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ABSTRACT. In this paper, we obtain some relations related to the principal sec-
tional curvatures of generalized semi ruled surfaces with central ruled surfaces
in terms of the determinant of the first fundamental form of these surfaces.
Also, we investigate the same relations at the central points of generalized semi
ruled surfaces. Moreover by applying Euler theorem to tangential sections of
the generalized semi ruled surfaces in n-dimensional semi Euclidean space. We
find the relationship between the sectional curvatures of non-degenerate sec-
tions and the principal sections in two different type and call as 15 and 27¢
type Semi Euclidean Beltrami-Euler formulas.

1. INTRODUCTION

The last three centuries have seen the theory of curvature bloom. L. Euler
introduced the theory of curvature of surface in his first studies, especially in
”L’application de 'analyse a la geometrie”. Euler’s sectional curvatures were basi-
cally curvatures of curves obtained by intersections of a normal plane of the curves.
Thus, the Euler theorem (Euler-curvature formula) related to the normal and princi-
pal curvatures entered to literature. Applying Euler theorem which is a well-known
theorem in the classical surface theory for the tangential sections of the generalized
ruled surface was performed in [9]. Moreover, (k + 1) —dimensional ruled surfaces
in E™ were studied in [8]-[9]. Several properties of two-dimensional ruled surfaces
were also given in [11]. In the recent times, the curvatures of ruled surfaces in
E3 were studied in [13]. The sectional curvatures of the generalized ruled surfaces
were evaluated in n—dimensional Euclidean space E™ and the obtained relations
were called Beltrami-Euler formula in [9]. Also, the sectional curvatures of time-
like ruled surfaces in E7 were studied in [5],[6],[7]. In [3], parallel timelike ruled
surfaces and compare geometric invariants of two parallel ruled surfaces were de-
fined. They obtained the geodesic curvature, the geodesic torsion of a curve and
the normal curvature. The (k + 1) —dimensional generalized semi ruled surfaces in
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EnT! were given by [4]. In this work, we have studied the sectional curvatures of
the generalized semi ruled surfaces in (n + 1) —dimensional semi Euclidean space
E"*1. Furthermore, we have obtained the semi-Euclidean Beltrami-Euler formula
in (n + 1) —dimensional semi-Euclidean space E"*1.

Semi Euclidean space E"*! is an Euclidean space provided with the metric tensor

n—v n+1
ds* = Z dx? — Z da?
1=1 1=n—v+1
where {x1, ..., Tn, Tni1} is the rectangular coordinate systems of E"*!. Especially,

if v = 0, then ESL'H is called Euclidean space. If v = 1 and n > 2, Ef*! is called
as Minkowski (n + 1)—space, [10]. Since ds? is an indefinite metric, recall that a
vector z € E™T! can have one of the three causal characters; it can be spacelike if
dz? > 0 or x = 0, timelike if dz? < 0 and null(lightlike) if dz? = 0 and x # 0.

2. GENERALIZED SEMI-RULED SURFACE IN E7T!

Let o be a differentiable curve
a: l — E,f}“
t— a(t)= (a1 (t),as(t),...,an (), any1 (1))

in the (n + 1) —dimensional semi-Euclidean space EI™! where {0} C I C R.

An orthonormal vector system {e; (t),ea (t),...,ex (t)} defined at each point « (t)
of the curve av spans a subspace of the tangent space T'yn+1 (o (¢)) at a(t) € EntL
If this subspace is denoted by Ej ,, (t), then

Ep,.(t) = Sp{ei(t),ea(t),...;ex(t)} C Erftl 0<pu<o.

This subspace is called as semi-subspace and

<i1<k-—
(ei(t) e () =eidiy . &= { R,

For p1 > 1, there are p timelike vectors in the semi-subspace Ej , (t). If there is no
timelike vector field in Ej ,, (t), then Ej o (t) = Ej (t) is an Euclidean subspace. If
there is one timelike vector in Ej, , (t), then Ej 1 (t) is a timelike subspace.

While the semi-subspace Ey,, (t) is moving through the curve o, Ey, , (t) generates
a (k + 1) —dimensional surface. This surface is called (k + 1) —dimensional gener-
alized semi-ruled surface in (n + 1) —dimensional semi-Euclidean space E"*! and
is denoted by M. In addition that, M can be expressed by the following parametric
equation

k
(2.1) o (tur, up) = o (t)+ Y we; () ,  (tug,.uy) € TxRE.
i=1

Here, the subspace Ej , (t) and the curve a are called the generating space and
base curve, respectively, [4].
Throughout this paper, we assume that Fy,,, (t), g > 1, is a semi-subspace and

k
{d )+ > ue; (t),er(t),....ex (t)} is linearly independent and the base curve «
i=1

is a non-null curve, [4].
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Let €; (t) be the velocity of the vector fields of e; (t), 1 < i < k, along the base
curve «, thus the subspace

A(t) = Sp{el, ey ek,él,..., 6Vk}
is called as asymptotic bundle of M with respect to Ey, ,, ().
If dimA(t) = k+m, 0 <m <k, then one can find an orthonormal base for A (t)
containing Ey, , (t) such as

{(:’1 (t) g eeey Ck (t) y Q41 (t) yooey Aktm (t)} .
It is clear that A (t) is a semi-subspace. Also, for the orthonormal base {e; (¢),
ea (t),...,er (t)} there are the following equations, [4],

k
e; = Z Qijej+Eprikiarr: , 1<i<m
(2.2) =t
€h = Y Qpj€j , m+1<h<k
i=1
where
(2.3) €ijtij = —yi , & = (€j,€j) , Eij = Eif;

and for r < p,

K1 > Ko > o> Km_yr >0

(2.4)
Emertl < Bm—rta < . < By < 0.

The subspace

Sp {61 (), .ver (t),e1(t),...,ex (t), (t)}
is called tangential bundle of M with respect to Ej , (t) and is denoted by T (t). It
is obvious that k +m < dimT () <k+m+1,0<m < k.
If dimT (t) = k 4+ m, then A (¢t) = T (t), that is, the tangential bundle T (¢) is a
semi-subspace. If dimT (¢) = k+ m + 1, due to & ¢ A(t), then an orthonormal
base can be found for T'(¢) as

{€1y ey €y Akt 1y ooy Qs Gl ) -
The tangential bundle T (¢) has at least number of p timelike vectors. Therefore,
T (t) is a semi-subspace, [4].
If dimT (¢t) = k+ m + 1, then (k+ 1) —dimensional semi-ruled surface M has
(k —m) — dimensional subspace called central space of M and this subspace is
denoted by Zi_p, (t) C Ej , (t). It is clear that Zy_p, , (t) C Ej , (t) is a semi-
subspace. While semi-subspace Zg_, » (t) is moving through the base curve a of
M, it generates a (kK —m + 1) —dimensional ruled surface contained by M. This
surface is called as (k —m + 1) —dimensional central ruled surface and denoted by
Q. Since Zg_p, () is a semi-subspace, central ruled surface {2 is also a semi-ruled
surface, [4].
If we assume the base curve « of (k + 1) — dimensional semi-ruled surface M is also
base curve of Q C M, then
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k
(2'5) o (t) = Z ey + Nmt10k+m+1 5 Nmt1 7 0.
v=1
The tangential space of M is perpendicular to the asymptotic bundle A (¢) at the
central points. Taking the equation (2.5) at the central point of central ruled surface
Q) C M, we see that [4].

(2.6) uy, =0 , 1<o<m.

Let 8 be an orthogonal trajectory of central semi-ruled surface 2 and the subspace
Fop (t) , (h <r) be as totaly perpendicular to the generating space Zx_m,, - (t).
While F,, 5, (t) subspace is moving through the curve §, it generates a (m + 1) —
dimensional ruled surface. This ruled surface is called principal ruled surface of
M and is denoted by A. Since F), j (t) is semi-subspace, principal ruled surface A
is also semi-ruled space. For the velocity vector of base curve of semi-ruled space
given by equation (2.5), the magnitude

Ki
is called the *" principal distribution parameter of M.
The canonical base of tangential bundle of M in E," ™ is

k k m
(2.7) { > <Ci + > ajz‘”j) i+ Y €rhtolokolkto + Mmt10ktmil, €1, €2,- ., ek} .
j=1

i=1 o=1

Then, we can evaluate the first fundamental form of M and the metric coefficients

with respect to this canonical base. For a conventional notation, we choose ug =t
and calculate the metric coefficients of M as follows

2
k k m
goo = {@t, ¢t) = > & <<i + > ujaji) + 3 ehto(Uoko)® + ehtmt1(Mms1)?
i=1 i=1 o=1
2.8 k .
(2:8) gi0 = (Puys Pty =& <C1‘,+ > ujaji,) s 1<i<k
=1
gij = <<Pui,<,0uj> =€idij ) 1<4,j5<k

Therefore, the matrix of the first fundamental form of M is expressed to be [gs,] .
In these regards, from the equations (2.8), it is seen that

m
(2.9) g =det[gey] =€ (Z erto(Uokio)® + €k+m+1(77m+1)2> , 1<z, y<k.

o=1

In addition to these, the elements of the inverse matrix of [g,,] are obtained to be

g(J() — sg—l

k
i0 —1 .
=—¢ i+ D ujag; ; 1<i<k
(2.10) g g9 ¢ = J J)

, k k
g =g7" ((Cz + Zl 'U«jaji> (Cx + '21 'U‘jOéjA) e+ 5M€7’,g> 1<, A<k
1= J=

where & = £1.e5.€5. ... €k, [1].

Let {uo,u1,...,ur} be a base of tangent space at the neighborhood of the coordi-
nate systems {0, 1,...,0k}, (8%“ = 0;, 0 < i < k) of M, then the Riemannian
curvature tensor of M is
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k
Raiaj ()= > R{ijar
r=0

where the coefficient of the Riemannian curvature tensor is

k k
r _ O 171 9 1r s T s T
Rijj = g — aa; Ui — Zo I35 + Zorjlris'
5= 5=

Therefore, the Riemannian-Christoffel curvature tensor of M becomes

k k k
(2.11) Fotij = 32 gri (E,?Jil“;l — 52T, - > Thly + Zjor;?lrgs).

Moreover, there exist the following relations, [4].

Rpjzy = Ryyni
2.12 v Y
( ) Rwyhl = _Ryzhl-

Considering Christoffel symbols and the equation (2.11), Rjjo0, Rijuu, Ruouo are
found to be

Rijoo =0 , 0<i,7<k
(213)  Lijay =0 ] , 0<i,j<k,1<zy<k,
RIOyO:E(l Jg 9 O g ) ) 1§xay§kv

1
4g Ouy Ouy ) OUg Oy
[1].

3. BELTRAMI-EULER FORMULA FOR GENERALIZED SEMI-RULED SURFACES IN
SEMI-EUCLIDEAN SPACE, E'H!

Two-dimensional subspace II of (k4 1) —dimensional semi-ruled surface at the
point £ € M is called tangent section of M. If v and w form a basis of the tangent
section II, then @ (v,w) = (v, v) (w,w) — (v, w)2 is a nonzero quantity if and only
if I is non-degenerate. The quantity |Q (¥, )| represents the square of the semi-
Euclidean area of the parallelogram determined by v and w. Using the square of the
semi-Euclidean area of the parallelogram determined by the basis vectors {v, w},
one has the following classification for the tangent sections of the semi-ruled surfaces

Q (v,w) = (v,v) (w,w) — (v,w)> <0 , (timelike plane),

Q (v,w) = (v,0) (w,w) — (v,w)> =0 , (degenerate planc),

Q (v,w) = (v,v) (w,w) — (v,w)> >0 , (spacelike plane).
For the non-degenerate tangent section II given by the basis {v,w} of M at the
point &, the sectional curvature of M at the point £ is defined by

(R, w)
3.1 K (v, w) = !
(3.1) ¢ (v,w) (v,v) (w, w) — (v, w)
(3.2) K (v,w) = > Rijkmwivwpvm,

Z 9ij ViV JremWEWm, — [Z gijviwj]2
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where v =3 Bia% and w =Y ’Yj%. Here R is a (1, 3)-tensor field on M and the

coordinates of the basis vectors v and w are (B, f1,...,0k) and (Yo, Y1, -, Vk)s
respectively, [2].

Let the base curve « of ruled surface M with non-degenerate generating space be
also a base curve of central ruled surface  of M in E"*!. In this case, a normal
tangent vector n of M at the point V& (¢,u,) which is orthogonal to Ej , () is
defined to be

m

(33) n = Z UsRo (t) Akt o (t) + NMm+1Qk+m+1 (t) ) (nerl 7é 0) .

o=1
The normal tangent vector field is always non-null vector.
Considering the equations (3.1) and (3.3), the following theorem related to principal
sectional curvature at the point £ € M can be given.

Theorem 3.1. Let M be a generalized semi-ruled surface with central semi-ruled
surface in (n + 1)—dimensional semi-Euclidean space E"'. For non-degenerate
(spacelike or timelike) normal tangential vector n, the principal sectional curvature
(ei;yn), 1 <i <k is given by

1 9% 1/ 9g\>
. x> =tz a5 ) ) S S
(3.4) K¢ (eg,n) =¢ ( 59 91,2 + 1g2 <6ux) 1<z<k

at the point £ € M.

Proof. Let (8o, 51, -.,8%) and (v0,71,--.,7%) be, respectively, the coordinates of
e;, 1 < i < k and n, which form the basis of the principal section (e;,n), with
respect to canonical basis given by the equation (2.7). Considering equations (3.1),
we find that the i principal sectional curvature of (e;,n), (1 <i < k) as

BiBivovoRioio
(eis e5) (n,n) = {ei,n)”
If we substitute the equations (2.13) and (3.3) into the last equation, we obtain the
i*® principal sectional curvature
(rgm ()

ig \ Du;
2 m 2
— (€, 2 UoCktoholkto + Mm+10ktmt1
o=1

Kg (ei,n) =

K5 (ei,n) =

™
”eiHZH D UoEktoRolkto T Mm+10ktmt1
o=1

where 1 <1<k, 1<o<m.
If we consider &; = (e;,e;), € = €1.69.....6%, this last equation gives us the 3"
principal sectional curvature as

€;.€9

By substituting the equation (2.8) and the equality

2 2
g=c (Z 5k+0(u0"€0) +5k+m+1(77m+1) >

o=1
into the last equation and rearranging it, the equation (3.4) is found and the proof
is completed. (I
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Theorem 3.2. Let M be a generalized semi-ruled surface with central semi-ruled
surface and n be non-null tangential vector in (n+ 1)—dimensional semi-Euclidean

space E"tL. The o™ principal sectional curvature and the (m—i—p)th principal
sectional curvature of M at the point & € M are

) (uore)®—cpio ( TEfl Ek+a(uo”o>2+5k+m+1(Tlm+1)2>
(3.5) K¢ (eq,n) = ok = ] , 1<o<m

m
( Zl €k+a(uoﬁo)2+€k+m+1(77m+1)2>
o=

and

(3.6) K¢ (emyp,n) =0 , 1<p<k-m,

respectively, where e, = (€g,€5) = £1, €xtmt1 = (Qktmt1, Ghtmt1) = £, Epto =
<ak+07ak+0> = =£1.

Proof. Considering the equation (2.8), we see that

Og 0%g
— :2s€k+gug/<?, , ——

Ou,

and

dg 0%g :( 0g

6um+p o 3u2

m+p aum-i'l’

Substituting these equations into the equation (3.4), we find the o' non-degenerate
principal sectional curvature to be

m

(UUKJU)Q — €k+to (Z Ek-&-o'(uo"io')z + €k+m+1(nm+l)2)

2 o=1

K¢ (eo,n) = eokig

2
m
( > ehto(Uoko)’ + €k+m+1(77m+1)2)

o=1
_ 2 _ _ _ _ _
where € = €1.69.65. ... &, €2 =1, €, = (€, 65) = 1, €to = (Gkto, Ckto) = £1,

Ek+m+1 = <ak+m+17ak+m+1> ==+l
After simple calculations, we reach the equation (3.5). Similarly, when we calculate

the (m + p)th principal sectional curvature, we find

Ke(emyp,n) =0 , 1<p<k-—m.

Therefore, we give the following corollary.

Corollary 3.1. Let M be a generalized semi-ruled surface with central ruled surface
in n—dimensional semi-Euclidean space E"TY. For 1 < p <k —m the (m+ p)th
principal sectional curvature of M wvanishes at the point € € M.

Theorem 3.3. Let M be a generalized semi-ruled surface with central ruled surface
and Py, 1 < 0 < m, be the o™ principal distribution parameter of M in (n +
1)—dimensional semi-Euclidean space E"*1. At the central point ( € Q, the o't
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principal sectional curvature and the (m + p)th principal sectional curvature of M
are

2

(3.7) K¢ (e5,n) = —€0Ekto Ehtm+1 <Hg> , 1<o<m,
(nm+l>

(38) Kc(em-H?vn):O ) 1§p§k*ma

respectively.

Proof. By taking into consideration the equations (2.6) and (3.4), the o* sectional
curvature of M is found as

2 - 2 2
(uaﬂa) — Ek+o <Z Ek—ﬁ-o(ua’{a) +€k+m+1(77m+1) )

o=1

2

K¢ (eq,n) = eok

7 2 2 2 ?
(21 5k+0(u050) + ehtma1(Mm1) )
o=
2
_ 60,{3 Ek+o €k+m+1(77m+1) , 1<o<m,

2
2

<5k+m+1(77m+1) )

where ¢ € € is central point of M. After simplifying the last equation, we get

2
K
K§ (eg,n) = —E€¢€k+o €k+m+1 <(U)> 5 1 <o< m,

TIm+1
where x40 = (UriorUhto) = £, Ehymi1r = (Ghgmi1, Ghyme1) = £, &5 =
(es,€0) = £1.

Moreover, from the Corollary 3.1, it is clear that the (m + p)th principal sectional
curvature is zero. O

Let’s e be a unit vector in generating space Ej , (t) of ruled surface M and n
be a non-null normal tangent vector orthogonal to Ej , (t) of M. Now, we can
investigate the curvature of tangential section (e, n).

Since the unit vector e (¢) is in Ey,, (), we write

e(t)e Spfer(t), ..., em (t),emi1 (), ..., ex(t)}.

So,

s m m+1+pu—s k

e(t) = Z Azes () + Z Ayey (t) + Z e, () + Z Awew ()
r=1 y=s+1 z=m-+1 w=m-+2+pu—s

where |e (¢)]| = 1.
On account of Ey , (t) = Sp{ei (t), ..., ex (t)}, due to Fy,, s (t) = Sp{ei (t), ...,
em ()} and Zy_p p—s (t) = Sp{emt1(t), ..., ex (t)} , there are spacelike and
timelike vectors in the subspace F, 5 (t) and Zy_p,, u—s (t). We assume that the
numbers of timelike vectors be s and p—s in F,, s (t) and Zj—p,, —s (t), respectively.
In this case, both F, ; (t) and Zy_y,, ,—s () are semi-subspaces. Thus, the central
ruled surface of generalized ruled surface is semi-subspace. Furthermore, the unit
vector e (t) is non-null.
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Therefore there exist the following two cases. Now we consider these situations,
separately.
1. Case: We can write

m4p—s k
e= Zsmh@ e; + Z coshf;e; + Z sinh 6,e; + Z cosh 0,,e,,.
=1 Jj=s+1 l=m+1 w=m+14+pu—s
It is clear here that
m-+tp—s k
Zsmh20 + Z cosh? 0; — Z sinh?6, + Z cosh?0,, = 1
j=s+1 I=m+1 w=m+14+p—s
where the angles 61,605,...,0,,...,60; are hyperbolic angles between spacelike unit
vector e and the base vectors ey, eo,...,€s,..., e, respectively.

2. Case: The unit vector e (t) is timelike
The unit vector e can be written

m+pu—s k
e= Z cosh 6;¢e; + Z sinh 0;e; + Z cosh 0;e; + Z sinh 0,,e,,-
=1 j=s+1 l=m+1 w=m+14+p—s

From the above equation, it is seen that

m+pu—s k
(3.10) ZSlnh29 + Z cosh? 0; — Z sinh?6; + Z cosh?6,, = —
j=s+1 l=m+1 w=m-+1+p—s
where the angles 61,0,...,0,,...,0; are hyperbolic angles between timelike unit
vector e and the base vectors ey, eo,..., €5, ..., e, respectively.

Thus, we can give the following theorems for the curvatures of tangential section
(e,n) for these two cases, respectively.

Theorem 3.4. Let M be a generalized semi-ruled surface with central ruled sur-
face in (n + 1) —dimensional semi-Euclidean space E," ™ and e be a spacelike unit
vector in Ey , (t), taking n to be a non-null normal tangential vector orthogonal
to By, (t) of M. There exists the following relation between the sectional curva-
ture of non-degenerate section (e,n) and principal sectional curvatures at the point
CeQc M

(3.11) K¢ (e,n) Zsmh 0; K¢ (es,n) + Z cosh?0; K¢ (ej,n)
=1 Jj=s+1

where es, 1 < s < m, are a timelike vectors in subspace F, s (t) and the hy-
perbolic angles between spacelike unit vector e and the base vectors ey, es, ..., es,
€st1s--vsCmyCmtly- - €k arel1,00, ... 05, 0s1,...,0m,0m11,...,0k, respectively.

Proof. Let the coordinates of the spacelike unit vector e within the generating space
Ey, 1 (t) be (Bo, B1,---,Bk) and the coordinates of non-null normal tangent vector
n be (70,71, - - -,7%). From the equations (3.1) and (3.2), at the central point ¢ € Q,
we obtain
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7

SinhQQiRiOio + Z COShQQjRiOiO
=1 j=s+1
(e,e) (n,n) — (e,n>2

K¢ (e;n) =

If we take into consideration the last equation and the equation (2.9), we find

s 2 2 m 2 2
K¢ (e,n) = igl sinh?0; (—i ;ui% + ﬁ 0851) ) + j:§+1cosh207‘ (—719 Baui% + 49% (aeifi) ) .
By considering the equation (3.4) at the central point ¢ € Q, a relation between the
sectional curvature of section (e,n) and principal sectional curvatures of M given
in (3.11) is obtained. Thus, the proof is completed. |

This relation is called I. type semi-Euclidean Beltrami-Euler formula for the section
of generalized semi-ruled surface with central ruled surface at the central point

Ceq

Theorem 3.5. Let M be a generalized semi-ruled surface with central ruled surface
in (n + 1) —dimensional semi-Euclidean space E," ' and e be a timelike unit vector
in By, (t), taking n to be a non-null normal tangential vector orthogonal to Ej , (t)
of M. There is the following relation between sectional curvature of non-degenerate
section (e,n) and principal sectional curvatures at the point { € Q C M

S m
(3.12) K¢(e,n)= )" coshQGiKC (ej,n) — > sinhZGjKC (ej,m)
i=1 Jj=s+1

where es, 1 < s < m, are a timelike vectors in subspace F, s (t) and the angles
01,02, ...,05,0s41,...,0m, Oni1, ..., 0k are hyperbolic angles between the timelike
unit vector e and the base vectors €1, ea, ..., €s, €s41,Cm, Emt1, - - -, €k, TESPECtivEly.

Proof. Let the coordinates of the timelike unit vector e in Ey, ,, () be (8o, 81, ..., k)
and the coordinates of non-null normal tangent vector n be (v9,71,...,7) . From
the equation (3.1), at the central point ¢ € Q, we find

.Zl COShQQi Rioio+ ) Z+1 sinh29j RijO
_ = j=s
K¢ (e,n) =

(e,e) (n,n)—(e,n)>

Taking into consideration the last equation and the equation (2.9), we obtain

K S h26 1 92 1 (99 \? < inh26 1 02%g 1 (09 \?
C(e’n)__;;cos i\ 729 00,2 T 252 9“1‘) _j:zs:JrlSln I _Tgauﬂ"—@(aui) :

By considering the equation (3.4) at the central point ¢ € Q, a relation between
the sectional curvature of the section (e,n) and principal sectional curvatures of M
given in (3.12) is obtained. Thus, the proof is completed. |

This relation is called II. type semi-Euclidean Beltrami-Euler formula for the section
of generalized semi-ruled surface with central ruled surface at the central point

Ceq
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