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Mudholkar and Srivastava [2] proposed a method to include an extra parameter to a two-parameter 

Weibull distribution. If a random variable  Z   has distribution function  ( ),F z   then  ( )( )qF z    

( )0q>   is also distribution function and it is called exponentiated family, where  ( ),F z   is baseline 

distribution. Mudholkar and Srivastava [2] considered  ( ) ( )( )1 exp / as= - -F z z   as a baseline 

distribution and they get the distribution with cdf 
 

( ) ( )( )1 exp /
qas= - -F z z  

and called it as exponentiated-Weibull family, where  q   is an extra parameter. Some exponentiated 
distributions have been introduced by several authors, see for example Gupta et al. [3], Gupta and 
Kundu [4] and etc.  

Marshall and Olkin [5] proposed another method to introduce an additional parameter to any 
distribution function as follows. Let  Z   is a random variable with cdf  F   and density  f , then 

( )
( )

( ) ( )( ){ }21 1 1

a

a
=

- - -

f z
g z

F z
 

is also pdf of a random variable, where  a   is an extra parameter. Marshall and Olkin [5] cosidered 
exponential and Weibull distribution for baseline distribution  ( ).f z   

Eugene et al. [6] proposed the beta generated method which is defined as follows: Let  Z   is a random 
variable with cdf F , then 

( )
( )
( ) ( )

( )

( ) 11

0

1 ,baa b
a b

--G +
= -

G G ò
F z

G z t t dt  

is a distribution function as well, where  ( ) 2,a b +    is an extra parameter vector. 

Alzaatreh et al. [7] introduced a new method for generating families of continuous distributions called 
T-X family using same idea of Eugene et al. [6] 

Mahdavi and Kundu [8] introduced an extra parameter to a family of distributions functions to bring 
more flexibility to the given family. This new method is called a -power transformation (APT) method. 
The proposed APT method is very easy to use, hence it can be used extensively for the data modelling 
purposes. The pdf and cdf of APT-family are given, respectively, by 
 

( )
( ) ( ) ( ) ( )

( )

log
1 , 1

, 1

a
a a a

a
-

ìï ¹ï= íï =ïî

F x
A

APT
f x I x

f x
f x

                                                (1) 

and  

       ( )
( )

( )
( )

1
1 , 1

, 1,

a
a a

a

-
-

ìï ¹ï= íï =ïî

F x

A
APT

I x
F x

F x
                                      (2) 

where  0a >   is an extra parameter and  ( )AI x   is indicator function on set  A   which is domain of 

baseline distribution. Mahdavi and Kundu [8] applied the  a  -power transformation to exponential 
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distribution. 

An extra parameter supplies more flexibility to a class of distribution functions and it can be very useful 
for the data analysis. It should be point out that the adding extra parameter caused the estimation 
problem, but it can be solved by numerical methods. R and Matlab have several numerical algorithms 
for this job. 

In this paper,  a -power transformation is applied to Pareto distribution. In Section 2, moments, hazard 
rate and survival functions are given. The maximum likelihood and least square methods are discussed 
in Section 3. In Section 4, a simulation study is also performed to observe the performance of the 
estimates. A numerical example with the real data is given to illustrate the flexibility of APT-Pareto 
distribution for modelling real data in Section 5. 

2. a  -POWER PARETO DISTRIBUTION 

In this paper, Pareto distribution is considered. The pdf and cdf of the Pareto distribution are given, 
respectively, by 

 ( ) ( )1 1,bb - -= ¥pf x x I                                                                (3) 

and          

( ) ( )1 1,b-= - ¥pF x x I                 (4) 

where  0b >   is a shape parameter and ( ).AI  is indicator function. 

Using Eqs. (3)-( 4) in Eqs. (1)-( 2), the pdf and cdf of APT-Pareto distribution are defined by 

 

 

        (5)                        

 

 

and 

 

( )

( )
( ) ( )

( )

1
1
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b
a

a

b

a

a

--
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x

                                         (6) 

 

 

respectively. The random variable  X   is said to have a two-parameter APT-Pareto distribution and it is 
denoted by  ( , )a bAPTP  . 

Fig. 1 presents the plots pdf of  ( , )a bAPTP   for some choices of  a   and  b . 
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Figure 1. Pdf of APTP distribution for some choices of a and b  

 
In the rest of paper, the case  1a ¹   is only considered. The survival function and the hazard rate 
function for  APTP   distribution are given in the following forms 
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respectively. Fig. 2 presents the plots the hazard rate function of  ( , )a bAPTP   for some choices of  a   

and  .b   

 
Figure 2. Hazard rate function of APTP distribution for some choices of  a and b  
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where the WhittakerM( , ,a b c  ) is a Whittaker function and it can be easily calculated by Maple or 

Matlab. It should be noted that  r  th moments works for only  3
2b > r  . This restriction has been 

observed in simulation study. It is not proved here. 

Moment generating function of APTP  distribution is given by 

( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )( )

1 1

1

1

0

log
exp

1

log log 1 ,
1 !

bb
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a
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a ba a b
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-
¥

- - -

¥ +

=

=
-

- - G - + -
=

-

ò

å

x
X

i i

i

M t tx x dx

t i t
i

 

where  ( ),G a b   is the incomplete gamma function. 

3. ESTIMATION 

3.1. Maximum-Likelihood Method 

Let  1 2, , , nX X X   be a random sample from ( , )a bAPTP , then log-likelihood function is given by 

( )
( )

( ) ( ) ( ) ( )
1 1

log
, log log 1 log log .

1
ba

a b b b a
a = =

æ öæ ö ÷ç÷ç ÷ç= + - + + -÷ ÷ç ç÷ç ÷-è ø ÷çè ø
å å

n n

i i
i i

n n x n x  

The likelihood equations are found to be 

( )
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( )
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Maximum likelihood estimates (MLE) of a and b  are obtained by solving likelihood equations. The 

likelihood equations cannot be solved explicitly.  Likelihood function can be maximized by numerical 
method. fminsearch MATLAB command can be used for this job. fminsearch uses the simplex search 
method of Lagarias et al. [9]. 

3.2. Least-squares Method 

Let  ( ) ( ) ( )1 2< < < nx x x  denote the ordered observations from  ( , )a bAPTP   distribution. Using 

the distribution function given in Eq. (6), we can write  

  ( )( )
( )( )1

1
, 1, 2, ,

1

b

a
a

-- -
= =

-


ix

iF x i n                                   (7) 

Empirical distribution function, denoted by  *F can be used to estimate  ( )( )iF x in (7).  Substituting the 

empirical distribution function in Eq. (7), we have the following model:  
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( )( )
( )( )1

1
, 1, 2, , ,

1

b

a
e

a

--
* -

= + =
-


ix

i iF x i n  

where  ei   is the error term for  i  th observation. Now, the least squares estimators (  ,a b  ) of 

parameters can be obtained by minimizing the following equation with respect to  a   and  b  :  

( )( )
( )( ) 2

1
2

1 1

1
( , ) , 1, 2, , .

1

b

a
a b e

a

--
*

= =

æ ö÷ç - ÷ç ÷= = - =ç ÷ç - ÷÷çè ø
å å 

ixn n

i i
i i

L F x i n  

 
Least-squares estimates (LSE) of  a   and  b   can be obtained by numerical methods. fminsearch 
MATLAB command can be used for this job. 

4. SIMULATION STUDY 

In this section, a simulation study is conducted to compare the ability of estimation procedures 

discussed in the previous section. In the simulation, 1 2, ,..., nX X X   from the APTP distribution are 

generated and then computed the MLEs and LSEs of  a   and  b   with 10000 repetitions. We then 

compared the performance of these estimates in terms of their biases and mean square errors (MSE). We 

reported the biases and MSEs of these estimates in Tables 1-2, for different values of  n   and  ( ),a b  . 

From Tables 1-2, it is observed that both estimates are biased but asymptotically unbiased. Also, as the 
sample size  n   increases, the bias and MSEs of the estimators decreases as expected. 

Table 1: Bias of MLEs and LSEs for some parameter values of  a   and  b  

 

  

a  b    n â  ̂  a  b  

2 2 50 1.3612 0.0939 1.5310 0.1023 
100 0.5514 0.0420 0.5679 0.0413 
200 0.2525 0.0196 0.2718 0.0226 
300 0.1734 0.0146 0.1764 0.0151 
400 0.1341 0.0120 0.1395 0.0137 
500 0.1031 0.0094 0.1053 0.0102 

 
3 1 50 2.1219 0.0398 2.4204 0.0439 

100 0.8103 0.0178 0.8230 0.0196 
200 0.3690 0.0085 0.3904 0.0107 
300 0.2532 0.0063 0.2573 0.0071 
400 0.1809 0.0044 0.1837 0.0050 
500 0.1532 0.0043 0.1553 0.0051 

 
0.5 0.8 50 0.4662 0.0908 0.6711 0.1070 

100 0.1950 0.0402 0.2800 0.0435 
200 0.0912 0.0173 0.1241 0.0131 
300 0.0620 0.0109 0.0849 0.0073 
400 0.0477 0.0088 0.0648 0.0059 
500 0.0392 0.0071 0.0506 0.0039 
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Table 2: MSEs of MLEs and LSEs for some parameter values of  a   and  b  

a  b  n â  b̂  a  b  

2 2 50 21.6056 0.2314 29.8067 0.3724 

100 3.4502 0.1083 4.4688 0.1694 

200 1.1274 0.0540 1.5549 0.0812 

300 0.6866 0.0365 0.9176 0.0556 

400 0.4863 0.0269 0.6272 0.0398 

500 0.3657 0.0213 0.4724 0.0318 

       

3 1 50 46.9261 0.0463 165.8959 0.0686 

100 7.6548 0.0221 9.6245 0.0322 

200 2.4231 0.0109 3.2240 0.0154 

300 1.4694 0.0074 1.8830 0.0106 

400 1.0050 0.0055 1.2791 0.0076 

500 0.7841 0.0043 0.9722 0.0061 

       

0.5 0.8 50 1.9843 0.0835 4.0642 0.1515 

100 0.4171 0.0446 0.7355 0.0797 

200 0.1338 0.0224 0.2367 0.0439 

300 0.0818 0.0152 0.1480 0.0312 

400 0.0564 0.0114 0.1050 0.0243 

500 0.0430 0.0088 0.0788 0.0190 

 
5. REAL DATA ANALYSIS 

In this section, we illustrate the ability of the APTP distribution. We fit this distribution to two real data 
sets and compare the results with the distributions in the literature. In order to compare the models, we 
used following three criterions: Akaike Information Criterion(AIC), Bayesian Information Criterion 

(BIC) and log-likelihood  ( )   values, where the lower values of AIC, BIC and the upper value of     

values for models indicate that these models could be chosen as the best model to fit the data sets. 

First real data: First real data set is given in Feigl and Zelen [10] for the patients who died of acute 
myelogenous leukemia. Feigl and Zelen [10] represent observed survival times (weeks) for AG 
negative. The data set is: 56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. APTP, Weibull, Alpha-
Power Exponential( Mahdavi and Kundu [8]), Exponentiated Exponential (Gupta and Kundu, [3]), Beta 
Generalized-Exponential (BGE) (Barreto-Souza et al. [11]), Beta-Exponential (BE) (Nadarajah and 
Kotz [12]), Beta-Pareto (BP)(Akinsete et al. [13]), Generalized Exponential (GE)(Gupta and Kundu 
[14]), Exponential Poisson (EP) (Kus [15]), Beta Generalized Half-Normal (BGHN) (Pescim et al. 
[16]), Generalized Half-Normal (GHN)(Cooray and Ananda [17]) and Gamma-Uniform (GU) (Torabi 
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and Montazeri [18]) distributions are fitted to data. Table 3 shows that the APTP distribution gives a 
better fit than the other models for all criteria except GU distribution. 

Table 3. Results of AIC, BIC and log-likelihood for APTP and other distributions for the data set 
 
Model ML Estimates of Parameters AIC BIC   
APTP ˆˆ 485.771, 1.034a b= =   127.3 128.9 -61.6 

Pareto ˆ 0.431a =   135.2 135.9 -66.6 
BGHN ˆˆ ˆ0.09, 0.40, 5.99,a= = =a b    ˆ 132.49q =   131.9 134.9 -61.9 

GHN ˆˆ 0.76, 73.62a q= =   130.2 131.8 -63.1 

GE ˆˆ 0.757, 0.013a q= =   129.5 131 -62.7 

EP ˆˆ 0.01, 0.016a q= =   129.1 130.6 -62.5 

BP ˆ ˆˆ ˆ20.35, 32.71, 0.01, 0.06a q= = = =a b   129.7 132.8 -62.8 

Weibull ˆˆ 0.948, 0.055a b= =   129.4 130.9 -62.6 

EE ˆˆ 0.968, 0.053a q= =   129.5 131.0 -62.7 

APE ˆˆ 0.364, 0.042a b= =   129.1 130.6 -62.5 

BGE ˆ ˆˆ ˆ37.95, 3.33, 0.013, 0.04a q= = = =a b      132.9 135.9 -62.4 

BE ˆ ˆˆ2.998, 0.96, 0.017a q= = =b     131.5 133.8 -62.7 

GU ˆ ˆˆ ˆ1.99, 165.39, 0.46, 0.30a q= = = =a b     123 126.1 -57.5 

 
Figure 3. Empirical and some fitted distribution functions based on myelogenous leukemia data 

Second real data set: The real dataset is taken from Nassar and Nada [19], which gives the relief times 
of 32 patients receiving an analgesic. The data are: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 
13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 
21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 
11.9, 5.2, 6.8, 8.9, 7.1, 10.8. APTP, Burr XII distribution by Burr[20], Kumaraswamy Rayleigh (Kum-
R) by Rashwan [21], Beta Bur XII (Beta-BXII) by Paranaíba et al.[22], Weibull Lomax (W-L) by Tahir 
et al. [23]. Odd log-logistcWeibull (OLL-W) by Cruz et al. [24], and Exponentiated Generated Weibull 
(EG-W) by Cordeiro et al. [25] distributions are fitted to data. From Table 4, it is clear that the APTP 
distribution provides the overall best fit and therefore could be chosen as the most adequate model 
among the fitted models to second data. 
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Table 4. Results of AIC and log-likelihood for APTP and other distributions for the data set. 
 

 Model   
ML Estimates of Parameters AIC BIC   

APTP  ˆˆ 485.77, 1.03a b= =   221.9 228.8 109.2 

Pareto  ˆ 0.39a =   285.9 287.4 142.0 
Burr XII  ˆ ˆ0.07, 5.61l q= =   518.5 521.3 257.2 

Kum-R  ˆ ˆ ˆˆ 1.49, 73.62, 4.70, 0.19a q l b= = = =   400.9 401.8 196.5 

Beta-Burr XII  ˆ ˆ ˆˆ 37.30, 1.09, 0.89, 3.84a q l b= = = =   385.9 386.8 188.9 

W-L  ˆ ˆ ˆˆ 3.94, 3.26, 2.61, 0.26a b l q= = = =   396.6 397.5 194.3 

OLL-W  ˆ ˆˆ 28.15, 0.08, 793.68a l q= = =   387.5 389.4 190.8 

EG-W  ˆ ˆ ˆˆ 0.19, 11.15, 0.77, 0.38a b l q= = = =   387.5 388.3 189.7 

TLG-Burr XII  ˆ ˆ ˆˆ 6.29, 7.32, 0.68, 1.81a b l q= = = =   385.5 386.4 188.8 

APE  ˆˆ 328.19, 1.64a b= =   223.5 226.4 109.7 

Weibull  ˆ ˆ1.76, 0.06b l= =   225.5 228.4 110.8 

 
Figure 4. Empirical and some fitted distribution functions based on relief times data 

6. CONCLUSION 

In this study, APT family is considered with baseline Pareto distribution. ML and LS estimation are 
discussed for the parameters. An application of the APTP distribution to a real data set is given to 
demonstrate that this distribution can be used quite effectively to provide better fit than other available 
models. 
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