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Abstract. The present paper studies the relation between the point-line dis-

placement and the equiform transformation in Minkowski 3-space R3
1. A point-

line can be transformed into another point-line via an equiform transformation.

Observing that a point-line is nothing but a line element when its reference

point is the origin of the coordinate system, we modelled that this transfor-
mation can also be performed by using dual split quaternions.

1. Introduction

In kinematics, a point-line is represented by an oriented (directed) line and an
incident point on this line. The point-line in kinematics has many implementation
areas in manufacturing. Yi Zhang and Kwun-Lon Ting examine [8] the point-
line positions and displacement with the help of dual quaternion algebra. And O.
Aydogmus, L. Kula and Y. Yayli [1] built up point-line displacements of a given
line in R3

1. On the other hand, B. Odehnal, H. Pottmann, J. Wallner [7] investigate
Plücker coordinates of the line elements in Euclidean 3-space R3.

Our interest in this paper is to investigate the relation between point-line repre-
sentations and equiform kinematics in Minkowski three-space R3

1. In Section 2, we
give dual split quaternions and some of their algebraic properties. Then in Section
3, we give the point-line operator in R3

1 and also we introduce the equiform trans-
formation and the Plücker coordinates of line elements in Minkowski three-space
R3

1. We examined the similarity between a point-line and a line element. Finally,
we introduce the point-line operator which transforms one point-line to another.

2. Preliminaries

In this section, we give some definitions and fundamental facts about Minkowski
three-space R3

1, that will be used throughout the paper.
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2.1. Some properties of Minkowski three-space R3
1. The Minkowski three-

space R3
1 is the Euclidean three-space R3 endowed with the standard flat metric

g = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of R3
1. Since g is an indefinite

metric, a vector v ∈ R3
1 can have one of the three Lorentzian causal characters: it

can be spacelike if g(~v,~v) > 0 or ~v = 0, timelike if g(~v,~v) < 0 and null (lightlike)
if g(~v,~v) = 0 and ~v 6= 0. In particular, the norm (length) of a vector ~v is given by

‖~v‖ =
√
|g(~v,~v)|, and two vectors ~v and ~w are said to be orthogonal, if g(~v, ~w) = 0.

Theorem 2.1. ([6]) Let ~u, ~v and ~w be vectors in Minkowski three-space R3
1. Then,

i. ~u × (~v × ~w) = −g (~u, ~w)~v + g (~u, ~v) ~w,

ii. g (~u × ~v, ~u × ~v) = −g (~u, ~u) g (~v, ~v) + g (~u, ~v)
2
,

where ~u = (u1, u2, u3), ~v = (v1, v2, v3) and

~u× ~v =

∣∣∣∣∣∣
−~e1 ~e2 ~e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1)

is the Lorentzian cross product in R3
1.

Let Rmn be the set of matrices of m rows and n columns.

Definition 2.1. ([3]) Let A = [aij ] ∈ Rmn and B = [bjk] ∈ Rnp . Lorentzian matrix
multiplication is defined as

AB =

−ai1b1k +

n∑
j=1

aijbjk

 .
Note that AB is an m× p matrix. Rmn with Lorentzian matrix multiplication is

denoted by Lmn .

Definition 2.2. ([3]) An n×n Lorentzian identity matrix with respect to Lorentzian
multiplication, denoted by In, is given by

In =


−1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


n×n

.

Note that for every A ∈ Lmn , ImA = AIn = A.

Definition 2.3. ([3]) A matrix A ∈ Lnn is called Lorentzian invertible if there exists
an n × n matrix B such that AB = BA = In. Then B is called the Lorentzian
inverse of A and is denoted by A−1.

Definition 2.4. ([3]) The transpose of a matrix A = [aij ] ∈ Lmn is denoted by AT

and defined as AT = [aji] ∈ Lnm.

Definition 2.5. ([3]) A matrix A ∈ Lnn is called Lorentzian orthogonal matrix if
A−1 = AT . The set of Lorentzian orthogonal matrices is denoted by O1(3).
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2.2. Dual split quaternions. In analogy with the complex numbers, W. K. Clif-
ford, defined [2] the dual numbers and showed that they form an algebra. The dual
numbers are defined by

D = {A = a+ εa∗ | a, a∗ ∈ R}
= {A = (a, a∗) | a, a∗ ∈ R} ,

where ε is the dual symbol subjected to the rules

ε 6= 0, 0ε = ε0 = 0, 1ε = ε1 = ε, ε2 = 0.

The set D of dual numbers is a commutative ring with the operations (+) and (·).
The algebra

H = {q = q0 + q1~e1 + q2~e2 + q3~e3 | q0, q1, q2, q3 ∈ R}

of split quaternions is defined as the four-dimensional vector space over R having
basis {1, ~e1, ~e2, ~e3} with the following properties:

(2.1)
1) (~e1)

2
= −1, (~e2)

2
= (~e3)

2
= 1,

2) ~e1~e2 = −~e2~e1 = ~e3, ~e2~e3 = −~e3~e2 = −~e1, ~e3~e1 = −~e1~e3 = ~e2.

It is clear that H is an associative and not commutative algebra and 1 is the identity
element of H. H is called split quaternion algebra (see [5] for split quaternions).

Similarly, as a consequence of this definition, a dual split quaternion Q can also
be written as

Q = q + εq∗,

where q and q∗ are split quaternions.
A dual split quaternion

Q = q + εq∗

is characterized by the following properties in [5]:
Scalar and vector parts of a dual split quaternion Q = A0 +A1~e1 +A2~e2 +A3~e3

are denoted by SQ = A0 and ~VQ = A1~e1 + A2~e2 + A3~e3, respectively. The basis
{1, ~e1, ~e2, ~e3} have the same multiplication properties of basis elements in real
quaternions.

Two dual split quaternions Q and P obey the following multiplication rule,

QP = (qp) + ε (qp∗ + pq∗)

where P = p+ εp∗, p and p∗ are split quaternions.
Scalar product of dual split quaternions Q and P is given by

g (Q, P ) = g (P, Q)

= g(q, p) + ε (g (q, p∗) + g (q∗, p)) .(2.2)

Definition 2.6. ([1]) Let ~VQ = ~q+ε~q∗ = (q1~e1 + q2~e2 + q3~e3)+ε (q∗1~e1 + q∗2~e2 + q∗3~e3)
be a unit dual split vector. Then the dual split vector is called

(2.3)
spacelike, if g(~q, ~q) > 0, and ~q = ~0,
timelike, if g(~q, ~q) < 0,

lightlike, if g(~q, ~q) = 0, and ~q 6= ~0.
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3. Point-line displacement with equiform transformations of R3
1

3.1. Point-line operator of R3
1. A point-line is represented by an oriented (di-

rected) line and an incident point on this line. Moreover, an oriented (directed) line
can be represented with a unit dual vector or signed Plücker coordinates. Thus,
we can say the point-line representation can be built up as a dual split vector or
signed Plücker coordinates.

Let L be an oriented (directed) line and P be a reference point in Minkowski
three-space R3

1. If we take N as the foot of the perpendicular from P to the directed
line L and E is an incident on this directed line L, then the distance h from N to
E depends on the location of E and the oriented (directed) line L, (see Fig. 1).

The oriented (directed) line L passing through points E andN can be represented
by a unit dual split vector.

Let ~A = ~a+ε−→a 0 be a unit dual split vector satisfying g(~a, ~a) = 1 (resp. g(~a, ~a) = −1)
and g(~a,−→a 0) = 0 where the split vector −→a denotes the unit vector along the ori-
ented line, and the split vector−→a 0 is the moment vector of the oriented line with
respect to the origin of reference frame O − xyz.

A point-line can be represented by multiplication of a dual number exp(εh) =

1 + εh, and ~A, namely

(3.1)

Â = exp(εh) ~A

=
∥∥∥Â∥∥∥ ~A

= ~a+ ε−→a ′0,

where −→a ′0 = −→a 0 + h~a and Â is a dual split vector with dual length exp(εh).
When we have the point-line coordinates, the incident offset h, the directed line,

and the incident point can be determined easily.

3.1.1. Case. If ~A = ~a+ ε−→a 0 is a unit spacelike dual split vector, then we have

(3.2) ~A = ~a+ ε (−→a ′0 − h~a) ,

and

(3.3) h = g(~a,−→a ′0).

Here, the value of h changes related to the reference point. Without losing gener-
ality, if we assume that the reference point is the origin of the coordinate system,
we can write the position vector of the incident E as

~rE =
−−→
PN +

−−→
NE,

where −→a 0 =
−−→
PN×~a and

−−→
NE = h~a. Therefore, from Theorem 1 and −→a ′0 = −→a 0+h~a,

the position vector ~rE of the incident E is

~rE = −~a×−→a 0 + h~a

= −~a×−→a ′0 + g(~a,−→a ′0)~a,

where × is the Lorentzian cross-product.

3.1.2. Case. If ~A = ~a+ ε−→a 0 is a unit timelike dual split vector, then we have

(3.4) ~A = ~a+ ε (−→a ′0 − h~a) ,

and

(3.5) h = −g(~a,−→a ′0).
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Here, the value of h changes related to the reference point. Without losing gener-
ality, if we assume that the reference point is the origin of the coordinate system,
we can write the position vector of the incident E as

~rE =
−−→
PN +

−−→
NE,

where −→a 0 =
−−→
PN×~a and

−−→
NE = h~a. Therefore, from Theorem 1 and −→a ′0 = −→a 0+h~a,

the position vector ~rE of the incident E is

~rE = ~a×−→a 0 + h~a

= ~a×−→a ′0 − g(~a,−→a ′0)~a,

where × is the Lorentzian cross-product ([4])

3.2. Equiform transformations of R3
1. This section describes equiform transfor-

mations, which means affine transformations whose linear part is composed from an
orthogonal transformation and a homothetical transformation in Minkowski three-
space R3

1. Such an equiform transformation maps points x ∈ R3
1 according to

(3.6)
ϕ : R3

1 −→ R3
1

x −→ ϕ(x) = y(t) = α(t)R(t)x+ b(t),

where R ∈ O1 (3) , b ∈ R3
1 and α is a homothetic scale. R, α and b are differentiable

functions of class C∞ of a parameter t.
The velocity ẏ(t) has the form

(3.7) v (y) =
·
RRT y +

α̇

α
y −

·
RRT b− α̇

α
b+ ḃ,

where ẏ(t) = dy
dt .

Since R is orthogonal, the matrix
·
RRT := C× is skew-symmetric in Lorentz sense

and the product C×x can be written in the form c × x in Minkowski three-space
R3

1:

(3.8) v (y) = c× y + γy + c̄,

where γ = α̇
α and c̄ =

·
RRT b− α̇

αb+ ḃ.

Any triple (c, c̄, γ) ∈ R7 defines a uniform equiform motion in Minkowski three-
space R3

1, uniquely.

3.3. Plücker coordinates of line elements of R3
1. Let L be an oriented (di-

rected) line in Minkowski three-space R3
1 passing through a point ~x. In order

to assign coordinates to the line element (L, ~x), we use the familiar definition of
Plücker coordinates. The triple (~a,−→a 0, h) ∈ R7 is called the Plücker coordinates

of the line element (L, ~x) in R3
1, if ~a 6= ~0 spacelike (resp. timelike) is parallel to L,

then −→a 0 = ~x× ~a, h = g (~x,~a) (resp. h = −g (~x,~a)). It is easy to show that

3.3.1. Case. If ~A is a unit spacelike dual split vector, then

(3.9) ~x = N (~a,−→a 0) + h~a,

where N (~a,−→a 0) = −~a×−→a 0.
The point N (~a,−→a 0) is the foot point of the origin on the line L. We know that

Plücker coordinates satisfy g (~a,−→a 0) = 0, and ~a 6= ~0 occurs as coordinates of lines
in R3

1. Therefore, from (3.9) we obtain the equation

(3.10) ~x = −~a×−→a 0 + h~a,
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where h = g (~x,~a) and ~a is a unit parallel spacelike vector to the line L.
If the corresponding line has an orientation, then a line element becomes ori-

ented. The equiform transformation (3.6) transforms the line element (~a,−→a 0, h1)

into (~u, ~u0, h2) with ~x′ = αR~x +~b, ~u = R~a, ~u0 = ~x′ × ~u, h2 = g (~x′, ~u). In block
matrix form, this transformation, as in the Euclidean case [7], reads

(3.11)

 ~u~u0
h2

 =

 R 0 0
R×R αR 0
~bTR 0T α

 ~a
−→a 0

h1

 ,
where R ∈ O1 (3) , b ∈ R3

1, α is a homothetic scale R, R×~x = ~b× ~x, ~A = ~a+ ε−→a 0,

g(~a, ~a) = 1, g(~a,−→a 0) = 0 and ~U = −→u + ε−→u 0, g(−→u , −→u ) = 1, g(−→u ,−→u 0) = 0.

3.3.2. Case. If ~A is a unit timelike dual split vector, then

(3.12) ~x = N (~a,−→a 0) + h~a,

where N (~a,−→a 0) = ~a×−→a 0.
The point N (~a,−→a 0) is the foot point of the origin on the line L. We know that

Plücker coordinates satisfy g (~a,−→a 0) = 0, and ~a 6= ~0 occurs as coordinates of lines
in R3

1. Therefore, from (3.12) we obtain the equation

(3.13) ~x = ~a×−→a 0 + h~a,

where h = −g (~x,~a) and ~a is a unit parallel timelike vector to the line L.
If the corresponding line has an orientation, then a line element becomes ori-

ented. The equiform transformation (3.6) transforms the line element (~a,−→a 0, h1)

into (~u, ~u0, h2) with ~x′ = αR~x +~b, ~u = R~a, ~u0 = ~x′ × ~u, h2 = −g (~x′, ~u). In block
matrix form, this transformation, as in the Euclidean case [7], reads

(3.14)

 ~u~u0
h2

 =

 R 0 0
R×R αR 0

−~bTR 0T α

 ~a
−→a 0

h1

 ,
where R ∈ O1 (3) , b ∈ R3

1, α is a homothetic scale R, R×~x = ~b× ~x, ~A = ~a+ ε−→a 0,

g(~a, ~a) = −1, g(~a,−→a 0) = 0 and ~U = −→u + ε−→u 0, g(−→u , −→u ) = −1, g(−→u ,−→u 0) = 0.
Using the correspondence between line elements and point-lines we observe the

following:

Conclusion 1. Let Â =
∥∥∥Â∥∥∥ ~A and Û =

∥∥∥Û∥∥∥ ~U be two point-lines. When the

reference point is chosen as the origin of the coordinate system for a point-line, the
transformations (3.11) (resp. (3.14)) transform the point-line Â to the point-line

Û if ~A is a unit spacelike dual split vector (resp. if ~A is a unit timelike dual split
vector).

We can obtain the oriented (directed) line elements in the equation (3.11) and
(3.14) by using dual split quaternions. Moreover, as in the Euclidean case [8], we
can transform a point-line to another point-line by using dual split quaternions
with the following theorem.

Theorem 3.1. A dual split quaternion Q transforms a given point-line to another
given point-line and is defined by

(3.15) Q =
1∥∥∥Â∥∥∥2

(
g
(
Â, Û

)
−
(
Â× Û

))
,
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where Â and Û denote two point-lines, × is Lorentzian cross product and the Q is
called the point-line operator which acts on point-lines, represented by split vectors,
via split quaternion multiplication.

Proof. Let Â and Û be two point-lines defined by Â =
∥∥∥Â∥∥∥ ~A and Û =

∥∥∥Û∥∥∥ ~U .

Here, from (3.1) ~A and ~U are unit spacelike (resp. timelike) dual split vectors, dual

length
∥∥∥Â∥∥∥ = exp ε(h1) of Â and dual length

∥∥∥Û∥∥∥ = exp ε(h2) of Û .

Case 1. If ~A is a unit spacelike dual split vector and if we apply quaternion multi-
plication to the Eq. (3.15) with Â from right-side, then we have

QÂ =
1∥∥∥Â∥∥∥2

[
g
(
Â, Û

)
Â− (Â× Û)× Â

]
and from Theorem 1 we have

QÂ =
1∥∥∥Â∥∥∥2

[
g
(
Â, Û

)
Â+ g

(
Â, Â

)
Û − g

(
Â, Û

)
Â
]

and from
g(Â, Â)
‖Â‖2 = 1

QÂ = Û .

Also, since

Â =
∥∥∥Â∥∥∥ ~A,

Û =
∥∥∥Û∥∥∥ ~U,

Eq. (3.15) can be modified

Q =

∥∥∥Û∥∥∥∥∥∥Â∥∥∥ (g
(
~A, ~U

)
−
(
~A× ~U

)
)

and from Eq. (3.1) since
∥∥∥Â∥∥∥ = exp ε(h1) and

∥∥∥Û∥∥∥ = exp ε(h2), the last equation

can be rewritten as

Q = {exp [ε(h2 − h1)]}Q0,

where
‖Û‖
‖Â‖ = exp [ε(h2 − h1)] is the dual length of Q and Q0 = g

(
~A, ~U

)
−(

~A× ~U
)

.

Because g
(
~A, ~U

)
is the scalar part of Q0 and −

(
~A× ~U

)
is the vector part of Q0,

Q is a dual split quaternion.

Case 2. If ~A is a unit timelike dual split vector and if we apply quaternion multi-
plication to the Eq. (3.15) with Â from right-side, then we have

QÂ =
1∥∥∥Â∥∥∥2

[
g
(
Â, Û

)
Â− (Â× Û)× Â

]
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and from Theorem 1 we have

QÂ =
1∥∥∥Â∥∥∥2

[
g
(
Â, Û

)
Â+ g

(
Â, Â

)
Û − g

(
Â, Û

)
Â
]

as QÂ = −Û is obtained by use of g
(
Â, Â

)
= −1. Moreover, due to

Â =
∥∥∥Â∥∥∥ ~A,

Û =
∥∥∥Û∥∥∥ ~U.

Eq. (3.15) can be rewritten as

Q =

∥∥∥Û∥∥∥∥∥∥Â∥∥∥ (g
(
~A, ~U

)
−
(
~A× ~U

)
)

and from Eq. (3.1). Use of
∥∥∥Â∥∥∥ = exp ε(h1) and

∥∥∥Û∥∥∥ = exp ε(h2) leads

Q = {exp [ε(h2 − h1)]}Q0,

where
‖Û‖
‖Â‖ = exp [ε(h2 − h1)] is dual length of Q and Q0 = g

(
~A, ~U

)
−
(
~A× ~U

)
.

Because g
(
~A, ~U

)
is the scalar part of Q0 and −

(
~A× ~U

)
is the vector part of Q0,

then Q is a dual split quaternion. �

4. Conclusion

In this study, we constructed two block matrices to represent the equiform trans-
formation mapping a given point-line to another given one.

We also prove that dual split quaternions can be used to map a given point-line to
another given one. Since it is compact, free of redundancies and easier to compute
compared to the matrices given in Eq. (3.11) and Eq. (3.14), this approach has
some advantages.
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