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Abstract. In this work, we present the concept of double action of a group G on a set X as a new concept in
literature, which opens up the way for applying rich amount of algebraic topological facts and methods in the
algebraic topology. Besides of this, we give some expository examples of this new concept. We also express
the definition of a double action via permutations as similar to the definition of an action on a set of groups via
permutations. We investigate some characterizations about the double actions. Also we prove an adaptation of
Cayley’s theorem in the case of the double action.
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Gruplarnn Cift Etkileri

Ozet. Bu ¢alismada, literatiirde yeni bir kavram olarak bir G grubunun bir X kiimesi iizerine ¢ift etkisi kavranini
sunuyoruz, ki bu kavram cebirsel topolojide cebirsel topolojik gerceklerin ve metotlarin zengin bir uygulama
yolunu acacaktir. Bunun yanisira, bu yeni kavramin bazi aciklayici o6rneklerini veriyoruz. Ayrica
permiitasyonlar yardimiyla gruplarin bir kiime iizerine etkisi tanimina benzer olarak permiitasyonlar yardimiyla
bir ¢ift etkinin tanimini ifade ediyoruz. Cift etkiler hakkinda bazi karakterizasyonlari inceliyoruz. Ayrica gift
etki durumunda Cayley’s teoreminin bir uyarlamasini ispatliyoruz.

Anahtar Kelimeler: Grup; etki; ¢ift etki.

1. INTRODUCTION

The concept of action is an important tool in many area of mathematics, especially in algebraic topology.
For instance, some categorical equivalences have been shown using the action of groupoid [2, 4]. Besides
of the group actions, the actions of other algebraic structures such as algebra, ring, algebroid and groupoid
are also studied [1, 5].

Anactionofagroup G onasetXisamap-: G x X — X satisfying the conditionse'x = x and g (h'x) =
(gh)x forall g,h € G and x € X, where e is the identity of G. On the other hand, we can also define the
action by using the concept of permutation, namely, an action of a group G with identity e on a set X is
the choice of a permutation 7,: X — X for each g € G such that 7, is the identity and, 7, o 7, = 74
forall g, h € G. Furthermore, two basic concepts come to mind when dealing with group action: orbit and
stabilizer. If there exists an action of G on X, then the set Orbsx = {g'x | g € G} is called the orbit of x.
The stabilizer of x is the set G, = {g € G | g'x = x} which is a subgroup of G.

In this work, we deal with double actions of groups on sets. We investigate double situations of the
concepts mentioned above. For this aim, we give definition of double action of a group on a set. In more
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detail, we define the double action as follows: Let us suppose that a group G has two actions on a set X
on the left as ” - ” and ” ° ”. Then, for every g,h € G and x € X, if g'(h°x) = h°(g'x) holds, then we say
that G acts doubly on X on the left by means of - ”” and ™ o”. Using the concept of permutation, we can
redefine the double action as follows. We say that G acts doubly on X, if it is possible to correspond a
permutation nfql of X x X to each pair of elements (g, h) € G X G such that 772 onpt = ng,’? for every
(g,h), (k,m) € G x G. Also, we present the concepts of double orbit and stabilizer for double actions.
Let G be a group doubly acting on a set X by means of ”- ”and ” o” and let x € X. Then, the double
orbit of x is the set DOrb;(x) = {y € X : gx =y = h°x, g, h € G}, and the stabilizer of x is the set
Gy ={(g,h) EGXG:gx=h"x=x, g h € G} which is the subgroup of the product group G X G.
Furthermore, we present the equivalence of two double actions, namely, we say that double actions of G
on sets X and X' are equivalent if there is a bijection ¢:X - X' such that ¢(gx) =
g (p(x)) and p(h°x) = h°(¢p(x)) forevery g, h € G and x € X. Additionally, we define the concepts of
transitive, effective, free and regular double actions. Besides of these, we prove an adaptation of Cayley’s
theorem in the case of double action of groups.

We consider that the concept of double action as a new concept will bring a new look to problems
particularly those in algebraic topology. Moreover, the concept of double action for the above mentioned
algebraic structures can be also defined.

2.PRELIMINARIES
This section of the paper is devoted to give basic facts related to the actions of groups on sets.

Definition 1. Let G be a group and X a nonempty set. A left action of G on X isamap -: G X X —
X written as (g, x) — gx satisfying

i)ex = xforall x € X, where “e” denotes the identity element of the group G.
ii) g (hx) = (gh)x forall g,h € G and x € X [2].

Given an action of G on X, we call X a G — set. We denote the action by (G,, X). Similarly, a right action
of G on X is defined. In this case, the group elements are written on the right instead of the left. Namely,
the first condition is written by x'g = x, and the second condition is written by (x'g)'h = x'(gh). But,
we will use the left action throughout the paper.

Example 1. Let G be agroup and X = G. Then G acts on itself by left multiplication [2].
Example 2. Let G be agroupand X = G. Then G acts on itself by conjugation [2].

Example 3. The trivial action of any group G on any set X is defined by g-x = x for all g € G and all
x € X [2].

Another way to think about an action of a group on a set is via the concept of symmetric group, which
this alternative definition will give us a very important theorem related to the group action: Cayley’s
theorem. For this aim, let us first recall the concept of symmetric group.

Let X be any set. A permutation of X is a function t : X — X which is invertible (i.e. it is both injective
and surjective). The set of permutations of X forms a group under composition of functions, called the
symmetric group on X. We denote it by Sym(X). Indeed, since the identity function Idy on X is a bijection



Giirsoy | Cumhuriyet Sci. J., Vol.40-3 (2019) 612-623

from X to X, we have Idy € Sym(X), and so Sym(X) # @. For any t,¢p € Sym(X), since the
composition T o ¢ is a bijection from X to X, we have 7 o ¢p € Sym(X). Also, it is clear that the
operation o has associative property. For all T € Sym(X), we have T71 € Sym(X). It follows T o
™1 = Idy = 171 o 7. Thus, (Sym(X),°) is a group.

It is clear that if we take a group G instead of the set X, then we obtain group of the automorphisms of G.
Now let us again define the action of a group G on a set X via the concept of permutation.

Definition 2. An action of a group G on a set X is the choice of a permutation 7, : X — X foreach g € ¢
such that the following two conditions hold:

i) T, is the identity, namely t,(x) = x for each x € X,
ii) forevery g,h € G, 14 ° T}, = 145, [3].

If we consider together the Definitions 1. and 2., then we can state the following proposition which is give
the relation between the group G and the symmetric group Sym(X) of the permutations of X via the
concept of action of the group G on the set X:

Proposition 1. An action of a group G on a set X is the same as a group homomorphism from G to Sym(X)

[3].

By this proposition, we can easily say that there is no difference between an action of a group G on a set
X and a homomorphism f : G - Sym(X).

We can now state Cayley’s theorem.

Theorem 1. Every group G is isomorphic to a group of permutations [3].

Definition 3. Let G be a group actingonaset X. If x € X, thenthe set Orbsx = {gx| g € G}is
called the orbit of x or the orbit through x [2].

The set of orbits under the action of G forms a partition of X. Because they are the equivalence classes
of the equivalence relation given by

y~x & y=gxforsomeg €qG.
The set of all orbits of X under the action of G is written as X/G.

Definition 4. Let X be a G — set. Let x € X. The stabilizer of x isthesetG, ={g € G| gx = x}
[2].

Proposition 2. The stabilizer G, of x is a subgroup of G [2].
Definition 5. Let X be a G — set. Then
i) the action is transitive if X # @ and if forany x,y € X, thereexists g € G suchthat gx = y.

i) the action is faithful if for any g,h € G, there exists x € X such that gx # hx.
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iii) the action is free if for g,h € G, if there exists x € X suchthat gx = hx impliesg = h.

iv) the action is regular if it is both free and transitive. Equivalently, we have that for any x,y € X there
existsa unique g € G suchthat gx = y [2].

3.DOUBLE ACTIONS OF GROUPS

Definition 6. Let G be a group and X be a nonempty set. Let us suppose that G has two actions on X on
the leftas ” - ”and ” ° ”. For every g, h € G and x € X, if the interchange law

g (h°x) = h*(gx) ™)

holds, then we say that G acts doubly on X on the left by means of ” - ” and ” o”. The action of G on X
defined by this way is called left double action. Then, the set X is called a left double G — set. We denote
the left double action of G on X by (G, o, X).

Let’s state that there is no need in the above definition for a condition similar to condition (i) related to
the identity element given in Definition.1. Namely, since we have already had two actions such as ”-” and
”°” the equalities e'x = x and e’x = x are satisfied by themselves. And, when we take identity element
“e” in the interchange law (*), it is obvious that the interchange law is satisfied.

Example 4. Let us define two different actions of a group G on itself on the left as follows:
G X G -G
(9,x) » gx = gx,
and
G XG -G
(h,x) » h°x = xh™!

Then, the group G acts doubly on itself on the left by means of ” - ”” and ” o”. Namely, for all g, h,x € G,
we have the equality

ghx) = g(xh™) = gxh™) = (g0)h™" = h°(gx) = h°(g).
That is, the condition (*) in Definition. 6 holds. Consequently, (G, ,o, G) is a left double action.
Example 5. Let us consider the following two actions of a group G on itself on the left.
G XG> G
(9.%) » gx = gxg™",
and
o: G X G - G

(h,x) » h°x = x
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Then, for every g,h,x € G, since
g’x) = g(x) = gxg™ = h°(gxg™) = h°(gx)

the group G acts doubly on itself on the left by means of ” - ” and ” o”. Thus, (G, ,°, G) is a left double
action.

Proposition 3. If a group G is abelian, every left action of G on the set X is a left double action.

Proof. The proof follows easily from that the second condition of the action and the commutativity of the
group. Namely, let G be an abelian group and G acts on a nonempty set X on the left. Let us denote the
actionby-: G X X - X,(g,x) » gx.Then, foreveryg,h € G andx € X, we have

g (hx) = (ghyx = (hg)x = h(gx).
Thus, the abelian group G acts doubly on X on the left by the action ” - ”, which completes the proof.

Now, our current aim is to define double actions via permutations just as we have defined group
actions via permutations.

If (G,-,X) is an action, then we have a homomorphism
0: G - Sym(X)
gr 0@ =93: X > X
x o gg(x) = gx

such that 6(gh) = @gn = @4 ° @p = 6(g) o 6(h).

Similarly, if (G,o, X) is another action, then we have also a homomorphism
r: ¢ - Sym(X)
hw—Th =yp": X ->X
x = Phx) = h°x
suchthat I'(gh) = 9" = Y9 o Y" = I'(g) o I'(h).
After all, let (G,- ,o, X) be a double action. Then, let us define
®: G X G- SymX x X)

(gh) P @(gR)=nl: X XX > X xX
(x,y) = ng(xy) = (g0, ")

= (gx,h%y).
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Unlike the homomorphisms 6 and I" just mentioned above, it is not so difficult to understand that @ is
defined on G x G because of its double state.
It is obvious that the Sym(X x X) is a group. Namely, since né(x,y) = (e'x,e’y) = (x,y) for all

(x,¥) € X x X, then n¢ is the identity element of Sym(X x X), where (e, e) is the identity of G X G.
Also the multiplication of Sym(X X X) is defined by

ne o nt (x,y) = 0k (i (x,9))

= g (kx,m*y)

(g (kx), h*(m°y))

((gk)x, (hm)°y)

= ngr (%)
forall (g,h), (k,m) € G xGand (x,y) € X X X.
The inverse of 772 is defined by 772: forany (g,h) € G X G.

Now let us show that @ defined above is a homomorphism.

Forany (g, h), (k,m) € G X G and (x,y) € X X X,

(g, W (k,m)(x,y) = P(gk,hm)(x,y)

= i (%)

((gk)x, (hm)°y)

(g (k'x), h*(m°y))
= o (k'x,m°y)

= g (F (%, ¥))

(g, P (k,m)(x,y). @)
Hence, @ is a homomorphism.

Considering all of these, we can also give a new definition of a double action of G on X as follows,
equivalently to the Definition 6:

Definition 7. Let X be a set and G a group. Then, we say that G acts doubly on X, if it is possible to
correspond a permutation r;",} of X x X to each pair of elements (g, h) € G X G such that ng ot = ngkm
for every (g, h), (k,m) € G X G.
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In other words, if there exists a homomorphism from G X G to Sym(X X X), then it is called ”G acts
doubly on X”.

After this definition, we state the Cayley’s theorem in case of the double action.
Theorem 2. Given a group G, the group G X G is isomorphic to a group of permutations.

Proof. For the proof, just as in the Theorem 1., we are going to utilize the advantage of the idea that the
left-multiplication is a permutation in the light of the above explanations for the group ¢ X G.

Define a map
@: G x G- Sym(G x G)
(gh) » @(gh) =1,

where I} is defined by I} (k,m) = (I;(k),I"(m)) = (gk,hm) forall (k,m) € G x G. It can easily
shown that I} is a permutation.

We want to show that @ is an injective homomorphism.

First, suppose that @(g,h) = ®(k,m), then lg = [y* as functions mapping G X G to G x G. For
functions to be equal they must equal at every point, and hence l}; (e,e) = I (e,e) implying (g, h) =
(ge, he) = (ke,me) = (k,m), and hence @ is injective.

It is easily seen that @ is a homomorphism just as similar to that one in the equation (1).
Thus, we have an embedding of G X G into the group of all permutations of the set G x G.

Definition 8. Let G be a group doubly acting on a set X by means of ”- ”and ” o” and let x € X. Then,
the double orbit of x or the double orbit through x, written DOrb (x), is the set

DOrbg(x) = Orbigyx N Orbgyx = {y EX : gx =y = h’x,g,h € G}.

Example 6. Let us consider the double action (G, ,o, G) in the Example 5. with the symmetric group G =
S3. Then we have the orbits Orbs, y(e) = {e}, Orbs, ,((12)) = Orbs, 1((13)) = Orbs, ,((23)) =
{(12),(13),(23)}, Orbs, ((123)) = Orb(s, 4((132)) = {(123),(132)} and Orbs, - (e) = {e},
Orb(s,((12)) = {(12)}, Orb(s,»((13)) = {(13)}, Orbgs,»((23)) = {(23)}, Orbs,((123)) =
{(123)}, Orbs, ) ((132)) = {(132)}. Hence the double orbits of double action (S3, ,°,S3) are the sets
of DOrbs,(e) ={e}, DOrbs,((12)) ={(12)}, DOrbs,((13)) = {(13)}, DOrbs,((23)) = {(23)},
DOrbs,((123)) = {(123)}, DOrbs,((132)) = {(132)}.

Example 7. Let us consider the double action (G,- ,o, G) in the Example 4. with the symmetric group G =
S5. In this case, with a standard calculation it is easily seen that all double orbits of S; for each x € S5
will be S;.

Proposition 4. Let G be a group and X a double G — set. Then, forevery x,y,z € X

i) x is in the double orbit through x.
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i) if y is in the double orbit through x, then x is in the double orbit through y.

iii) if y is in the double orbit through x and z is in the double orbit through vy, then z is also in the double
orbit through x.

Proof. i) For any elements g,h € G and x € X, we have gx = x = g = e and h°x = x = h = e. Since
e € G, x is in the double orbit through x.

i) If y is in the double orbit through x, then we have gx = yand h°x = y forsome g,h € G. Hence
gx =y = (g ) @x) =@y
= (g9 x = (g Dy
=ex=(g7)y
=x = (g Dy ()
and
Rx =y = ()0 = 0y
= (hth)yx=(h)y
se°x = (hH)°y
=>x=(h"1)y. 3)
From the equations (2) and (3), x is also in the double orbit through y.
iii) If y is in the double orbit through x, then we have
y=gx=h’x for3g,h € G,
and z is in the double orbit through y, then we have
z=my=n’y forIm,n € G.
Hence
z=my=>z=m(gx)=>z=(mg)x
and
z=n"y >z =n"(h"x) > z = (nh)°x.

Since mg,nh € G,z is in the double orbit through x. Hence, the proof is completed.

Thus, we obtain a relation on X defined by
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y ~x © yisinthe double orbit through x.
Corollary 1. The above relation is an equivalence relation.
The equivalence classes under this equivalence relation are called double orbits.

Proposition 5. Let G be a group and X a double G — set. The disjoint double orbits under the above
equivalence relation form a partition of X.

Proof. From Proposition.4 (i), we have x € DOrbgx, namely, for e € G ex = x = e°x. So it is obvious
that X c Uyex DOrbgx . Hence, we suppose that DOrbgsx N DOrbsy # @. Then, for at least one
elementz € DOrbs;x N DOrbgy , there exist g4, g2, h1, h, € G such that

zZ=gyrx =h'xandz =g,y = h,"y.

We want to show that DOrb;x = DOrbgy. For this, it suffices to show that DOrb;x < DOrbgy. Thus,
we conclude that DOrb;x = DOrbgy by symmetry.

From the hypothesis, for any element u € DOrbgx, there exist g,h € G such thatu = gx = h°x.
Sincex = (g, )z = (hy ")z, we have

9917 )z = (9917 )(92y) = (9917 92)y

u=gx=>u=g(gu )2
and

u=hx = u=h((hy )2 = (hhy')°z= (hhy ") (hy"y) = (hhy ™" hy)y
This means that u € DOrbgy. Thus, we obtain DOrbzx < DOrbgy.

By symmetry, we obtain DOrb;x = DOrb;y. Consequently, if the double orbits DOrb;x and DOrby
share even one point in common, then they are equal and thus a partition.

Definition 9. Let X be a double G — set. Let x € X. The stabilizer, denoted G,., of x is the set
G,={(gh)EGXG:gx=hx=x g,h € G}
which is the subset of the product group G X G.
Proposition 6. The stabilizer G, of x is the subgroup of the product group G x G.
Proof. G, is nonempty, since (e,e) € G, . Also, if (g1, h1), (g2, hy) € G, , then we have
gix = hy"x = xand g, x = h,"x = «x.
Hence
g1x = x 2 9g1(g2x) = x = (g192)x = x
and

hlox = X = hlo(hzox) = X = (h1h2)°x = X.
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Thus, (9192, h1hy) € G, © G X G. It is obvious that the multiplication in G x G is defined by
(91, h1) (g2, h2) = (9192, hih2), forall (g1,h1),(g2,h2) € G X G.
Thus, G, is closed under the multiplication.
On the other hand, if (g,,h,) € G,, then we have g;'x = h;" x = x. Hence,
grx = x> (g7 ) (G0 = (g x
= (7 gD x = (g ) x
=ex = (g )x
> x = (g7 )x
and
hx =x = (b (h°2) = ()" x
= (" h) x = (b )x
= e°x = (hy H°x
= x =(h, Y
So, it follows (g, ™' ,h, ') € G,. Thus, G, is closed under the inversion.
Consequently, the stabilizer G, is the subgroup of G X G.

Example 8. Let us consider the double action (G, ,o, G) in the Example 5. with the symmetric group G =
S3. Then, we obtain the stabilizer groups (S3). = {(e,e}, (S3)(12) = {((12),(12))}, (S3)13) =

{((13), (13)}, (53)(23) = {((23),(23))}, (53)(123) = {((123),(123))}, (53)(132) = {((132),(132))}

Proposition 7. Let G be a group doubly acting on a set X by means of ”- ”and ” o”. Then, for every
(91, 1), (92, h2) € Gy

g1x = gyxandh,"x = hy,"x
=
(g1,h1) and (g3, hy) lie in the same left coset of G,.

Proof. The conditions g;:x = g, x and h;°x = h,"x are equivalent to x = (g;"1g,) x =

(hy ™! hy)° x, which means (g5~ g5, hy " hy) € G,. Therefore, (g5, hy) and (gs, hy) act doubly in the
same way on x if and only if (g4, h,) and (g5, h,) lie in the same left coset of G, .

Definition 10. Double actions of G on sets X and X' are called equivalent if there is a bijection ¢: X — X’
such that
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¢(gx) = g (¢(x)) and p(h°x) = h*(¢(x))
forevery g,h € G and x € X.
Let us now give some types of the double actions.

Definition 11. The double action of a group G on a set X by means of the actions ”- ”and ” o ” is called
transitive if there is an element (g, h) € G X G such that

gx=y=h’xforanyx,y € X.

Example 9. Let us consider the double action (G, ,o, G) in the Example 4. with the symmetric group ¢ =
S5. By the Example 7., the double action (S3,-,0,S3) has unique orbit, so this double action is transitive.

Definition 12. The double action of a group G on a set X by means of the actions ”- ”and ” o ” is called
faithful (or effective) if there is a point x € X such that

gix # gyxand hy"x # hy" x for any (g1, hy), (g2, hy) € G X G.

Definition 13. The double action of a group G on a set X by means of the actions ”- ”and ” o ” is called
free if for (g1, hy1), (g2, h;) € G X G if there exists x € X such that g;'x = gy xandh;"x = h,"x

imply (g1, h1) = (g2, hy).

Definition 14. The double action of a group G on a set X by means of the actions ”- ”and ” o ” is called
regular if it is both free and transitive. Equivalently, for any x,y € X there exists a unique (g, h) € G X
G suchthat gx =y = h°x.

Example 10. The double action in Example 4. is faithful. Indeed, let us consider the actions

G XG> G

(9,x) » gx = gx,

and

o: G X G - G

(h,x) » h°x = xh™L.
There is a need to show that there exists an x € X such that
gi1x # gyxand hy°x # hy," x,

when (gq, hy) # (g2, h2).
Let g; # g,. Then

g1x = g1x
927X = ga2X

1

}:” 91% 2 gax = gixxt 2 gxxT! = gre lg,e = g1 # gy

and
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° — -1

f;ll ’; - ;“:_11 } = xhy! 2xhyt = x~lxhy! 2x~lxhy! = ehl! Zehst = hil Zhyl= hy # hy
2 - 2

Therefore, the double action is faithful.

Example 11. Let G be a group and H < G a subgroup. Let G/H = {xH : x € G} be set of the left
cosets. There is a natural action of G on G /H with the left multiplication:

-+ G XG/H-> G/H
(g,xH) = g (xH) = (gx)H.
Let us define another action as trivial action:
o: G X G/H - G/H
(k,xH) » k°(xH) = xH.
Then, we have
g (k*(xH)) = g(xH) = (gx)H = k*((gx)H) = k°(g (xH)).

Thus, G acts doubly on G /H by means of the actions” - ”"and ” o ”.
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