝑏(𝑆3,°)((132)) = {(132)}. Hence the double orbits of double action (𝑆3,· ,∘ , 𝑆3) are the sets 

of 𝐷𝑂𝑟𝑏𝑆3
(𝑒) = {𝑒}, 𝐷𝑂𝑟𝑏𝑆3

((12)) = {(12)}, 𝐷𝑂𝑟𝑏𝑆3
((13)) = {(13)}, 𝐷𝑂𝑟𝑏𝑆3

((23)) = {(23)}, 

𝐷𝑂𝑟𝑏𝑆3
((123)) = {(123)}, 𝐷𝑂𝑟𝑏𝑆3

((132)) = {(132)}. 

Example 7. Let us consider the double action (𝐺,· ,∘ , 𝐺) in the Example 4. with the symmetric group 𝐺 =

𝑆3. In this case, with a standard calculation it is easily seen that all double orbits of 𝑆3 for each 𝑥 ∈ 𝑆3 

will be 𝑆3.  

Proposition 4. Let 𝐺 be a group and 𝑋 a 𝑑𝑜𝑢𝑏𝑙𝑒 𝐺 − 𝑠𝑒𝑡. Then, for every 𝑥, 𝑦, 𝑧 ∈  𝑋 

i) 𝑥 is in the double orbit through 𝑥. 
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ii) if 𝑦 is in the double orbit through 𝑥, then 𝑥 is in the double orbit through 𝑦. 

iii) if 𝑦 is in the double orbit through 𝑥 and 𝑧 is in the double orbit through 𝑦, then 𝑧 is also in the double 

orbit through 𝑥. 

Proof. i) For any elements 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋, we have 𝑔.𝑥 = 𝑥 ⇒ 𝑔 = 𝑒 and ℎ∘𝑥 = 𝑥 ⇒ ℎ = 𝑒. Since 

𝑒 ∈ 𝐺, 𝑥 is in the double orbit through 𝑥. 

ii) If 𝑦 is in the double orbit through 𝑥, then we have 𝑔.𝑥 =  𝑦 and ℎ∘𝑥 =  𝑦 for some 𝑔, ℎ ∈  𝐺. Hence 

𝑔.𝑥 =  𝑦 ⇒  (𝑔−1). (𝑔.𝑥)  =  (𝑔−1).𝑦 

             ⇒  (𝑔−1𝑔). 𝑥 =  (𝑔−1).𝑦 

                                                                      ⇒  𝑒 . 𝑥 =  (𝑔−1). 𝑦 

                                                                      ⇒  𝑥 =  (𝑔−1).𝑦                                                                (2) 

and 

ℎ∘𝑥 =  𝑦 ⇒  (ℎ−1)∘(ℎ∘𝑥) = (ℎ−1)∘ 𝑦 

                                                                       ⇒  (ℎ−1ℎ)∘ 𝑥 = (ℎ−1)∘ 𝑦 

                                                                       ⇒ 𝑒∘ 𝑥 =  (ℎ−1)∘ 𝑦 

                                                                       ⇒ 𝑥 = (ℎ−1)∘ 𝑦.                                                               (3) 

From the equations (2) and (3), 𝑥 is also in the double orbit through 𝑦. 

iii) If 𝑦 is in the double orbit through 𝑥, then we have 

𝑦 = 𝑔.𝑥 = ℎ∘𝑥 𝑓𝑜𝑟 ∃𝑔, ℎ ∈  𝐺, 

and 𝑧 is in the double orbit through 𝑦, then we have 

𝑧 = 𝑚.𝑦 = 𝑛∘𝑦 𝑓𝑜𝑟 ∃𝑚, 𝑛 ∈ 𝐺. 

Hence 

𝑧 = 𝑚.𝑦 ⇒ 𝑧 = 𝑚.(𝑔.𝑥) ⇒ 𝑧 = (𝑚𝑔).𝑥 

and 

𝑧 = 𝑛∘𝑦 ⇒ 𝑧 = 𝑛∘(ℎ∘𝑥) ⇒ 𝑧 = (𝑛ℎ)∘𝑥. 

Since 𝑚𝑔, 𝑛ℎ ∈  𝐺, 𝑧 is in the double orbit through 𝑥. Hence, the proof is completed. 

 

Thus, we obtain a relation on 𝑋 defined by 
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𝑦 ∼ 𝑥 ⇔  𝑦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑜𝑟𝑏𝑖𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑥. 

Corollary 1. The above relation is an equivalence relation.  

The equivalence classes under this equivalence relation are called double orbits. 

Proposition 5. Let 𝐺 be a group and 𝑋 a 𝑑𝑜𝑢𝑏𝑙𝑒 𝐺 − 𝑠𝑒𝑡. The disjoint double orbits under the above 

equivalence relation form a partition of 𝑋. 

Proof. From Proposition.4 (i), we have 𝑥 ∈ 𝐷𝑂𝑟𝑏𝐺𝑥, namely, for 𝑒 ∈ 𝐺 𝑒 .𝑥 = 𝑥 = 𝑒∘𝑥. So it is obvious 

that 𝑋 ⊂  ⋃ 𝐷𝑂𝑟𝑏𝐺𝑥𝑥∈𝑋  . Hence, we suppose that 𝐷𝑂𝑟𝑏𝐺𝑥 ∩ 𝐷𝑂𝑟𝑏𝐺𝑦 ≠  ∅. Then, for at least one 

element 𝑧 ∈  𝐷𝑂𝑟𝑏𝐺𝑥 ∩ 𝐷𝑂𝑟𝑏𝐺𝑦 , there exist 𝑔1, 𝑔2, ℎ1, ℎ2  ∈  𝐺 such that 

𝑧 =  𝑔1
. 𝑥 =  ℎ1

∘𝑥 𝑎𝑛𝑑 𝑧 = 𝑔2
. 𝑦 =  ℎ2

∘𝑦. 

We want to show that 𝐷𝑂𝑟𝑏𝐺𝑥 = 𝐷𝑂𝑟𝑏𝐺𝑦. For this, it suffices to show that 𝐷𝑂𝑟𝑏𝐺𝑥 ⊂ 𝐷𝑂𝑟𝑏𝐺𝑦. Thus, 

we conclude that 𝐷𝑂𝑟𝑏𝐺𝑥 = 𝐷𝑂𝑟𝑏𝐺𝑦 by symmetry. 

From the hypothesis, for any element 𝑢 ∈  𝐷𝑂𝑟𝑏𝐺𝑥, there exist 𝑔, ℎ ∈  𝐺 such that 𝑢 =  𝑔.𝑥 =  ℎ∘𝑥. 

Since 𝑥 =  (𝑔1
−1).𝑧 =  (ℎ1

−1)∘𝑧 , we have 

𝑢 =  𝑔.𝑥 ⇒  𝑢 =  𝑔.((𝑔1
−1).𝑧)  =  (𝑔𝑔1

−1 ).𝑧 =  (𝑔𝑔1
−1 ).(𝑔2

. 𝑦)  =  (𝑔𝑔1
−1 𝑔2).𝑦 

and 

𝑢 =  ℎ∘𝑥 ⇒  𝑢 =  ℎ∘((ℎ1
−1)∘𝑧)  =  (ℎℎ1

−1 )∘𝑧 =  (ℎℎ1
−1 )∘(ℎ2

∘ 𝑦)  =  (ℎℎ1
−1 ℎ2)∘𝑦 

This means that 𝑢 ∈  𝐷𝑂𝑟𝑏𝐺y. Thus, we obtain 𝐷𝑂𝑟𝑏𝐺𝑥 ⊂ 𝐷𝑂𝑟𝑏𝐺𝑦. 

By symmetry, we obtain 𝐷𝑂𝑟𝑏𝐺𝑥 = 𝐷𝑂𝑟𝑏𝐺𝑦. Consequently, if the double orbits 𝐷𝑂𝑟𝑏𝐺𝑥 and 𝐷𝑂𝑟𝑏𝐺𝑦 

share even one point in common, then they are equal and thus a partition. 

Definition 9. Let 𝑋 be a 𝑑𝑜𝑢𝑏𝑙𝑒 𝐺 − 𝑠𝑒𝑡. Let 𝑥 ∈  𝑋. The stabilizer, denoted 𝐺𝑥, of 𝑥 is the set 

𝐺𝑥 =  {(𝑔, ℎ) ∈ 𝐺 × 𝐺 ∶ 𝑔.𝑥 = ℎ∘𝑥 = 𝑥, 𝑔, ℎ ∈ 𝐺} 

which is the subset of the product group 𝐺 ×  𝐺. 

Proposition 6. The stabilizer 𝐺𝑥 of 𝑥 is the subgroup of the product group 𝐺 × 𝐺. 

Proof. 𝐺𝑥 is nonempty, since (𝑒, 𝑒)  ∈ 𝐺𝑥 . Also, if (𝑔1, ℎ1), (𝑔2, ℎ2)  ∈ 𝐺𝑥 , then we have 

𝑔1
.𝑥 =  ℎ1

∘ 𝑥 =  𝑥 and 𝑔2
.𝑥 =  ℎ2

∘𝑥 =  𝑥. 

Hence 

𝑔1
.𝑥 =  𝑥 ⇒ 𝑔1

.(𝑔2
.𝑥)  =  𝑥 ⇒  (𝑔1𝑔2).𝑥 =  𝑥 

and 

ℎ1
∘ 𝑥 =  𝑥 ⇒  ℎ1

∘(ℎ2
∘𝑥)  =  𝑥 ⇒  (ℎ1ℎ2)∘𝑥 =  𝑥. 
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Thus, (𝑔1𝑔2, ℎ1ℎ2)  ∈  𝐺𝑥  ⊂  𝐺 × 𝐺. It is obvious that the multiplication in 𝐺 × 𝐺 is defined by 

(𝑔1, ℎ1)(𝑔2, ℎ2) =  (𝑔1𝑔2, ℎ1ℎ2), for all (𝑔1, ℎ1), (𝑔2, ℎ2)  ∈  𝐺 ×  𝐺. 

Thus, 𝐺𝑥 is closed under the multiplication. 

On the other hand, if (𝑔1, ℎ1)  ∈ 𝐺𝑥, then we have 𝑔1
.𝑥 = ℎ1

∘ 𝑥 =  𝑥. Hence, 

𝑔1
.𝑥 =  𝑥 ⇒  (𝑔1

−1). (𝑔1
.𝑥)  = (𝑔1

−1). 𝑥 

                                                                     ⇒  (𝑔1
−1 𝑔1). 𝑥 =  (𝑔1

−1). 𝑥 

                                                                     ⇒ 𝑒 .𝑥 =  (𝑔1
−1). 𝑥 

                                                                     ⇒  𝑥 =  (𝑔1
−1). 𝑥 

and 

ℎ1
∘ 𝑥 =  𝑥 ⇒  (ℎ1

−1)∘ (ℎ1
∘ 𝑥)  =  (ℎ1

−1)∘ 𝑥 

                                                                    ⇒  (ℎ1
−1 ℎ1)∘ 𝑥 =  (ℎ1

−1)∘𝑥 

                                                                    ⇒  𝑒∘𝑥 = (ℎ1
−1)∘ 𝑥 

                                                                    ⇒  𝑥 = (ℎ1
−1)∘ 𝑥. 

So, it follows (𝑔1
−1 , ℎ1

−1 )  ∈  𝐺𝑥. Thus, 𝐺𝑥 is closed under the inversion. 

Consequently, the stabilizer 𝐺𝑥 is the subgroup of 𝐺 ×  𝐺. 

Example 8. Let us consider the double action (𝐺,· ,∘ , 𝐺) in the Example 5. with the symmetric group 𝐺 =

𝑆3. Then, we obtain the stabilizer groups (𝑆3)𝑒 = {(𝑒, 𝑒}, (𝑆3)(12) = {((12), (12))}, (𝑆3)(13) =

{((13), (13))}, (𝑆3)(23) = {((23), (23))}, (𝑆3)(123) = {((123), (123))}, (𝑆3)(132) = {((132), (132))}  

Proposition 7. Let 𝐺 be a group doubly acting on a set 𝑋 by means of ” · ” and ” ∘”. Then, for every 

(𝑔1, ℎ1), (𝑔2, ℎ2)  ∈ 𝐺𝑥 

𝑔1
.𝑥 =  𝑔2

.𝑥 and ℎ1
∘ 𝑥 =  ℎ2

∘ 𝑥 

⟺ 

(𝑔1, ℎ1) and (𝑔2, ℎ2) lie in the same left coset of 𝐺𝑥. 

Proof. The conditions 𝑔1
.𝑥 =  𝑔2

.𝑥 and ℎ1
∘ 𝑥 =  ℎ2

∘ 𝑥 are equivalent to 𝑥 =  (𝑔1
−1 𝑔2). 𝑥 =

(ℎ1
−1 ℎ2)∘ 𝑥, which means (𝑔1

−1 𝑔2, ℎ1
−1 ℎ2)  ∈  𝐺𝑥. Therefore, (𝑔1, ℎ1) and (𝑔2, ℎ2) act doubly in the 

same way on 𝑥 if and only if (𝑔1, ℎ1) and (𝑔2, ℎ2)  lie in the same left coset of 𝐺𝑥. 

Definition 10. Double actions of 𝐺 on sets 𝑋 and 𝑋′ are called equivalent if there is a bijection 𝜙: 𝑋 → 𝑋′ 

such that 
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𝜙(𝑔.𝑥) = 𝑔.(𝜙(𝑥)) and 𝜙(ℎ∘𝑥) = ℎ∘(𝜙(𝑥)) 

for every 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋. 

Let us now give some types of the double actions.  

Definition 11. The double action of a group 𝐺 on a set 𝑋 by means of the actions ” · ” and ” ∘” is called 

transitive if there is an element (𝑔, ℎ) ∈ 𝐺 × 𝐺 such that 

𝑔.𝑥 = 𝑦 = ℎ∘𝑥 for any 𝑥, 𝑦 ∈ 𝑋. 

Example 9. Let us consider the double action (𝐺,· ,∘ , 𝐺) in the Example 4. with the symmetric group 𝐺 =

𝑆3. By the Example 7., the double action (𝑆3,· ,∘ , 𝑆3)  has unique orbit, so this double action is transitive. 

Definition 12. The double action of a group 𝐺 on a set 𝑋 by means of the actions ” · ” and ” ∘” is called 

faithful (or effective) if there is a point 𝑥 ∈ 𝑋 such that 

𝑔1
.𝑥 ≠  𝑔2

.𝑥 𝑎𝑛𝑑 ℎ1
∘ 𝑥 ≠  ℎ2

∘ 𝑥 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑔1, ℎ1), (𝑔2, ℎ2)  ∈  𝐺 ×  𝐺. 

Definition 13. The double action of a group 𝐺 on a set 𝑋 by means of the actions ” · ” and ” ∘” is called 

free if for (𝑔1, ℎ1), (𝑔2, ℎ2)  ∈  𝐺 ×  𝐺 if there exists 𝑥 ∈  𝑋 such that 𝑔1
.𝑥 =  𝑔2

.𝑥 and ℎ1
∘ 𝑥 =  ℎ2

∘𝑥 

imply (𝑔1, ℎ1) = (𝑔2, ℎ2). 

Definition 14. The double action of a group 𝐺 on a set 𝑋 by means of the actions ” · ” and ” ∘” is called 

regular if it is both free and transitive. Equivalently, for any 𝑥, 𝑦 ∈ 𝑋 there exists a unique (𝑔, ℎ) ∈  𝐺 ×

𝐺 such that 𝑔.𝑥 = 𝑦 = ℎ∘𝑥. 

Example 10. The double action in Example 4. is faithful. Indeed, let us consider the actions 

· ∶  𝐺 ×  𝐺 →  𝐺 

(𝑔, 𝑥) ↦  𝑔.𝑥 =  𝑔𝑥, 

and 

∘ ∶  𝐺 ×  𝐺 →  𝐺 

(ℎ, 𝑥)  ↦  ℎ∘𝑥 =  𝑥ℎ−1. 

There is a need to show that there exists an 𝑥 ∈  𝑋 such that 

𝑔1
.𝑥 ≠  𝑔2

.𝑥 𝑎𝑛𝑑 ℎ1
∘ 𝑥 ≠  ℎ2

∘ 𝑥 , 

when (𝑔1, ℎ1) ≠ (𝑔2, ℎ2). 

Let 𝑔1 ≠ 𝑔2. Then 

𝑔1
.𝑥 =  𝑔1𝑥

𝑔2
.𝑥 = 𝑔2𝑥 } ⇒  𝑔1𝑥  𝑔2𝑥=

?  ⇒  𝑔1𝑥𝑥−1  𝑔2𝑥𝑥−1 =
? ⇒ 𝑔1𝑒  𝑔2𝑒=

? ⇒ 𝑔1 ≠ 𝑔2  

and 
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ℎ1
∘ 𝑥 =  𝑥ℎ1

−1

ℎ2
∘ 𝑥 = 𝑥ℎ2

−1 } ⇒  𝑥ℎ1
−1 𝑥ℎ2

−1
=
? ⇒  𝑥−1𝑥ℎ1

−1 𝑥−1𝑥ℎ2
−1

=
?  ⇒ 𝑒ℎ1

−1 𝑒ℎ2
−1

=
?  ⇒  ℎ1

−1  ℎ2
−1

=
? ⇒ ℎ1 ≠ ℎ2 

Therefore, the double action is faithful. 

Example 11. Let 𝐺 be a group and 𝐻 ⊂  𝐺 a subgroup. Let 𝐺/𝐻 =  {𝑥𝐻 ∶  𝑥 ∈  𝐺} be set of the left 

cosets. There is a natural action of 𝐺 on 𝐺/𝐻 with the left multiplication: 

· ∶  𝐺 ×  𝐺/𝐻 →  𝐺/𝐻 

(𝑔, 𝑥𝐻)  ↦  𝑔.(𝑥𝐻)  =  (𝑔𝑥)𝐻. 

Let us define another action as trivial action: 

∘∶  𝐺 ×  𝐺/𝐻 →  𝐺/𝐻 

(𝑘, 𝑥𝐻) ↦  𝑘∘(𝑥𝐻) =  𝑥𝐻. 

Then, we have 

𝑔.(𝑘∘(𝑥𝐻))  =  𝑔.(𝑥𝐻)  =  (𝑔𝑥)𝐻 =  𝑘∘((𝑔𝑥)𝐻)  =  𝑘∘(𝑔.(𝑥𝐻)). 

Thus, 𝐺 acts doubly on 𝐺/𝐻 by means of the actions ” ·  ” 𝑎𝑛𝑑 ” ∘  ”. 
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