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Abstract. In this article, the approximate Bayes estimation problem for the log-Dagum distribution with three
parameters is considered. Firstly, the maximum likelihood estimators and asymptotic confidence intervals based
on these estimators for unknown parameters of log-Dagum distribution are constructed. In addition,
approximate Bayes estimators under squared error loss function for unknown parameters of this distribution are
obtained using Tierney and Kadane approximation. A Monte-Carlo simulation study is performed to compare
performances of maximum likelihood and approximate Bayes estimators in terms of mean square errrors and
biases. Finally, real data analysis for this distribution is performed.

Keywords: Log-Dagum Distribution Maximum Likelihood Estimation, Asymptotic Confidence Interval,
Approximate Bayesian Estimation, Tierneyand Kadane Approximation.

Log-Dagum Dagilimi i¢in Yaklasik Bayes Tahmini

Ozet. Bu makalede, log-Dagum dagilimi icin yaklasik Bayes tahmini problemi diisiiniildii. ilk olarak, Log-
Dagum dagiliminin bilinmeyen parametreleri ig¢in en gok olabilirlik tahmin edicileri ve bu tahmin edicilere
dayal1 asimptotik giiven araliklar1 olusturuldu. Ayrica, bu dagilimin bilinmeyen parametreleri igin karesel kayip
fonksiyonu altinda yaklagik Bayes tahmin edicileri Tierney and Kadane yaklagimi kullanilarak elde edildi. Bu
tahmin edicilerin performanslarini, hata kareler ortalamasi ve yan bakimindan karsilagtirmak igin bir Monte-
Carlo simiilasyon c¢aligmasi gerceklestirilmistir. Son olarak bu dagilim igin gercek veri analizi
gerceklestirilmistir.

Anahtar Kelimeler: Log-Dagum dagilimi, En ¢ok olabilirlik tahmini, Asimptotik giiven araligi, Yaklagik
Bayes tahmini, Tierney and Kadane yaklagimu.

1. INTRODUCTION

Statistical distributions are widely used for analysis of data in the real world. In literature, new statistical
distributions have been obtained for modeling data in many areas such as science, engineering, medicine
and economy. One of these statistical distributions is the dagum distribution suggested by Dagum [1,2]
used for modelling wealth and income data . The cumulative distribution function (cdf) and probability

density function (pdf) of a Y random variable having to Dagum distribution with parameters g, 4 and &
are given by,

Fy (y;ﬁ,ﬂ,é'):(]__i_ /lyqs)—ﬁ

fY (y,ﬂ,ﬂ,é') :ﬂi5y—o‘fl(1+iy7§ ),ﬂﬂ
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where y>0,A>0, >0, 6>0. Domma [3] has introduced the log-Dagum (LDa) distribution by

using logarithmic transformation, X =InY , of a Y random variable having to Dagum distribution. The
cdf and pdf of the log-Dagum ( LDa) distribution with #, 4 and & parameters are

Fe (%8, 4,8)=(1+26) " (1.3)

and

to (X B,4,6) = pace ™ (1+2e) " (1.4)

respectively. Where xeR, >0, >0 and & >0. There are few studies about LDa distribution in

literature. Domma [4] has proved that the kurtosis for log-dagum distribution depends only on parameter
£ . Domma and Perri [5] have examined some characteristic properties of this distribution and they have

studied about maximum likelihood estimation (MLE) and asymptotic confidence interval for the unknown
parameters of log-dagum distribution. The plots of pdf for various parameter values of LDa( ﬂ,/l,é)

distribution are given in Figure 1.
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Figure 1. Density function plots of log-Dagum distribution for different parameter values

In this paper, we consider approximate Bayes estimation problem of unknown parameters
(B.4,6) for the log-Dagum distribution. This study is organized as follows. In Section 2,

maximum likelihood estimators (MLEs) for unknown parameters of the log-Dagum distribution
and asymptotic confidence intervals based on these estimators are presented. In section 3, Bayes
estimators with Tierney and Kadane approximation under squared loss function for unknown
parameters of the log-Dagum distribution are obtained. In section 4, a Monte-Carlo simulation
study is performed to compare maximum likelihood (ML) and approximate Bayes estimators in
terms of mean square errors (MSESs) and biases. In addition, in this section, a simulation study
based on asymptotic confidence intervals is carried out. A real data application is performed in
section 5. In the last section, the conclusion of this study is given.
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2. ML ESTIMATION and ASYMPTOTIC CONFIDENCE INTERVALS for LOG-DAGUM
DISTRIBUTION

Let X =(X,,X,,... X,) be a random sample with size n taken from LDa(f,4,5)distribution. In
that case, the log-likelihood function is given by;

6(ﬂ,(3,ﬂu|5)=nlog,ﬁ+nlogﬂp+nlog§—§zn:xi —(ﬁ+1)zn“log(1+ie"”i) (2.1)

In order to obtain ML estimators, the following likelihood equations should be solved.

—‘%(ﬂ'a‘;l %) =%—glog(l+ Ae)=0 (2.2)

af(ﬂ,;,llé)zg_(ﬂJrl)i%:o (2.3)
2U(B.6.21%) 1 3 o Axe™ @4
— s ;xi +(ﬂ+1)§‘1+/1e"”‘ =0

The solution of these non-linear equations can be obtained by using iteration methods such as Newton-
Raphson method (Domma and Perri [5]).

Large-sample approach is used to obtain asymptotic confidence intervals for unknown parameters. Let @
is ML estimator of ® and 1(©),©=(f,4,6) is Fisher information matrix. In this case, the asymptotic

distribution of Jﬁ(@—@) and the Fisher information matrix are

Jn(6-6)—>N(0,17(0))

_E_ﬁz(ﬁ,/l,éu)_ _E_ﬁz(ﬂ,ﬂﬁu)_ _E"cz(ﬁ,,wm)“
B o opoa | | 9pas |
| (@)= _E_M_ —E _M_ _E—M_ (2.5)
. . | a5 || '
_E_ﬂz(ﬂ,ﬂﬁlg)_ _E'ﬂz(ﬂ,z,csu)_ _E_ﬁz(ﬂ,,wu)_
. a%p . oexA | | e8]

respectively. The elements of fisher information matrix have been obtained by Domma and Perri [5]. The
above approaches are used to find the approximate confidence intervals of #,1and § parameters. The

(1-7)100% confidence intervals of the 8, 1and & parameters are obtained as in equations (2.6),( 2.7)

and (2.8).
P[B—z,] ar(,ﬁ)<ﬂ<ﬁ+zﬁ Nar(,@)jzl—n (2.6)
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P[i—z”,Nar(i)<i<i+z”@ar(i)}=l—n (2.7)
P(S—zq,,gar(é)<5<$+z”,,gar($)j=1—n (2.8)

where diagonal elements of inverse of Fisher information matrix are variances of 4,4 and &
(Domma and Perri [5]).

3. BAYES ESTIMATION for PARAMETERS of LOG-DAGUM DISTRIBUTION

Let X,,X,,... X, be a random sample with size n taken from LDa(, 4,5 )distribution. It is needed to

prior distributions for these parameters to obtain Bayesian estimation of parameters. In this study, it is
taken as following gamma priors for unknown f#,1 and & parameters.

z(B)ec pe ™ pe,d >0 (2.9)
m(A)c A% e A.e,,d,>0 (2.10)
7(S)oc 5% 5,e,d,>0 (2.11)
The joint priors and posterior distributions of #,1 and & parameters are,
7(B.2.8)=r(B)r(2)7(8) e prat gt e i)
f 1,0 1,6
ﬂ(ﬂ,ﬂ/,é‘lX): (XllB’ ! )ﬁ(ﬂ’ ! )
f(x)

K(X;B,4,0)7(B,A.5) , (2.12)

k(x;:B,4,8)x(B,2,6)dfdAds

O ) 8
O ey 8

|

i=1
Bayes estimator for any function of £,4 and &,u(3,4,9) , under squared loss function is as follows.

Us (8,2,6)=E[u(,4.6)Ix]

IIE

respectively. Where k(x;3,1,8) =(B,4,6)" exp(—éixijﬁ(H iexp(—&xi))f’m1 . In this case,
i=1

(2.13)
U( B, 2,8 x)e VA g g 24 s

Ot——y3

j j j o (PAN PP A0g 5y 2d 5
000

Where ((3,4,8]x) is log-likelihood function, p(3,4,6)is logarithm of joint prior distribution. It is

very difficult to the obtain solution of above Eq. (2.13) in closed form. Some approximate methods for
solution of this equation are used. One of these methods is Tierney Kadane’s approximation.
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a. Bayes Estimation with Tierney and Kadane’s Method

Tierney and Kadane’s approximation introduced by Tierney and Kadane [6] to compute integral ratios in
bayes analysis has been studied by many authors such as Gencer and Saragoglu [7], Howloader and
Hossain [8], Mousa and Jaheen [9], Kinaci et al. [10], Tanis and Saragoglu [11]. Tierney and Kadane
approximation can be summarized as follows.

I(ﬂ,xl,c?)=%{p(ﬁ,i,§)+£(ﬂ,l,5|X)} (2.14)

' (5.4.8) == 10gu( B, 4,8)+1(5,4.5) (2.15)

Where, p(3,2,6) is defined as follows.
p(B,2,6)=(d,—1)log(L)+(d,—1)log(1)+(d;—1)log(5)—(Be, + e, +5e,) (2.16)

Bayes estimators with Tierney and Kadane approximation of u ( LA, ) under squared error loss

function for LDa(,4,6) distribution is obtained as follows

" (P10 g B AdS

i
0,(8.4,0)=E[u(B,4,5)|x]=22
il

ni(B,4,8)

() et}

A

where (/?I*,il*,élﬁ) and (/?,,i,,él) maximize '*(/3’.*’ 5}) and I(/?,,/i,,é,), respectively. ="

[
and X are minus the inverse Hessians of I*(ﬁl*,il*,él*) and '(/?ni.,g.) at (Br'i.*-g.*) and
(A.4.5,), respectively.
4. SIMULATION STUDY

In this section, a Monte-Carlo simulation study in order to compare the performances of ML estimators
and aproximate bayesian estimators according to MSEs and biases for LDa(/,4,6) distribution is

performed. In addition, in this section, a simulation study based on coverage probabilities (cp) and lengths
of asymptotic confidence intervals based on ML estimators is carried out. Firstly, it is needed to generate

random samples from LDa( 3, 4,6 )distribution for simulation study.

4.1. Random Sample Generation

Inverse conversion method in order to generate random number from LDa( 3, 4,5 )distribution is used.

Let u state arandom number generated from Uniform(0,1). x generated from LDa(,4,6) distribution
with inverse conversion method is given as follows.

_1 4o
X = . In(uuﬂo _1) (3.2)
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where f,, 4, and &, are initial values. (Domma and Perri [7]).

In simulation study, it is generated N =5000 samples of sizes n=100,200,500,1000 from
LDa(B,4,6) distribution with (5, =0.434,=0.2,6,=05), (,=0.8,4,=0.1545,=0.3) and
(/30 =051,=0.19, = 0.7) . The biases and MSEs of ML and approximate bayes estimators for unknown
parameters at different samples sizes as n =100, 200,500,1000 are given in Tablel. In this table, prior
values for approximate bayes estimators are d, =0.01,e, =0.01 , d, =0.01,e, =0.01,d, =0.01,e, =0.01

. The results of asymptotic confidence intervals based on ML estimators for unknown parameters of
LDa(,H, A, 5) distribution for different samples sizes as n=100,200,500,1000 are presented in Table 2.

Table 1. Biases and MSEs of MLE and Bayes estimators for LDa(,B, A, 5)

Bue Beaves Awie Agaves Suie Oeaves
(By:40:6,) N bias mse bias mse bias mse bias mse bias mse bias mse

100 -0.0261 0.0261 -0.0417 0.0352 -0.0018 0.0066 -0.0236 0.0105 -0.0247 0.0137 -0.0487 0.0201

200 -0.0110 0.0102 -0.0154 0.0111 -0.0005 0.0027 -0.0101 0.0033 -0.0120 0.0053 -0.0225 0.0062
(0.43,0.2,05)

500 -0.0032 0.0036 -0.0044 0.0037 -0.0005 0.0010 -0.0041 0.0011 -0.0052 0.0019 -0.0093 0.0020

1000 -0.0020 0.0017 -0.0026 0.0017 -0.0001 0.0005 -0.0018 0.0005 -0.0022 0.0009 -0.0042 0.0009

100 -0.1117 2.5370 -0.3782 2.8199 0.0010 0.0037 -0.0115 0.0051 -0.0092 0.0031 -0.0159 0.0038

200 -0.0425 0.0556 -0.0758 0.0816 0.0005 0.0016 -0.0053 0.0019 -0.0046 0.0013 -0.0079 0.0015
(0.8, 0.15, 0.3)

500 -0.0135 0.0164 -0.0227 0.0178 -0.0001 0.0006 -0.0023 0.0007 -0.0020 0.0005 -0.0033 0.0005

1000 -0.0076 0.0077 -0.0118 0.0080 0.0001 0.0003 -0.0010 0.0003 -0.0008 0.0002 -0.0015 0.0002

100 -0.0366 0.0392 -0.0645 0.0824 0.0026 0.0013 -0.0039 0.0016 -0.0294 0.0227 -0.0594 0.0327

200 -0.0153 0.0146 -0.0224 0.0164 0.0013 0.0006 -0.0018 0.0007 -0.0148 0.0094 -0.0278 0.0108
(05, 04, 0.7)

500 -0.0045 0.0050 -0.0067 0.0052 0.0004 0.0002 -0.0008 0.0002 -0.0066 0.0034 -0.0115 0.0036

1000 -0.0028 0.0024 -0.0038 0.0024 0.0003 0.0001 -0.0003 0.0001 -0.0028 0.0016 -0.0052 0.0017

Table 2. Length and cp based on MLE for LDa(ﬁ, /1,5)

ﬁAMLE /iMLE SMLE

(8o 20:6) n cp length cp length cp length
100 | 0.9298 | 0.5739 | 0.8994 | 0.2926 | 0.9456 | 0.4061
200 | 0.9446 | 0.3788 | 0.9232 | 0.1982 | 0.9502 | 0.2704

(0.43,0.2,05)
500 | 0.9470 | 0.2313 | 0.9388 | 0.1232 | 0.9490 | 0.1662
1000 | 0.9512 | 0.1623 | 0.9444 | 0.0864 | 0.9514 | 0.1161
100 0.9310 | 1.4932 | 0.8988 | 0.2216 | 0.9460 | 0.2012
200 0.9422 | 0.8406 | 0.9260 | 0.1524 | 0.9448 | 0.1370

(0.8, 0.15, 0.3)
500 0.9488 | 0.4928 | 0.9398 | 0.0952 | 0.9538 | 0.0850
1000 | 0.9508 | 0.3424 | 0.9460 | 0.0669 | 0.9518 | 0.0596
100 0.9340 | 0.6945 | 0.8974 | 0.1346 | 0.9480 | 0.5367
(05, 0. 0.7) 200 | 0.9418 | 0.4516 | 0.9202 | 0.0942 | 0.9502 | 0.3610
R 500 | 0.9494 | 0.2740 | 0.9380 | 0.0593 | 0.9500 | 0.2227
1000 | 0.9506 | 0.1920 | 0.9420 | 0.0418 | 0.9506 | 0.1557

According to results of simulation study, it is seen that MSEs and biases values for ML and approximate
bayes estimators of parameters are decreases when the number of samples increases. Furthermore, as
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sample sizes increases, it is observed that cp approaches to 0.95 and the length of the asymptotic
confidence interval decreases as expected.

5. REAL DATA APPLICATION

The data set consist of 76 observations about the life of fatigue fracture of Kevlar 373/epoxy which is
considered in this section. These data are obtained by subject to constant pressure at the 90% stress level
until all fatigue fracture had failed. (Kharazmi and Saatinik, [12]). This data set have been studied
Andrews and Herzberg [13], Barlow et al. [14] and Merovci et. al. [15]. Let xeR™ express data, we
consider a transformation with y =In(x) on Kevlar 373/epoxy data set. Thus, it is obtained y € R data.

Then, new data after transformation is given in Table 3. This data set has been analyzed to compare the
log-Dagum distribution with other distributions such as, Normal, Logistic, Laplace, t location-Scale,
Extreme Value and Generalized Extreme Value (GEV). Probability density functions of these
distributions given by;

2
Normal : f (x) = 12 exp(_(x_ﬂ) } >0, uxelR
O T

exp(x_ﬂj
Logistic: f (x) = g

ool )

Laplace: f (x)=2iexp[—wj, c>0,x,uecR
(o) O

ot [ (o T
(%5 |

O'\/EF(ZZJJ v

5, 0>0,X,ueR

t location-Scale: f (x) =

,o,0>0, uxeR

Extreme Value: f (x)= o—lexp(x_—ﬂj exp[—exp(x_—#D, >0, u,xeR
(o2 (o2

-1

- 1=
— k — k
GEV : f(x)=0""exp —(1+ kM] [1+ kM] , >0,k u,xeR

O O
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Table 3. Kevlar 373/epoxy data set

-3.6849 -2.4236 -2.4180 -1.3859 -1.1670 -1.0639 -0.7417 -0.5709
-0.5672 -0.4207 -0.3933 -0.3929 -0.3926 -0.2619 -0.1773 -0.1754
-0.1714 -0.1456 -0.1221 -0.0929 -0.0921 -0.0165 0.0472  0.0579
0.0745 0.1598  0.2287 0.2442 0.2612 0.2785 0.3003  0.3039
0.3781 0.3974 0.4529 0.4532 0.5355 0.5460 0.5573  0.5670
0.5736  0.6029  0.6084  0.6153 0.6317 0.6354 0.6356  0.6583
0.6708  0.6955  0.7133  0.7373  0.7464  0.7575 0.7930  0.8092
0.8276  0.8417 0.8531 0.8550 0.9143 0.9266  1.0956  1.1071
11841 1.2251 1.2484 13200 13206 13646 1.5701  1.6865
16944 17101 18801 2.2078

MLEs and their standard errors, AIC values for seven distributions are given In Table 5. Moreover, plots
fitted to cdfs, reliability functions and pdfs are presented in Figure 4-6.

Table 4. Parameter estimates (standard errors) and AIC values for Kevlar 373/epoxy data set

Distribution ML Estimate —20 AIC
/3 =0.4248(0.1275) , 1 =17.7962(16.7845) ,
Log-Dagum . 187.0024 | 193.0024
o= 3.1766(0.5964)
Normal =0.3379(0. 1102) 6 =0.9610(0.0787) 206.64 210.64
Logistic =0.4244(0.0938), & = 0.4810(0.0469) 195.7154 | 199.1792
Laplace =0.5516(0.0754) , & 0.6578(0.0754) 191.7154 | 195.7154
= 0.4675(0.0860) ,6=0.5984(0.0919),
t location-Scale . 189.7942 195.7942
o= 2.9338(1.1357)
Extreme Value =0.7574(0.0911) , 6 = 0.7543(0.0647) 191.6836 | 195.6836
i =0.0888(0.1271) , 6 =1.0401(0.0873)
coeneralized | (0:2271) (00873) 187.7040 | 2037040
xtreme Value |k = —0.4695(0.0475)

Also, the approximate Bayes estimation values of the unknown parameters of Log-Dagum distribution
are obtained as f,es =0.4613 |, Ayues =23.2287 |, 5yues =3.1277 with  prior gamma distribution
(d, =0.0Le, =0.01,d, =0.0Le, =0.01,d, =0.0L,e, =0.01).
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Figure 2. Fitted cdfs plots for Kevlar 373/epoxy data set
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Figure 3. Fitted pdfs plots for Kevlar 373/epoxy data set
6. CONCLUSION

We have analyzed the LDa(/,4,8)distribution in terms of estimation of unknown parameters. The

approximate Bayesian estimators for unknown parameters of this distribution are obtained. The Bayesian
estimators under squared error loss function are found using Tierney and Kadane approximation. The
performances of ML and approximate Bayes estimators have been compared with the Monte Carlo
simulation study according to MSE and bias criteria. A simulation study based on asymptotic confidence
intervals is performed. It is seen that the biases and MSEs of ML and Bayes estimators decrease as sample
size increases. It can be concluded that biases and MSEs of these two estimators are very close to each

other. In interval estimation based on ML estimators of unknown parameters for the LDa(f,1,5)

distribution, it is seen that coverage probabilities (cp) approach to 0.95 and length of asymptotic
confidence intervals decreases as sample size increases. Furthermore, a real data application is performed

in order to show that the LDa( 3, 1,8) distribution can be used in new areas. It is presented a real data set

related to the life of fatigue fracture of Kevlar 373/epoxy. We have concluded that the LDa(f,4,5)

distribution has to best fit between other six distributions (Normal, Logistic, Laplace, t location-Scale,
Extreme Value, Generalized Extreme Value) according to AIC and —2(.
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