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BELTRAMI-EULER FORMULAS OF GENERALIZED

SEMI-RULED SURFACE IN SEMI EUCLIDEAN SPACE

MAHMUT AKYİĞİT, SOLEY ERSOY AND MURAT TOSUN

(Communicated by Levent KULA )

Abstract. In this paper, we obtain some relations related to the principal sec-
tional curvatures of generalized semi ruled surfaces with central ruled surfaces

in terms of the determinant of the first fundamental form of these surfaces.
Also, we investigate the same relations at the central points of generalized semi

ruled surfaces. Moreover by applying Euler theorem to tangential sections of

the generalized semi ruled surfaces in n-dimensional semi Euclidean space. We
find the relationship between the sectional curvatures of non-degenerate sec-

tions and the principal sections in two different type and call as 1st and 2nd

type Semi Euclidean Beltrami-Euler formulas.

1. Introduction

The last three centuries have seen the theory of curvature bloom. L. Euler
introduced the theory of curvature of surface in his first studies, especially in
”L’application de l’analyse a la geometrie”. Euler’s sectional curvatures were basi-
cally curvatures of curves obtained by intersections of a normal plane of the curves.
Thus, the Euler theorem (Euler-curvature formula) related to the normal and princi-
pal curvatures entered to literature. Applying Euler theorem which is a well-known
theorem in the classical surface theory for the tangential sections of the generalized
ruled surface was performed in [9]. Moreover, (k + 1)−dimensional ruled surfaces
in En were studied in [8]-[9]. Several properties of two-dimensional ruled surfaces
were also given in [11]. In the recent times, the curvatures of ruled surfaces in
E3

1 were studied in [13]. The sectional curvatures of the generalized ruled surfaces
were evaluated in n−dimensional Euclidean space En and the obtained relations
were called Beltrami-Euler formula in [9]. Also, the sectional curvatures of time-
like ruled surfaces in En1 were studied in [5],[6],[7]. In [3], parallel timelike ruled
surfaces and compare geometric invariants of two parallel ruled surfaces were de-
fined. They obtained the geodesic curvature, the geodesic torsion of a curve and
the normal curvature. The (k + 1)−dimensional generalized semi ruled surfaces in
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En+1
v were given by [4]. In this work, we have studied the sectional curvatures of

the generalized semi ruled surfaces in (n+ 1)−dimensional semi Euclidean space
En+1
v . Furthermore, we have obtained the semi-Euclidean Beltrami-Euler formula

in (n+ 1)−dimensional semi-Euclidean space En+1
v .

Semi Euclidean space En+1
v is an Euclidean space provided with the metric tensor

ds2 =

n−ν∑
i=1

dx2
i −

n+1∑
i=n−ν+1

dx2
i

where {x1, ... , xn, xn+1} is the rectangular coordinate systems of En+1
v . Especially,

if v = 0, then En+1
0 is called Euclidean space. If v = 1 and n ≥ 2, En+1

1 is called
as Minkowski (n + 1)−space, [10]. Since ds2 is an indefinite metric, recall that a
vector x ∈ En+1

v can have one of the three causal characters; it can be spacelike if
dx2 > 0 or x = 0 , timelike if dx2 < 0 and null(lightlike) if dx2 = 0 and x 6= 0.

2. Generalized Semi-Ruled Surface in En+1
v

Let α be a differentiable curve

α : I → En+1
v

t → α (t) = (α1 (t) , α2 (t) , ..., αn (t) , αn+1 (t))

in the (n+ 1)−dimensional semi-Euclidean space En+1
v where {0} ⊂ I ⊂ R.

An orthonormal vector system {e1 (t) , e2 (t) , ..., ek (t)} defined at each point α (t)
of the curve α spans a subspace of the tangent space TEn+1

v
(α (t)) at α (t) ∈ En+1

v .

If this subspace is denoted by Ek,µ (t), then

Ek,µ (t) = Sp {e1 (t) , e2 (t) , ..., ek (t)} ⊂ En+1
v , 0 ≤ µ ≤ v.

This subspace is called as semi-subspace and

〈ei (t) , ej (t)〉 = εiδij , εi =

{
1 , 1 ≤ i ≤ k − µ
−1 , k − µ+ 1 ≤ i ≤ k.

For µ ≥ 1, there are µ timelike vectors in the semi-subspace Ek,µ (t). If there is no
timelike vector field in Ek,µ (t), then Ek,0 (t) = Ek (t) is an Euclidean subspace. If
there is one timelike vector in Ek,µ (t), then Ek,1 (t) is a timelike subspace.
While the semi-subspace Ek,µ (t) is moving through the curve α, Ek,µ (t) generates
a (k + 1)−dimensional surface. This surface is called (k + 1)−dimensional gener-
alized semi-ruled surface in (n+ 1)−dimensional semi-Euclidean space En+1

v and
is denoted by M . In addition that, M can be expressed by the following parametric
equation

(2.1) ϕ (t, u1, ...uk) = α (t) +

k∑
i=1

uiei (t) , (t, u1, ...uk) ∈ I x<k.

Here, the subspace Ek,µ (t) and the curve α are called the generating space and
base curve, respectively, [4].
Throughout this paper, we assume that Ek,µ (t), µ ≥ 1, is a semi-subspace and{
.
α (t) +

k∑
i=1

ui
.
ei (t) , e1 (t) , ..., ek (t)

}
is linearly independent and the base curve α

is a non-null curve, [4].
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Let
.
ei (t) be the velocity of the vector fields of ei (t) , 1 ≤ i ≤ k, along the base

curve α, thus the subspace

A (t) = Sp
{
e1, . . . , ek,

.
e1, . . . ,

.
ek
}

is called as asymptotic bundle of M with respect to Ek,µ (t).
If dimA (t) = k +m, 0 ≤ m ≤ k, then one can find an orthonormal base for A (t)
containing Ek,µ (t) such as

{e1 (t) , ..., ek (t) , ak+1 (t) , ..., ak+m (t)} .
It is clear that A (t) is a semi-subspace. Also, for the orthonormal base {e1 (t) ,
e2 (t) , ..., ek (t)} there are the following equations, [4],

(2.2)

.
ei =

k∑
j=1

αij ej + εk+i κi ak+i , 1 ≤ i ≤ m

.
eh =

k∑
j=1

αhj ej , m+ 1 ≤ h ≤ k

where

(2.3) εijαij = −αji , εj = 〈ej , ej〉 , εij = εiεj

and for r ≤ µ,

(2.4)
κ1 > κ2 > ... > κm−r > 0
κm−r+1 < κm−r+2 < ... < κm < 0.

The subspace

Sp
{
e1 (t) , ..., ek (t) ,

.
e1 (t) , ...,

.
ek (t) ,

.
α (t)

}
is called tangential bundle of M with respect to Ek,µ (t) and is denoted by T (t). It
is obvious that k +m ≤ dimT (t) ≤ k +m+ 1, 0 ≤ m ≤ k.
If dimT (t) = k + m, then A (t) = T (t), that is, the tangential bundle T (t) is a
semi-subspace. If dimT (t) = k + m + 1, due to

.
α /∈ A (t), then an orthonormal

base can be found for T (t) as

{e1, ..., ek, ak+1, ..., ak+m, ak+m+1} .
The tangential bundle T (t) has at least number of µ timelike vectors. Therefore,
T (t) is a semi-subspace, [4].
If dimT (t) = k + m + 1, then (k + 1)−dimensional semi-ruled surface M has
(k −m)− dimensional subspace called central space of M and this subspace is
denoted by Zk−m,r (t) ⊂ Ek,µ (t) . It is clear that Zk−m,r (t) ⊂ Ek,µ (t) is a semi-
subspace. While semi-subspace Zk−m,r (t) is moving through the base curve α of
M , it generates a (k −m+ 1)−dimensional ruled surface contained by M . This
surface is called as (k −m+ 1)−dimensional central ruled surface and denoted by
Ω. Since Zk−m,r (t) is a semi-subspace, central ruled surface Ω is also a semi-ruled
surface, [4].
If we assume the base curve α of (k + 1)− dimensional semi-ruled surface M is also
base curve of Ω ⊂M , then
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(2.5)
.
α (t) =

k∑
ν=1

ζνeν + ηm+1ak+m+1 , ηm+1 6= 0.

The tangential space of M is perpendicular to the asymptotic bundle A (t) at the
central points. Taking the equation (2.5) at the central point of central ruled surface
Ω ⊂M , we see that [4].

(2.6) uσ = 0 , 1 ≤ σ ≤ m.

Let β be an orthogonal trajectory of central semi-ruled surface Ω and the subspace
Fm,h (t) , (h ≤ r) be as totaly perpendicular to the generating space Zk−m, r (t).
While Fm,h (t) subspace is moving through the curve β, it generates a (m+ 1)−
dimensional ruled surface. This ruled surface is called principal ruled surface of
M and is denoted by Λ. Since Fm,h (t) is semi-subspace, principal ruled surface Λ
is also semi-ruled space. For the velocity vector of base curve of semi-ruled space
given by equation (2.5), the magnitude

Pi = ηm+1

κi
, 1 ≤ i ≤ m

is called the ith principal distribution parameter of M .
The canonical base of tangential bundle of M in Ev

n+1 is

(2.7)

{
k∑
i=1

(
ζi +

k∑
j=1

αjiuj

)
ei +

m∑
σ=1

εk+σuσκσak+σ + ηm+1ak+m+1, e1, e2, . . . , ek

}
.

Then, we can evaluate the first fundamental form of M and the metric coefficients
with respect to this canonical base. For a conventional notation, we choose u0 = t
and calculate the metric coefficients of M as follows

(2.8)

g00 = 〈ϕt , ϕt〉 =
k∑
i=1

εi

(
ζi +

k∑
j=1

ujαji

)2

+
m∑
σ=1

εk+σ(uσκσ)2 + εk+m+1(ηm+1)2

gi0 =
〈
ϕui , ϕt

〉
= εi

(
ζi +

k∑
j=1

ujαji

)
, 1 ≤ i ≤ k

gij =
〈
ϕui , ϕuj

〉
= εiδij , 1 ≤ i, j ≤ k.

Therefore, the matrix of the first fundamental form of M is expressed to be [gxy] .
In these regards, from the equations (2.8), it is seen that

(2.9) g = det [gxy ] = ε

(
m∑
σ=1

εk+σ(uσκσ)
2

+ εk+m+1(ηm+1)
2

)
, 1 ≤ x, y ≤ k.

In addition to these, the elements of the inverse matrix of [gxy] are obtained to be

(2.10)

g00 = εg−1

gi0 = −εg−1

(
ζi +

k∑
j=1

ujαji

)
, 1 ≤ i ≤ k

giλ = g−1

((
ζi +

k∑
j=1

ujαji

)(
ζλ +

k∑
j=1

ujαjλ

)
ε+ δiλεig

)
,1 ≤ i, λ ≤ k

where ε = ε1.ε2.ε3. ... .εk, [1].
Let {u0, u1, . . . , uk} be a base of tangent space at the neighborhood of the coordi-
nate systems {∂0, ∂1, . . . , ∂k}, ( ∂

∂ui
= ∂i, 0 ≤ i ≤ k) of M , then the Riemannian

curvature tensor of M is
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R∂i∂j (∂l) =
k∑
r=0

Rrlij∂r

where the coefficient of the Riemannian curvature tensor is

Rrlij = ∂
∂ui

Γrjl − ∂
∂uj

Γril −
k∑
s=0

ΓsilΓ
r
js +

k∑
s=0

ΓsjlΓ
r
is.

Therefore, the Riemannian-Christoffel curvature tensor of M becomes

(2.11) Rhlij =
k∑
r=0

grh

(
∂
∂ui

Γrjl − ∂
∂uj

Γril −
k∑
s=0

ΓsilΓ
r
js +

k∑
s=0

ΓsjlΓ
r
is

)
.

Moreover, there exist the following relations, [4].

(2.12)
Rhlxy = Rxyhl
Rxyhl = −Ryxhl.

Considering Christoffel symbols and the equation (2.11), Rij00, Rijνµ, Rν0µ0 are
found to be

(2.13)

Rij00 = 0 , 0 ≤ i, j ≤ k
Rijxy = 0 , 0 ≤ i, j ≤ k , 1 ≤ x, y ≤ k,
Rx0y0 = ε

(
1
4g

∂g
∂ux

∂g
∂uy
− 1

2
∂2g

∂ux∂uy

)
, 1 ≤ x, y ≤ k,

[1].

3. Beltrami-Euler Formula for Generalized Semi-Ruled Surfaces in
Semi-Euclidean Space, En+1

v

Two-dimensional subspace Π of (k + 1)−dimensional semi-ruled surface at the
point ξ ∈M is called tangent section of M . If v and w form a basis of the tangent
section Π, then Q (v, w) = 〈v, v〉 〈w,w〉 − 〈v, w〉2 is a nonzero quantity if and only
if Π is non-degenerate. The quantity |Q (~v, ~w)| represents the square of the semi-
Euclidean area of the parallelogram determined by v and w. Using the square of the
semi-Euclidean area of the parallelogram determined by the basis vectors {v, w},
one has the following classification for the tangent sections of the semi-ruled surfaces

Q (v, w) = 〈v, v〉 〈w,w〉 − 〈v, w〉2 < 0 , (timelike plane),

Q (v, w) = 〈v, v〉 〈w,w〉 − 〈v, w〉2 = 0 , (degenerate plane),

Q (v, w) = 〈v, v〉 〈w,w〉 − 〈v, w〉2 > 0 , (spacelike plane).

For the non-degenerate tangent section Π given by the basis {v, w} of M at the
point ξ, the sectional curvature of M at the point ξ is defined by

(3.1) Kξ (v, w) =
〈Rvwv, w〉

〈v, v〉 〈w,w〉 − 〈v, w〉2

or

(3.2) K (v, w) =

∑
Rijkmwivjwkvm∑

gijvivjgkmwkwm − [
∑
gijviwj ]

2
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where v =
∑
βi

∂
∂xi

and w =
∑
γj

∂
∂xj

. Here R is a (1, 3)-tensor field on M and the

coordinates of the basis vectors v and w are (β0, β1, . . . , βk) and (γ0, γ1, . . . , γk),
respectively, [2].
Let the base curve α of ruled surface M with non-degenerate generating space be
also a base curve of central ruled surface Ω of M in En+1

v . In this case, a normal
tangent vector n of M at the point ∀ξ (t, uν) which is orthogonal to Ek,µ (t) is
defined to be

(3.3) n =
m∑
σ=1

uσκσ (t) ak+σ (t) + ηm+1ak+m+1 (t) , (ηm+1 6= 0) .

The normal tangent vector field is always non-null vector.
Considering the equations (3.1) and (3.3), the following theorem related to principal
sectional curvature at the point ξ ∈M can be given.

Theorem 3.1. Let M be a generalized semi-ruled surface with central semi-ruled
surface in (n + 1)−dimensional semi-Euclidean space En+1

v . For non-degenerate
(spacelike or timelike) normal tangential vector n, the principal sectional curvature
(ei, n) , 1 ≤ i ≤ k is given by

(3.4) Kξ (ex, n) = εx

(
− 1

2g

∂2g

∂ux2
+

1

4g2

(
∂g

∂ux

)2
)
, 1 ≤ x ≤ k

at the point ξ ∈M.

Proof. Let (β0, β1, . . . , βk) and (γ0, γ1, . . . , γk) be, respectively, the coordinates of
ei, 1 ≤ i ≤ k and n, which form the basis of the principal section (ei, n), with
respect to canonical basis given by the equation (2.7). Considering equations (3.1),
we find that the ith principal sectional curvature of (ei, n), (1 ≤ i ≤ k) as

Kξ (ei, n) =
βiβiγ0γ0Ri0i0

〈ei, ei〉 〈n, n〉 − 〈ei, n〉2
.

If we substitute the equations (2.13) and (3.3) into the last equation, we obtain the
ith principal sectional curvature

Kξ (ei, n) =

ε

(
− 1

2
∂2g

∂ui
2 + 1

4g

(
∂g
∂ui

)2
)

‖ei‖2
∥∥∥∥ m∑
σ=1

uσεk+σκσak+σ + ηm+1ak+m+1

∥∥∥∥2 − 〈ei, m∑
σ=1

uσεk+σκσak+σ + ηm+1ak+m+1

〉2

where 1 ≤ i ≤ k , 1 ≤ σ ≤ m.
If we consider εi = 〈ei, ei〉 , ε = ε1.ε2.....εk, this last equation gives us the ith

principal sectional curvature as

Kξ (ei, n) =

ε

(
− 1

2
∂2g

∂ui
2 + 1

4g

(
∂g
∂ui

)2
)

εi.εg
.

By substituting the equation (2.8) and the equality

g = ε

(
m∑
σ=1

εk+σ(uσκσ)
2

+ εk+m+1(ηm+1)
2

)
into the last equation and rearranging it, the equation (3.4) is found and the proof
is completed. �
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Theorem 3.2. Let M be a generalized semi-ruled surface with central semi-ruled
surface and n be non-null tangential vector in (n+ 1)−dimensional semi-Euclidean

space En+1
v . The σth principal sectional curvature and the (m+ ρ)

th
principal

sectional curvature of M at the point ξ ∈M are

(3.5) Kξ (eσ, n) = εσκ
2
σ

 (uσκσ)2−εk+σ

(
m∑
σ=1

εk+σ(uσκσ)2+εk+m+1(ηm+1)2
)

(
m∑
σ=1

εk+σ(uσκσ)2+εk+m+1(ηm+1)2
)2

 , 1 ≤ σ ≤ m ,

and

(3.6) Kξ (em+ρ, n) = 0 , 1 ≤ ρ ≤ k −m ,

respectively, where εσ = 〈eσ, eσ〉 = ±1, εk+m+1 = 〈ak+m+1, ak+m+1〉 = ±1, εk+σ =
〈ak+σ, ak+σ〉 = ±1.

Proof. Considering the equation (2.8), we see that

∂g

∂uσ
= 2εεk+σuσκ

2
σ ,

∂2g

∂u2
σ

= 2εεk+σκ
2
σ(

∂g

∂uσ

)2

= 4ε2ε2
k+σ(uσκσ)

2
κ2
σ , 1 ≤ σ ≤ m

and

∂g

∂um+ρ
=

∂2g

∂u2
m+ρ

=

(
∂g

∂um+ρ

)2

= 0 , 1 ≤ ρ ≤ k −m.

Substituting these equations into the equation (3.4), we find the σth non-degenerate
principal sectional curvature to be

Kξ (eσ, n) = εσκ
2
σ


(uσκσ)

2 − εk+σ

(
m∑
σ=1

εk+σ(uσκσ)
2 + εk+m+1(ηm+1)

2

)
(

m∑
σ=1

εk+σ(uσκσ)
2 + εk+m+1(ηm+1)

2

)2


where ε = ε1.ε2.ε3. ... .εk, ε

2 = 1, εσ = 〈eσ, eσ〉 = ±1, εk+σ = 〈ak+σ, ak+σ〉 = ±1,
εk+m+1 = 〈ak+m+1, ak+m+1〉 = ±1.
After simple calculations, we reach the equation (3.5). Similarly, when we calculate

the (m+ ρ)
th

principal sectional curvature, we find

Kξ (em+ρ, n) = 0 , 1 ≤ ρ ≤ k −m.

�

Therefore, we give the following corollary.

Corollary 3.1. LetM be a generalized semi-ruled surface with central ruled surface

in n−dimensional semi-Euclidean space En+1
v . For 1 ≤ ρ ≤ k −m the (m+ ρ)

th

principal sectional curvature of M vanishes at the point ξ ∈M .

Theorem 3.3. Let M be a generalized semi-ruled surface with central ruled surface
and Pσ, 1 ≤ σ ≤ m, be the σth principal distribution parameter of M in (n +
1)−dimensional semi-Euclidean space En+1

v . At the central point ζ ∈ Ω, the σth
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principal sectional curvature and the (m+ ρ)
th

principal sectional curvature of M
are

(3.7) Kζ (eσ, n) = −εσεk+σ εk+m+1

(
κσ

(ηm+1)

)2

, 1 ≤ σ ≤ m,

(3.8) Kς (em+ρ, n) = 0 , 1 ≤ ρ ≤ k −m,
respectively.

Proof. By taking into consideration the equations (2.6) and (3.4), the σth sectional
curvature of M is found as

Kζ (eσ, n) = εσκ
2
σ


(uσκσ)

2 − εk+σ

(
m∑
σ=1

εk+σ(uσκσ)
2

+ εk+m+1(ηm+1)
2

)
(

m∑
σ=1

εk+σ(uσκσ)
2

+ εk+m+1(ηm+1)
2

)2



= εσκ
2
σ

−εk+σ εk+m+1(ηm+1)
2(

εk+m+1(ηm+1)
2
)2

 , 1 ≤ σ ≤ m,

where ζ ∈ Ω is central point of M . After simplifying the last equation, we get

Kζ (eσ, n) = −εσεk+σ εk+m+1

(
κσ

(ηm+1)

)2

, 1 ≤ σ ≤ m,

where εk+σ = 〈ak+σ, ak+σ〉 = ±1, εk+m+1 = 〈ak+m+1, ak+m+1〉 = ±1, εσ =
〈eσ, eσ〉 = ±1.

Moreover, from the Corollary 3.1, it is clear that the (m+ ρ)
th

principal sectional
curvature is zero. �

Let’s e be a unit vector in generating space Ek,µ (t) of ruled surface M and n
be a non-null normal tangent vector orthogonal to Ek,µ (t) of M . Now, we can
investigate the curvature of tangential section (e, n).
Since the unit vector e (t) is in Ek,µ (t), we write

e (t) ∈ Sp {e1 (t) , . . . , em (t) , em+1 (t) , . . . , ek (t)} .
So,

e (t) =

s∑
x=1

λxex (t) +

m∑
y=s+1

λyey (t) +

m+1+µ−s∑
z=m+1

λzez (t) +

k∑
w=m+2+µ−s

λwew (t)

where ‖e (t)‖ = 1.
On account of Ek,µ (t) = Sp {e1 (t) , . . . , ek (t)}, due to Fm,s (t) = Sp {e1 (t) , . . . ,
em (t)} and Zk−m,µ−s (t) = Sp {em+1 (t) , . . . , ek (t)} , there are spacelike and
timelike vectors in the subspace Fm,s (t) and Zk−m,µ−s (t). We assume that the
numbers of timelike vectors be s and µ−s in Fm,s (t) and Zk−m,µ−s (t), respectively.
In this case, both Fm,s (t) and Zk−m,µ−s (t) are semi-subspaces. Thus, the central
ruled surface of generalized ruled surface is semi-subspace. Furthermore, the unit
vector e (t) is non-null.
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Therefore there exist the following two cases. Now we consider these situations,
separately.

1. Case: We can write

e =

s∑
i=1

sinh θiei +

m∑
j=s+1

cosh θjej +

m+µ−s∑
l=m+1

sinh θlel +

k∑
w=m+1+µ−s

cosh θwew.

It is clear here that

(3.9) −
s∑
i=1

sinh2θi +

m∑
j=s+1

cosh2θj −
m+µ−s∑
l=m+1

sinh2θl +

k∑
w=m+1+µ−s

cosh2θw = 1

where the angles θ1, θ2, . . . , θs, . . . , θk are hyperbolic angles between spacelike unit
vector e and the base vectors e1, e2, . . . , es, . . . , ek, respectively.

2. Case: The unit vector e (t) is timelike
The unit vector e can be written

e =

s∑
i=1

cosh θiei +

m∑
j=s+1

sinh θjej +

m+µ−s∑
l=m+1

cosh θlel +

k∑
w=m+1+µ−s

sinh θwew.

From the above equation, it is seen that

(3.10) −
s∑
i=1

sinh2θi +

m∑
j=s+1

cosh2θj −
m+µ−s∑
l=m+1

sinh2θl +

k∑
w=m+1+µ−s

cosh2θw = −1

where the angles θ1, θ2, . . . , θs, . . . , θk are hyperbolic angles between timelike unit
vector e and the base vectors e1, e2, . . . , es, . . . , ek, respectively.
Thus, we can give the following theorems for the curvatures of tangential section
(e, n) for these two cases, respectively.

Theorem 3.4. Let M be a generalized semi-ruled surface with central ruled sur-
face in (n+ 1)−dimensional semi-Euclidean space Ev

n+1 and e be a spacelike unit
vector in Ek,µ (t), taking n to be a non-null normal tangential vector orthogonal
to Ek,µ (t) of M . There exists the following relation between the sectional curva-
ture of non-degenerate section (e, n) and principal sectional curvatures at the point
ζ ∈ Ω ⊂M

(3.11) Kζ (e, n) = −
s∑
i=1

sinh2θiKζ (ei, n) +

m∑
j=s+1

cosh2θjKζ (ej , n)

where es, 1 ≤ s ≤ m, are a timelike vectors in subspace Fm,s (t) and the hy-
perbolic angles between spacelike unit vector e and the base vectors e1, e2, . . . , es,
es+1, . . . , em, em+1, . . . , ek are θ1, θ2, . . . , θs, θs+1, . . . , θm, θm+1, . . . , θk, respectively.

Proof. Let the coordinates of the spacelike unit vector e within the generating space
Ek, µ (t) be (β0, β1, . . . , βk) and the coordinates of non-null normal tangent vector
n be (γ0, γ1, . . . , γk). From the equations (3.1) and (3.2), at the central point ζ ∈ Ω,
we obtain
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Kζ (e, n) =

s∑
i=1

sinh2θiRi0i0 +
m∑

j=s+1

cosh2θjRi0i0

〈e, e〉 〈n, n〉 − 〈e, n〉2
.

If we take into consideration the last equation and the equation (2.9), we find

Kζ (e, n) =
s∑
i=1

sinh2θi

(
− 1

2g
∂2g

∂ui
2 + 1

4g2

(
∂g
∂ui

)2
)

+
m∑

j=s+1
cosh2θj

(
− 1

2g
∂2g

∂ui
2 + 1

4g2

(
∂g
∂ui

)2
)
.

By considering the equation (3.4) at the central point ζ ∈ Ω, a relation between the
sectional curvature of section (e, n) and principal sectional curvatures of M given
in (3.11) is obtained. Thus, the proof is completed. �

This relation is called I. type semi-Euclidean Beltrami-Euler formula for the section
of generalized semi-ruled surface with central ruled surface at the central point
ζ ∈ Ω.

Theorem 3.5. Let M be a generalized semi-ruled surface with central ruled surface
in (n+ 1)−dimensional semi-Euclidean space Ev

n+1 and e be a timelike unit vector
in Ek,µ (t), taking n to be a non-null normal tangential vector orthogonal to Ek,µ (t)
of M . There is the following relation between sectional curvature of non-degenerate
section (e, n) and principal sectional curvatures at the point ζ ∈ Ω ⊂M

(3.12) Kζ (e, n) =
s∑
i=1

cosh2θiKζ (ei, n) −
m∑

j=s+1

sinh2θjKζ (ej , n)

where es, 1 ≤ s ≤ m, are a timelike vectors in subspace Fm,s (t) and the angles
θ1, θ2, . . . , θs, θs+1, . . . , θm, θm+1, . . . , θk are hyperbolic angles between the timelike
unit vector e and the base vectors e1, e2, . . . , es, es+1, em, em+1, . . . , ek, respectively.

Proof. Let the coordinates of the timelike unit vector e in Ek,µ (t) be (β0, β1, . . . , βk)
and the coordinates of non-null normal tangent vector n be (γ0, γ1, . . . , γk) . From
the equation (3.1), at the central point ζ ∈ Ω, we find

Kζ (e, n) =

s∑
i=1

cosh2θiRi0i0+
m∑

j=s+1
sinh2θjRj0j0

〈e,e〉〈n,n〉−〈e,n〉2 .

Taking into consideration the last equation and the equation (2.9), we obtain

Kζ (e, n) = −
s∑
i=1

cosh2θi

(
− 1

2g
∂2g

∂ui
2 + 1

4g2

(
∂g
∂ui

)2
)
−

m∑
j=s+1

sinh2θj

(
− 1

2g
∂2g

∂ui
2 + 1

4g2

(
∂g
∂ui

)2
)
.

By considering the equation (3.4) at the central point ζ ∈ Ω, a relation between
the sectional curvature of the section (e, n) and principal sectional curvatures of M
given in (3.12) is obtained. Thus, the proof is completed. �

This relation is called II. type semi-Euclidean Beltrami-Euler formula for the section
of generalized semi-ruled surface with central ruled surface at the central point
ζ ∈ Ω.
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