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Abstract. In this paper, the ratio of maximized likelihood and Minimized Kullback-Leibler Divergence
methods are discussed for discrimination between log-normal and Weibull distributions. The progressive Type-
IT right censored sample is considered in the study. The probability of correct selections is simulated and
compared to investigate the performance of the procedures for different censoring schemes and parameter
settings.
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Ilerleyen Tiir Sansiir Altinda Lognormal ve Weibull Dagilimlarinin
Ayrimi

Ozet. Bu calismada, log-normal ve weibull dagilimlar1 arasinda ayirim icin en gok olabilirlik oran ve Kullback-
Leibler uzaklik metotlar: tartigilmistir. Calismada, ilerleyen tiir sansiirlii veri durumu ele alinmigtir. Dogru
secim oranlart hesaplanmig ve farkli parametre ve sansiir semalart altinda testlerin performanslari
karsilastirilmistir.

Anahtar Kelimeler: Ayirim, Log-normal dagilim, Giig analizi, Simiilasyon, lerleyen tiir sansiirleme.

1. INTRODUCTION

A discrimination procedure focus on making suitable selection from two or more distributions based
sample. In other words, discrimination procedure tries to get decision on which distribution is more
effective to modeling the data. A lot of papers in the literature on discrimination two or three distributions.
Most of them are based on Kullback-Leibler Divergence (KLD) and ratio of maximized log-likelihood
(RML). There are a lot of works in this area. Some of them are Alzaid & Sultan [1], Kundu & Manglick
[2], Bromideh and Valizadeh [3], Dey and Kundu [4], Dey and Kundu [5], Kundu [6], Kantam et al. [7],
Ngom, et al. [8], Ravikumar and Kantam, [9], Qaffou and Zoglat, [10] and Algamal [11].

In this study, we consider on discrimination between log-normal and Weibull distributions. The
probability density function (pdf) of log-normal and Weibull distribution are given, respectively, by
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and
¢, (x)= " " exp [Ej o)

where [, (x) is an indicator function on set 4 and 8, =(u,o) and 0, =(a, ) are distribution
parameter vectors.

Some papers related the discrimination between log-normal and Weibull distributions are Quesenberry &
Kent [12], Dumonceaux & Antle [13], Pasha et al. [14], Dey & Kundu [4,5], Bromideh [15], Raqab, et al.
[16] and Elsherpieny et al [17]. Quesenberry & Kent [12], proposed selection statistic that is essentially
the value of the density function of a scale transformation maximal invariant. They considered include
the exponential, gamma, Weibull, and lognormal. Note that this method works only complete sample
case. Dumonceaux & Antle [13] used the difference of the RML, in discriminating between the Weibull
or Log-Normal distribution based on complete sample. Kundu & Manglick [18] obtained the asymptotic
distribution of the discrimination statistic RML and determined the probability of correct selection (PCS)
by using asymptotic distribution in this discrimination process. Dey and Kundu [19] extended the Kundu
& Manglick [18]'s results to Type-1I censored sample case. Pasha et al. [14] used RML and most powerful
invariant for discriminating these distributions based on complete sample. Kim & Yum [20] extended to
Pasha et al. [14]'s results to Type-I and Type-II censored sample cases. Dey & Kundu [4, 5] used the
RML, in discriminating between the Weibull, Generalized Exponential Distributions or Log-Normal
distribution based on complete and Type-I censored sample. They obtained the asymptotic distribution of
the discrimination statistic and determined the PCS by using asymptotic distribution in this discrimination
process. Bromideh [15] examined the use the KLLD in discriminating either the Weibull or Log-Normal
distribution based on complete sample. Raqgab, et al. [16] used the RML, in discriminating between the
Weibull, Log-logistic or Log-Normal distribution based on doubly censored sample. Elsherpieny et al.
[17] considered test based RML and Ratio Minimized Kullback-Leibler Divergence RMKLD for
discrimination between Gamma and Log-logistic Distributions based on progressive Type-II right
censored data. The model of progressive Type-II right censoring is of importance in the field of reliability
and life testing.

Table 1. The papers related to discrimination between lognormal and Weibull distribution

Type of Data Schemes
Discrimination and test Complete Type-1 Type-I1 Doubly Progressively Type-11
statistics Data Censored Censored Censored Right Censored
Kullback-Leibler Bromideh
(KLD) (2012)
Kundq & Dey & Dey & Raqab, et al. Elsherpieny et al. (2017)
Ratio of Manglick Kundu Kundu (2018)
ato ot (2004) (2009) (2012)

the Maximized
Likelihood Dumonceaux &

Antle (1973)
(RML) Pasha et al

(2006) Kim & Yum (2008)

Scale Invariant Quesenberry&
Test (SI) Kent (1982)
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All the papers except for Elsherpieny et al. [17], consider complete or Type-I and Type-II censored
sample. In this work, we consider discrimination under progressive Type-II right censored schemes.
Progressive Type-II right censoring scheme is explained as follows: Let n identical units are subject to a

lifetime test. 7, surviving units are randomly withdrawn from the test, 1 <i <m as soon as i-th failure
is occured. Hence, if m failures are observed then 7 +---+7, units are progressively Type-II right

<X -< X' be the progressively Type-II

2mn m:m:n

censored; Thus, n=m+7r, +- . Let X,

Lim:n

right censored failure times, where r = (rl, cees rm) denotes the censoring scheme for the life test. As a

special case if r = (0, cens 0), ordinary order statistics are obtained[21]. If r = (O, r, 0, m) , the progressive
Type-II right censoring becomes type-II censoring. For more details please see [22,23,24].

In this paper, the discrimination methods are given in Section 2. In Section 3, PCS are simulated by Monte
Carlo methods and results are discussed. Finally, a numerical example is provided to illustrate the
methodology.

2. RULES OF DISCRIMINATION

Let X

Lim:n

<X -< X! are progressive Type-II right censored sample from log-normal (/U, O')

2mn m:m:n

distribution. Then log-likelihood function [26] is given by

L, (Ol) o —m log Zlog Zmllog(q{x(") _'UD
i=1 o

+§:(n + 1)[1 - CD(%D

where ¢ and @ denotes the pdf and cdf of a standard normal distribution. Hence, ML estimate (it is

(1)

denoted by 9 = (p, )) of 0, can be obtained numerically which maximize the likelihood function (1).

<X, -+< X' are progressive Type-II right censored sample from Weibull (0{, ,B)

2:m:n m:m:n

Let X

Lim:n

distribution. Then the 10g-1ikelihood function (see [27]) is given by

LW(Oz)oc mlog( ) malog —1 Zlog i r +1 (%j )

Hence, maximum likelihood (ML) estimate of 0, (it is denoted byé2 :((5{, ,&)) can be obtained

numerically which maximize the likelihood function (2).

One of the rules of discrimination is ratio of the maximized likelihood (RML) The ratio of maximized
likelihood is defined as follows

RML=1L,,(6,)-L,(6,)
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where L, (91 ) and L, (92 ) are defined by (1) and (2), respectively and 61 and 62 are ML estimates of

0, and 0, . If the RML >0 then log-normal distribution is selected for the modeling data otherwise
Weibull distribution is selected against log-normal distribution.

Second one is based on Kullback-Leibler divergence. The KLD is a non-symmetric measure of the
difference (dissimilarity) between two probability distributions fel and 8o, - Kullback-Leibler divergence

between models is defined by

f (x)] “

&, (¥)

fo, (x)1og(fy, (x))dx = [, (x)log( g5, (x))dx.

0

D(fe1 »&o, ) = ]O.fel (x)log(

<D

S8

It is noted that the D( So, 8o, ) can also be written by

Dlfy 20, )=~ )~ [ o (Noggy, (v)dx

0
where H ( fel ) is Shannon's entropy of fel defined as

o0

H(fe1 ): _J.fe1 (x)log(feI (x))dx.

0
It is well known that D( fel » &, )2 0 and the equality holds if and only if fel <:1:> = Yo, <:1:), almost
surely [28], [29]. Furthermore, D( fel » 8o, ) can be considered to serve as a measure of disparity between

fel and g .

D( fel » 8o, ) denotes the "information lost when g, is used to approximate f01 . Namely, KLD is a
measure of inefficiency of assuming that the distribution of population is g, when the underlying
distribution is f . The smaller D( Jo,» gez) means that fg is selected and large values of D( Jo,» gez)
favor 8, [15].

Let fel and g, are probability density functions of log-normal and Weibull distribution respectively.

Then D( Jo,» gez) andD( 8o, Jo, ) are given by

D(fe1 > 8o, ): ]Efel (x)log[;p:'—(();))]dx

=-1/2-1/2log(2)—-1/2log(r)—-log(o)— nax
+alog(B)—log(a)+ B~ exp(1/2aQu+ac?))

and
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D(g92 s Jo, ) = Tgez (x)log[ i:z ((j:))] “

= (alog(a)—ay —alog(B)+y—a)/a—(-1/12(6a" log(S)’
+12a% log(B)o> —12a” log(B) i —12alog(B)y +12log(c)a’ o
+6log(r)a’c’ +6logR)a’c’ +6u’a’ —12ayc” +12auy +6y> + 7°)/ a’ | c*).

D( fel »8&o, ) and D( 8, fel ) were given by Bromideh [15] but they cannot read clearly in their paper.

Therefore, these equations are obtained using by Maple. Second method for discrimination is the ratio of
Minimized Kullback-Leibler Divergence (RMKLD) rule (Elsherpieny et al., [17]) which is defined by

D(fél ’ géz )

RMKLD =log D(géz,fél )

If RMKLD<0, then we select the log-normal distribution for modeling data otherwise we select the
Weibull distribution for modeling data.

3. SIMULATION STUDY

In this section, the PCS of RML and RMKLD methods are obtained and compared for different censoring
schemes. The censoring schemes used in simulation are given in Table 2. Probabilities of correct selection
of rules are simulated and given in Table 3-4.

Table 2. The censoring schemes used in simulation

Scheme m r=(r1,...,rm)
1 10 (5,9*0)
2 10 (9*0,5)
3 10 (5*1,5*0)
4 10 (5*0,5*1)
5 10 (4*0,5,5*0)
6 13 (2,12*0)
7 13 (12%0,2)
8 13 (2*1,11*0)
9 13 (11*0,2*1)
10 13 (4*0,2,8*0)
11 15 (15*0)
12 30 (15,29%0)
13 30 (29*0,15)
14 30 (15*%1,15*0)
15 30 (15*0,15*1)
16 30 (14*0,15,15*0)
17 40 (5,39*0)
18 40 (39*0,5)
19 40 (5*1,35*0)
20 40 (35*%0,5*1)
21 40 (19*0,5,20*0)
22 45 (45*0)

Let us consider the data come from log-normal distribution. From Fig. 1 and Fig. 2 the PCS of the RML
and RMKLD are similar in general but the PCS of RML and KLD is slightly better than the PCS of other
for some schemes. The selection of parameter values does not affect to the PCS so much.
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Secondly, the PCS of the RML and RMKLD are better when the censoring is made at the beginning of
the life test.

Now let us consider the data come from Weibull distribution. From Fig. 3 and Fig. 4 the PCS of RMKLD
is better than the power of RML for all schemes. Secondly, the PCS of the KLLD are better when the
censoring is made at the end of the life test. The PCS of the RML are better when the censoring is made
at the beginning of the life test.

Table 3. Probability of Correct Selection of RML and RMKLD rule when the data come from log-normal distribution

RML RMKLD
(p=0.5,0=1) (p=1l,0=1) (p=2,0=1) (n=0.5,0=1) (p=1,0=1) (n=2,0=1)
Schemel 0.6763 0.6764 0.6802 0.7004 0.7012 0.6999
Scheme?2 0.6565 0.6572 0.6568 0.5906 0.5909 0.5853
Scheme3 0.6721 0.6826 0.6737 0.6883 0.6922 0.6914
Scheme4 0.6421 0.6416 0.6384 0.6391 0.6461 0.6437
Scheme5 0.6831 0.6791 0.6820 0.6770 0.6881 0.6887
Scheme6 0.7019 0.7102 0.7116 0.7192 0.7249 0.7129
Scheme? 0.6960 0.6850 0.6920 0.6596 0.6559 0.6509
Scheme8 0.7092 0.7037 0.7054 0.7107 0.7165 0.7165
Scheme9 0.6931 0.7007 0.6950 0.6583 0.6649 0.6555
Schemel0 0.7127 0.7058 0.7054 0.7086 0.7093 0.7109
Schemell 0.7318 0.7349 0.7235 0.7277 0.7187 0.7282
Scheme12 0.8496 0.8469 0.8499 0.8601 0.8583 0.8526
Schemel3 0.7763 0.7693 0.7654 0.7221 0.7241 0.7236
Schemel4 0.8473 0.8523 0.8486 0.8457 0.8467 0.8536
Schemel5 0.7771 0.7859 0.7868 0.7874 0.7857 0.7837
Schemel6 0.8448 0.8467 0.8378 0.8448 0.8503 0.8503
Schemel7 0.8766 0.8743 0.8790 0.8860 0.8808 0.7618
Schemel8 0.8398 0.8411 0.8371 0.8209 0.8194 0.7616
Schemel9 0.8781 0.8776 0.8772 0.8783 0.8847 0.7660
Scheme20 0.8533 0.8381 0.8394 0.8242 0.8335 0.7665
Scheme21 0.8764 0.8800 0.8798 0.8776 0.8819 0.7816

Scheme22 0.8857 0.8918 0.8859 0.8897 0.8832 0.8121
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Figure 1. Probability of Correct Selection of RML rule when the data come from log-normal distribution

RMKDL

1

0,9
0,8
0,7
0,6

0.5 — o=1)

"
"

- o=1)
-- o=1)

1

o (w=2

0,5

»n
O
A

0,4

0,3

0,2

0,1

0

TTouRYdS
[FAIUEIEN
0TaWYIS
612w
g TowdYdS
JACLIEIEN
91w
N ELELEN
p1owaydS
Y ELEIEN
(AEIIENIRI
] [WYS
01WaYdSs
6AWAYDS
gOWAYOY
LoWYOS
9oWAYDS
GowdYog
LRl pIN
€owaYog
7owayog
[oWYDS

Schemes

Figure 2. Probability of Correct Selection of RMKLD rule when the data come from log-normal distribution
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Table 4. Probability of Correct Selection of RML and RMKLD rule when the data come from Weibull distribution

RML RMKLD
(=1.88=1.5)  (a=2.=1.5)  (a=5,p=L.5) (=1.8p=1.5)  (a=2,p=1.5)  (0=5,p=L.5)
Schemel 0.7004 0.7012 0.6999 0.8074 0.8202 0.8130
Scheme2 0.5906 0.5909 0.5853 0.9990 0.9988 0.9992
Scheme3 0.6883 0.6922 0.6914 0.8115 0.8188 0.8170
Scheme4 0.6391 0.6461 0.6437 0.9636 0.9678 0.9650
Schemes 0.6770 0.6881 0.6887 0.8229 0.8323 0.8259
Scheme6 0.7192 0.7249 0.7129 0.7604 0.7644 0.7609
Scheme7 0.6596 0.6559 0.6509 0.9183 0.9152 0.9184
Schemes 0.7107 0.7165 0.7165 0.7694 0.7631 0.7681
Scheme9 0.6583 0.6649 0.6555 0.9094 0.9113 0.9028
Scheme10 0.7086 0.7093 0.7109 0.7738 0.7644 0.7741
Schemel 1 0.7277 0.7187 0.7282 0.7350 0.7345 0.7292
Schemel2 0.8601 0.8583 0.8526 0.9286 0.9224 0.9266
Schemel3 0.7221 0.7241 0.7236 1.0000 1.0000 1.0000
Schemel4 0.8457 0.8467 0.8536 0.9409 0.9417 0.9403
Schemel5 0.7874 0.7857 0.7837 0.9970 0.9965 0.9974
Schemel6 0.8448 0.8503 0.8503 0.9503 0.9520 0.9535
Schemel7 0.8860 0.8808 0.7618 0.8954 0.8961 0.8991
Schemel8 0.8209 0.8194 0.7616 0.9838 0.9866 0.9865
Schemel9 0.8783 0.8847 0.7660 0.8992 0.8979 0.8957
Scheme20 0.8242 0.8335 0.7665 0.9816 0.9788 0.9798
Scheme21 0.8776 0.8819 0.7816 0.9186 0.9123 0.9127
Scheme22 0.8897 0.8832 0.8121 0.8776 0.8797 0.8818
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Figure 4. Probability of Correct Selection of RMKLD rule when the data come from Weibull distribution
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4. Numerical Example
4.1.First Example

Let us consider the real data which is given by [30]. This data given arose in tests on endurance of deep
groove ball bearings. The data are the number of million revolutions before failure for each of the lifetime
tests. The progressively Type-II right censored data are obtained from complete data and it is given by

17.88 28.92 33.00 41.5242.12 45.60 48.80 51.84 51.96 54.12 55.56 67.80 68.44 68.64 68.88 84.12 93.12
98.64 105.12 105.84 127.92 128.04 173.40 with r = (5,13*0) and m =18.

Discrimination procedure is performed to get decision whether the data come from a Weibull or a Log-
Normal. Using R code with nlm command (it uses Newton type algorithm), ML estimates of lognormal

parameters are obtained by £ =4.3079, & = 0.5886, ML estimates of Weibull parameters are obtained
by @ =2.1122, B =95.3497. Test statistics are calculated as RML=0.3321 and D( 5285 )= 0.1688 and

D(go .55, |=0.0924

Since the RML=0.3321>0 then lognormal distribution is selected for modeling this real data.
On the other hand, since the RMKLD=0.6028>0 then Weibull distribution is selected for modeling this
real data.

4.2.Second Example

Let us consider well-known data in reliability theory. This data was analyzed by many authors included
in [31] and [27]. The progressive Type-II right censored data is given by

0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35 with » = (0,0, 3,0, 3,0, 0, 5) and m =8.

Discrimination procedure is performed to get decision whether the data come from a Weibull or a Log-
Normal. Using R code with nlm command (it uses Newton type algorithm), ML estimates of lognormal
parameters are obtained by = 1.8821,6 = 1.6152 , ML estimates of Weibull parameters are obtained

by & =0.9745, ﬁA’ =0.2253. Test statistics are calculated as RML=-0.1519 and D( fe » 84 )= 0.9369 and

D go . fs, |=0.1395

Since the RML=-0.1519<0 then Weibull distribution is selected for modeling this real data.
Since the RMKLD=1.9042>0 then Weibull distribution is selected for modeling this real data.
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