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Abstract

In image processing, nonlinear filters are commonly used as a pre-process for noise removal before applying any advanced
processing such as classification and clustering to an image. The adaptive filters being a kind of the nonlinear filters mainly
perform better than the others in salt-and-pepper noise. In this paper, we first define a new median method, i.e. right median
(rm). We then define a new adaptive nonlinear filter developed via rm, namely Adaptive Right Median Filter (ARMF), for salt-
and-pepper noise removal. Afterwards, we compare the results of ARMF with some of the known filters by using 12 test images
and two image quality metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). The results show that
ARMF outperforms the other methods at all the noise density except 80% and 90% in the mean percentages. Finally, we discuss
the need for further research.
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1. Introduction

The image processing is an area applied to many sectors from military to movie industries (Tomasi & Manduchi, 1998; Xiong et
al., 2016). With image processing methods, problems in these areas are tried to be troubleshot. These methods are realised in spatial
and frequency domains (Han et al., 2015). The filter is the most basic operation of image processing and computer vision (Lee et
al., 2016). One of the essential processes in the spatial domain is low or high pass filters. Before the advanced processing of the
images such as classification and clustering, they are treated by these filters. What is aimed at these processes is to eliminate the
undesirable features of the image as much as possible. The success of these processes directly affects other operations in obtaining
quality images.

Noise removal and keeping image information such as edges, textures, and other details are also essential topics for image denoising
(Erkan & Gokrem, 2018; Jiang et al., 2014; Li et al., 2015; Liu et al., 2017; Nguyen & Chun, 2017; Rafsanjani et al., 2017; Xu et
al., 2017). In camera-sensors, faulty memory locations in hardware, or transmissions in a noisy channel lead to some kinds of noise
such as salt-and-pepper noise (SPN) and Gaussian noise (Bai et al., 2014; Chan et al., 2005; Gellert & Brad, 2016; Xu et al., 2014).
SPN substantially lowers the quality of the image and randomly sets certain pixel values in the image to the maximum or minimum
value (Erkan & Kilicman, 2016; Linetal., 2010; Sun et al., 2015; Wang et al., 2016). One of the frequently used methods to remove
SPN is nonlinear filters such as Standard Median Filter (SMF) (Pratt, 1975; Tukey, 1977), Adaptive Median Filter (AMF) (Hwang
& Haddad, 1995), Median Filter without Repetition (MFWR) (Erkan & Gokrem, 2017), Progressive Switching Median Filter
(PSMF) (Wang & Zhang, 1999), Decision Based Filtering Algorithm (DBA) (Pattnaik et al., 2012) Modified Decision-Based
Unsymmetric Trimmed Median Filter (MDBUTMF) (Esakkirajan et al., 2011), and Noise Adaptive Fuzzy Switching Median Filter
(NAFSMF) (Toh & lIsa, 2010).

In this paper, in Section 2, we define a new method, i.e. Adaptive Right Median Filter (ARMF), which is improved via the right
median (rm), for SPN removal. In Section 3, we compare ARMF with DBA, MDBUTMF, and NAFSMF by using 12 test images
via two image quality metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). Finally, we discuss the need
for further research.

2. Preliminaries and ARMF Algorithm

In this section, firstly, we give some basic notions provided in (Erkan et al., 2018). Throughout this paper, let A := [al-j]mxn be an
image matrix (IM) such that a;; is an unsigned integer number, 0 < a;; < 255, and for at least one i and j, a;; # 0 and a;; # 255.

Definition 2.1 Let A be an IM. Then, a;; is called a noisy entry of A if a;; = 0 or a;; = 255; otherwise, a;; is called a regular
entry of A.

Definition 2.2 Let A be an IM. Then, A is called a noise image matrix (NIM) if for some i and j, a;; is a noisy entry of A.
Definition 2.3 Let A be an NIM. Then, the matrix B := [bif]mxn is called the binary matrix of A where

_ {0, a;;is anoisy entry of A
by = {; -
) otherwise
Definition 2.4 Let A = [aij]mxn and ¢t € {1,2,...,min{m, n}}, then the matrix Ay = [@rs]om+20)xm+2e) Called t-symmetric
pad matrix of A is defined as follows:

Qe Qg Qg1 Az 0 Qgp Atn " At(n—t+1)
(25 TR S E ai Az 0 Qip Ain 0 Ai(n—t+1)
Qe 0 Q1 agq Az 0 Qn Ain 7 Ai(n—t+1)
Qe 0 QA1 azy Azz =+ Qzp Qan " A2(n—-t+1)
azz 0 431 azy azz -+ A3y A3zn " A3(n—-t+1)
Amt o Ama Am1 Am2 t Amp Amn " Am(n-t+1)
Amt  *° AOGma am1 Am2  *° Amn Amn " Amn-t+1)
LA(m—-t+1)t" " Am—-t+1)1A(m—-t+1)1A(m-t+1)2" " A(m-t+DnAm—-t+1)n" " A(m-t+1)(n—t+1)

11 0 13
Example 2.1 Let A = (255 22 23|. Then,
31 32 0
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[ 22 255255 22 23 23 227
0 11 11 0 13 13 0
0 11 11 0 13 13 ©0

Agsim =| 22 255255 22 23 23 22
32 31 31 32 0 0 32
32 31 31 32 0 0 32

L 22 255255 22 23 23 2245,

k

Definition 2.5 Let A := [a;;] o Apsim be a tsim-pad matrix of A and k € {1,2, ..., t}. Then, the matrix, denoted by A%,

mx

[ (i+t=K)(j+t—k) 5(i+t—k)(j+t+k)]

a(i+t)(j+t)

a(i+t+k)(j+t—k) CT(i+1:+k)(j+t+k) (2k+1)x(2k+1)

is called k-approximate matrix of a;; in Apsim.

Example 2.2 Let us consider Example 2.1. Then,
11 11 0 }

A§1=|[255 255 zzl

l 31 31 32J
Definition 2.6 If all entries of a matrix are zero, then it is called a zero matrix and is denoted by [0].

Secondly, we give two basic notions needed for ARMF.

Definition 2.7 Let A be an NIM, R be the nonempty set of all regular entries of A, and |R| denote the cardinality of R. Then, the
matrix 4 = [d1w]1xr is called strictly increasing regular entry matrix (SIREM) of A, where
. { min R, w=1
a = . = = -
1w mll’l(R\{an, alz, ey al(w_l)}), 1 < w S |R|

Definition 2.8 Let 4 := [d;,, ],z be SIREM of A. Then, the value

R
a_ (Ir|+1 .
S 1(7) " |R| is odd
TmA =< |
a1(|R|+2> , |R| is even
2

is called right median of A.

Example 2.3 Let us consider Example 2.1. Then, AL, = [11 22 31 32]and rm4 = 31.

Finally, we give ARMF which is a new adaptive method for salt-and-pepper noise removal. In this method, a NIM is considered,
and its binary matrix is obtained. After that, t-symmetric pad matrices of these matrices are constructed. If an entry of the binary
matrix is equal to zero and its 1-approximate matrix differs from zero matrices, then SIREM of the 1-approximate matrix is
obtained, and the right median is evaluated. Afterwards, this right median is overwritten to the entry. If an entry of the binary
matrix is equal to zero and its 1-approximate matrix is zero matrices, but the 2-approximate matrix of this entry differs from zero
matrices, then SIREM of 2-approximate matrix is obtained, and the right median is evaluated. Afterwards, this right median is
overwritten to the entry. Similarly, if an entry of the binary matrix is equal to zero and its (k — 1)-approximate matrix is zero
matrix but the k-approximate matrix of this entry differs from zero matrix, then SIREM of the k-approximate matrix is obtained,
and the right median is evaluated. Afterwards, this right median is overwritten to the entry. Algorithm steps of this method are as
follows:
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ARMF Algorithm Steps
Step 1. Let A := [a;;] bea NIM such that min{m, n} > 3.
Step 2. Write the binary matrix B = [b”]mxn of A.

Step 3. Write 4,4, and By, such that ¢ = min{m, n}.
Step 4. For all i and j,

k=1
While k > 0

If [bf5] # [0], then
a. Obtain A}
b. Evaluate rm/ﬂ-‘j
c. Seta;; < rmAY
d. Break

Else
k=k+1

Else

Keep the value of a;;

3. Algorithms Results

In this section, we first determine 12 test images shown in Fig 1. The first four of these images are among the most popular images.
The second four of them are from TID2013 (Ponomarenko et al., 2015), and the last four of them are randomly extracted from
TESTIMAGES database (Asuni & Giachetti, 2014). We then give the PSNR and SSIM results of DBA, MDBUTMF, NAFSMF,
and ARMF shown in Fig 2 for Baboon, Motocross, and Billiard-Balls images with 30%, 50%, and 70% SPN densities,
respectively. The results show that ARMF performs better than other methods.

Afterwards, in Table 1 and 2, we give the results of the methods, for Cameraman, Lena, Baboon, and Peppers images ranging in
noise densities from 10% to 90%. Moreover, in Table 3 and 4, we give the mean results of the methods for 12 test images. The
results show that ARMF performs better than the others at all the noise density except 80% and 90% in the mean percentages.

Here, PSNR is defined by
PSNR := 101 2557
= U8\ MsE

where MSE stands for the Mean Square Error and is defined by
1 m n
2
MSE = %z Z(el] _fl])
i=1j=1

such that E: = [e;;] is the earliest form/original image and F: = [f;;] is the final form/corrupted image. And Structural Similarity
(SSIM) (Wang et al., 2004) is defined by

(2uepy + C,) + (205, + C,)

SSIM (x,y) =
(x:7) (243 +C)+ (a2 +02+C,)

where u,, 1y, 0y, 0y, and oy, are the average intensities, standard deviations and cross-covariance for images x and y, respectively.
In addition, C; :== (K,L)? and C, := (K,L)? are two constants such that K; = 0.01, K, = 0.03, and L = 255 for 8-bit grayscale
images.
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Noise Image %50 DBA-PSNR 18.17 MDBUTMEF-PSNR 22.07 NAFSM-PSNR 22.13 ARMF-PSNR 23.31

Orjinal Image Noise Image %70 DBA-PSNR 16.81 MDBUTMF-PSNR 24.18 NAFSM-PSNR 24.98 ARMEF-PSNR 26.50

Fig. 2. PSNR results of the methods for Baboon, Motocross, and Billiard-Ball images with 30%, 50%, and 70% SPN densities, respectively.
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Table 1. PSNR results the methods for some images

Image Filter 10%  20%  30%  40%  50%  60%  70%  80%  90%
DBA 3787 3279 2881 2598 2307 2085 1826 1560 13.17
MDBUTMF 3530 3099 2927 2977 3025 2939 2781 2359 15.10

Cameraman \ A\rSMF 3691 3396 3184 3050 2949 2833 2700 2557 22.36
ARMF 4278 3876 3589 3378 3188 2955 2749 2468 2048
DBA 3778 3351 2084 2712 2445 2187 1931 1612 1321
MDBUTMF 3613 3204 3035 3086 3105 3036 2874 2429 1554

LNd AFSMF  38.89 3574 3364 3233 3104 2087 2881 2712 2353
ARMF 4210 3868 36.26 3425 3259 3062 2854 2599 2178
DBA 3329 2001 2578 2352 2156 1982 1821 1654 13.76
MDBUTMF 3087 2861 2713 2662 2600 2514 2402 2161 14.84

Baboon  \AFSMF 3043 2030 2758 2635 2520 2434 2346 2249 2052
ARMF 3760 3396 3151 2070 27.85 2617 2439 2251  20.04
DBA 3663 3264 2051 2675 2406 20111 1865 1552 1194

peppers MDBUTMF 3577 3168 3013 3066 3103 3050 2870 2470 1561
NAFSMF 3948 3639 3449 3290 3153 3046 29.04 27.28 23.68
ARMF 4040 37.06 3483 3345 3174 3013 2797 2529 20.35
DBA 36.3018 319858 28.4858 258425 23.2850 20.9130 18.6086 15.9465 13.0188

\ea;  MDBUTMF 345179 30,8288 29.2179 294758 295821 28.8709 27.3176 23,5469 152704
NAFSMF  36.9280 33.8705 31.8878 30.5216 29.3356 28.2505 27.0755 25.6167 22.5209
ARMF 40.7206 37.1157 34.6215 327955 31.0124 20.1178 27.0963 24.6164 20.6608

Table 2. SSIM results the methods for some images

Image Filter 10%  20%  30%  40%  50%  60%  70%  80%  90%
DBA 0.9881 09656 09309 08808 08123 07381 06589 05771 04738
MDBUTMF 09488 0.8355 07749 0.8268 09012 09179 0.8959 0.7904 0.4078

Cameraman \ AFSMF  0.9798 0.9637 09496 09346 09178 08991 0.8754 08326 0.7123
ARMF 0.9955 0.9896 0.9821 0.9720 09562 0.9345 0.9018 0.8413 0.7323
DBA 0.9758 0.9414 08937 08308 0.7530 06625 05615 04486 0.3567
MDBUTMF 09541 08691 08132 08442 08834 08834 08516 0.7386 0.3263
Lena NAFSMF 09836 09664 09484 09278 09058 0.8804 0.8486 0.8041 0.6813
ARMF 0.9894 09770 0.9630 0.9459 0.9259 0.8991 0.8607 0.8041 0.6843
DBA 0.9678 09148 08291 0.7234 06024 04672 03538 02559 0.1882
MDBUTMF 09382 08795 0.8298 08186 0.8048 0.7682 0.7095 0.5964 0.2871
Baboon  \AFSMF 09618 0.9208 08767 08311 07794 07212 0.6541 05720 0.4443
ARMF 09876 09714 09504 09236 0.8845 08315 07518 0.6337 0.4554
DBA 0.9578 09098 08523 0.7853 07032 06018 05072 03915 02747
poppers  MDBUTMF 09411 08457 07862 08121 08481 08448 08070 07070 03431
NAFSMF 09783 09558 09337 09094 08817 08542 08177 0.7668 0.6519
ARMF 0.9802 09586 0.9358 09125 0.8841 0.8514 0.8074 07422 0.6006
DBA 0.9724 09329 08765 08051 07177 06174 05203 04183 0.3234
ean MDBUTMF 09455 08574 08010 0.8254 08594 08536 0.8160 0.7081 0.3411
NAFSMF 09759 09517 09271 09007 08712 08387 07990 07439 0.6225
ARMF 0.9882 09741 09578 09385 09127 08791 0.8304 0.7553 0.6181
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Table 3. Mean PSNR results of the methods for 12 test images

Noise Density DBA MDBUTMF NAFSMF ARMF
10% 34.02 27.96 33.20 36.82
20% 29.94 25.87 30.70 33.97
30% 26.73 24.83 28.98 31.72
40% 24.02 24.82 27.63 29.95
50% 2151 24.68 26.44 28.30
60% 19.10 24.05 25.39 26.60
70% 16.86 22.93 24.24 2451
80% 14.35 20.45 22.88 22.16
90% 11.82 14.50 20.19 18.42

Table 4. Mean SSIM results of the methods for 12 test images

Noise Density DBA MDBUTMF NAFSMF ARMF
10% 0.9704 0.9338 0.9697 0.9836
20% 0.9285 0.8367 0.9455 0.9692
30% 0.8691 0.7782 0.9203 0.9515
40% 0.7911 0.8063 0.8947 0.9306
50% 0.6963 0.8458 0.8652 0.9026
60% 0.5911 0.8402 0.8324 0.8656
70% 0.4810 0.8003 0.7917 0.8121
80% 0.3736 0.6924 0.7347 0.7281
90% 0.2926 0.3455 0.6099 0.5752

4. Conclusion

In this study, we have proposed a new filter ARMF to remove the SPN. We then have shown that ARMF outperforms DBA,
MDBUTMF, and NAFSMF methods at all the noise densities except 80% and 90% noise density in the mean percentages. ARMF
uses an adaptive window size and enlarges the window size until the conditions in the algorithm are satisfied. In high-noise density,
the regular entries in the windows with high-size may be too far away from the centre pixel. Therefore, ARMF has a drawback in
the event that the noise densities bigger than 80%. It is an open question whether it is possible to improve the noise removal success
of ARMF in SPNs with the high-density by limiting the window size like in NAFSMF.
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