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Abstract. Recently, the APT-family has been introduced as a new family of distributions. A special case of
this family with exponential distribution is examined in details. In this paper, Pareto is considered as a
baseline distribution in APT-family. Several properties of the APT-Pareto distribution such as the moments,
hazard rate and survival functions are derived. The maximum likelihood and least square methods are
discussed. Simulation study is also performed to get the bias and mean square errors of estimates. A
numerical example is given to illustrate the capability of APT-Pareto distribution for modelling real data.
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APT-Pareto Dagihmi ve Ozellikleri

Ozet. Son zamanlarda, APT-dagihm ailesi adinda yeni bir dagilim ailesi tanitilmugtir. Bu dagilim ailesi igin
iistel dagilim durumunu detayl bir sekilde ele alinmigtir. Bu makalede, APT-dagilim ailesinde Pareto dagilimi
calistlmistir. APT-Pareto dagilimina iligkin momentler, hazard fonksiyonu, yagam fonksiyonu gibi 6zellikleri
elde edilmistir. En c¢ok olabilirlik ve en kiiciik kareler yontemleri tartisilmistir. Tahmin edicilerin yan ve hata
kareler ortalamalarin1 elde edebilmek ic¢in simiilasyon c¢aligmast yapilmistir. APT-Pareto dagiliminin
modellemedeki kullanilabilirligini géstermek amaciyla gergek bir veri uygulamasi yapilmistir.

Anahtar Kelimeler: Dagilimlar ailesi, Tahmin, Pareto dagilimi, Simiilasyon

1. INTRODUCTION

Distribution theory is one of the most important areas of statistics. In the last two decades, there are too
many statistical distributions are introduced by including an extra parameter to an existing family of
distribution functions. Azzalini [1] introduced the skew normal distribution by adding an extra
parameter A to the normal distribution. Let Z be the skew-normal random variable, then the density

function of Z 1is of
H(N)=2¢(2)P(A2), z€R,

where ¢ and @ are the standard normal density and distribution function, respectively. It is clear that

the skew-normal distribution is reduced standard normal distribution for A = 0.
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Mudholkar and Srivastava [2] proposed a method to include an extra parameter to a two-parameter
Weibull distribution. If a random variable Z has distribution function F(z), then (F(z))’

(0>0) is also distribution function and it is called exponentiated family, where F(z), is baseline
distribution. Mudholkar and Srivastava [2] considered F(z)= (1 —exp(—-z/0)" ) as a baseline

distribution and they get the distribution with cdf

F(Z)z(l—exp(—z/a)a )6

and called it as exponentiated-Weibull family, where 6 is an extra parameter. Some exponentiated
distributions have been introduced by several authors, see for example Gupta et al. [3], Gupta and
Kundu [4] and etc.

Marshall and Olkin [5] proposed another method to introduce an additional parameter to any
distribution function as follows. Let Z is a random variable with cdf F and density f ,then

af(z)

S e i—Fa)y

is also pdf of a random variable, where « is an extra parameter. Marshall and Olkin [5] cosidered
exponential and Weibull distribution for baseline distribution f (z).

Eugene et al. [6] proposed the beta generated method which is defined as follows: Let Z is a random
variable with cdf F , then

F(z)

is a distribution function as well, where («,3)€ R% is an extra parameter vector.

Alzaatreh et al. [7] introduced a new method for generating families of continuous distributions called
T-X family using same idea of Eugene et al. [6]

Mahdavi and Kundu [8] introduced an extra parameter to a family of distributions functions to bring
more flexibility to the given family. This new method is called o -power transformation (APT) method.
The proposed APT method is very easy to use, hence it can be used extensively for the data modelling
purposes. The pdf and cdf of APT-family are given, respectively, by

log(a) ¢ (v Vo, FOIL 4 (X |
fapr (X)=1 o1 ()™ A (x) , o= "
and
Fapr (X) = (X)), a=l N
APT F(X) , a=]l,

where « >0 is an extra parameter and 1, (X) is indicator function on set A which is domain of

baseline distribution. Mahdavi and Kundu [8] applied the « -power transformation to exponential
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distribution.

An extra parameter supplies more flexibility to a class of distribution functions and it can be very useful
for the data analysis. It should be point out that the adding extra parameter caused the estimation
problem, but it can be solved by numerical methods. R and Matlab have several numerical algorithms
for this job.

In this paper, «-power transformation is applied to Pareto distribution. In Section 2, moments, hazard
rate and survival functions are given. The maximum likelihood and least square methods are discussed
in Section 3. In Section 4, a simulation study is also performed to observe the performance of the
estimates. A numerical example with the real data is given to illustrate the flexibility of APT-Pareto
distribution for modelling real data in Section 5.

2. a -POWER PARETO DISTRIBUTION

In this paper, Pareto distribution is considered. The pdf and cdf of the Pareto distribution are given,
respectively, by

fp (x) = Bx71(1,00) A3)

and
Fo(X)=1-x"1(100) 4)

where (3 >0 is a shape parameter and [, () is indicator function.

Using Egs. (3)-(4) in Egs. (1)-( 2), the pdf and cdf of APT-Pareto distribution are defined by

ST g () L ezl
fapte (X) = )
BxH1 , a=1
and
a(17X7j3)71 I
- (1,00) (X) , a=l
Faptp (X) = (6)

(1-x7) , a=1,

respectively. The random variable X is said to have a two-parameter APT-Pareto distribution and it is
denoted by APTP(«a,[3) .

Fig. 1 presents the plots pdf of APTP(«,3) for some choices of « and f3.
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Figure 1. Pdf of APTP distribution for some choices of o and [

In the rest of paper, the case « =1 is only considered. The survival function and the hazard rate
function for APTP distribution are given in the following forms

o _Oé(lfx*’)

Sapte (X) = o—1

and

log(a)Bx ol

hapre (X) = (x7)
a—a

respectively. Fig. 2 presents the plots the hazard rate function of APTP(«,3) for some choices of «
and 0.
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Figure 2. Hazard rate function of APTP distribution for some choices of « and 3

The r th moment of APTP distribution is obtained by

_Oo log(a) A1 1xf
E(Xr>_[xr — 0" a X" dx

aﬂz 10g” a) [ E )]
7 )@/E((r_zﬁ) WhlttakerM( +2ﬁ,_r+3ﬁ log (« )))
(r—28)(r-=38)(a—1)(3-r)
1og(a)(%)g\/§(ﬁwhittakerm( ro50 log (
(

log<a>(

250 25 o ) r—log(a)ps— 26))
(r=28)(r=38)(a-1)(B-r) ’
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where the WhittakerM( a,b,c ) is a Whittaker function and it can be easily calculated by Maple or
Matlab. It should be noted that r th moments works for only G > %r . This restriction has been

observed in simulation study. It is not proved here.

Moment generating function of APTP distribution is given by

ee]

_ log(a) —6-1 . 1-x7
Mx (t)[exp(tX)ﬁﬁX « dx

_ log(a)ﬁai(—t)"““’ (—log(@))' T(=B(i+1),~t)

a—1 i= i!

where I'(a,b) is the incomplete gamma function.

3. ESTIMATION
3.1. Maximum-Likelihood Method

Let X;,X,,..., X, bearandom sample from APTP(«, ), then log-likelihood function is given by

¢l 3) = ntog L3 | ntog (9)- (54 1) tog(x)+

a—1

n—ix{’}log(a).

The likelihood equations are found to be

=0,

00(a,8) (a1 1 log(a) | n-yix
oo ‘”[logm)][a(a—l) <a_1>2]+ a
ol(a,f) _n

G

00 S g () log() 3 o4 =

i=1

Maximum likelihood estimates (MLE) of «and (8 are obtained by solving likelihood equations. The

likelihood equations cannot be solved explicitly. Likelihood function can be maximized by numerical
method. fminsearch MATLAB command can be used for this job. fminsearch uses the simplex search
method of Lagarias et al. [9].

3.2.Least-squares Method

Let X1y <Xg2) <:+<Xgn) denote the ordered observations from APTP(«,3) distribution. Using
the distribution function given in Eq. (6), we can write
(1=7)
o -1 .
F(xi)=—"— i=1L2,..,n 7
( (l) > o — 1 ) 9 & ’ ( )
Empirical distribution function, denoted by F* can be used to estimate F ( X(i) ) in (7). Substituting the

empirical distribution function in Eq. (7), we have the following model:
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(%)
« —1 .
F* X/ - @ iy |:1,2,...,n,
(X)) ==————+=
where ¢ is the error term for i th observation. Now, the least squares estimators ( oNz,B ) of

parameters can be obtained by minimizing the following equation with respectto « and (3 :

2

L.B) =3 =S| F* (xi)) - = . i=12..,n

n n (1-x:7) 1
i=1 i=1

a—1

Least-squares estimates (LSE) of o and (3 can be obtained by numerical methods. fminsearch
MATLAB command can be used for this job.

4. SIMULATION STUDY

In this section, a simulation study is conducted to compare the ability of estimation procedures
discussed in the previous section. In the simulation, X;, X,,..., X, from the APTP distribution are

generated and then computed the MLEs and LSEs of « and (3 with 10000 repetitions. We then

compared the performance of these estimates in terms of their biases and mean square errors (MSE). We
reported the biases and MSEs of these estimates in Tables 1-2, for different values of n and («,() .

From Tables 1-2, it is observed that both estimates are biased but asymptotically unbiased. Also, as the
sample size n increases, the bias and MSEs of the estimators decreases as expected.

Table 1: Bias of MLEs and LSEs for some parameter values of a and g

a B n & B a B

2 2 50 1.3612 0.0939 1.5310 0.1023
100 0.5514 0.0420 0.5679 0.0413
200 0.2525 0.0196 0.2718 0.0226
300 0.1734 0.0146 0.1764 0.0151
400 0.1341 0.0120 0.1395 0.0137
500 0.1031 0.0094 0.1053 0.0102

3 1 50 2.1219  0.0398  2.4204  0.0439
100 0.8103  0.0178  0.8230  0.0196
200 0.3690 0.0085 0.3904 0.0107
300 0.2532  0.0063  0.2573  0.0071
400 0.1809  0.0044  0.1837  0.0050
500 0.1532  0.0043  0.1553  0.0051

05 0.8 50 04662  0.0908 0.6711  0.1070
100 0.1950  0.0402  0.2800  0.0435
200 0.0912  0.0173  0.1241  0.0131
300 0.0620  0.0109  0.0849  0.0073
400 0.0477  0.0088  0.0648  0.0059
500 0.0392  0.0071  0.0506  0.0039
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Table 2: MSEs of MLEs and LSEs for some parameter values of o and 3

a B n & 3 a 8
2 2 50 21.6056 02314 29.8067 0.3724

100 3.4502 0.1083 4.4688 0.1694
200 1.1274 0.0540 1.5549 0.0812
300 0.6866 0.0365 0.9176 0.0556
400 0.4863 0.0269 0.6272  0.0398
500 0.3657 0.0213 04724 0.0318

3 1 50 46.9261 0.0463 165.8959 0.0686
100 7.6548 0.0221 9.6245 0.0322
200 2.4231 0.0109 3.2240 0.0154
300 1.4694 0.0074 1.8830 0.0106
400 1.0050 0.0055 1.2791 0.0076
500 0.7841 0.0043 0.9722 0.0061

0.5 0.8 50 1.9843 0.0835 4.0642 0.1515
100 0.4171 0.0446 0.7355 0.0797
200 0.1338 0.0224 0.2367  0.0439
300 0.0818 0.0152 0.1480 0.0312
400 0.0564 0.0114 0.1050 0.0243
500 0.0430 0.0088 0.0788 0.0190

5. REAL DATA ANALYSIS

In this section, we illustrate the ability of the APTP distribution. We fit this distribution to two real data
sets and compare the results with the distributions in the literature. In order to compare the models, we
used following three criterions: Akaike Information Criterion(AIC), Bayesian Information Criterion
(BIC) and log-likelihood (¢) wvalues, where the lower values of AIC, BIC and the upper value of ¢

values for models indicate that these models could be chosen as the best model to fit the data sets.

First real data: First real data set is given in Feigl and Zelen [10] for the patients who died of acute
myelogenous leukemia. Feigl and Zelen [10] represent observed survival times (weeks) for AG
negative. The data set is: 56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. APTP, Weibull, Alpha-
Power Exponential( Mahdavi and Kundu [8]), Exponentiated Exponential (Gupta and Kundu, [3]), Beta
Generalized-Exponential (BGE) (Barreto-Souza et al. [11]), Beta-Exponential (BE) (Nadarajah and
Kotz [12]), Beta-Pareto (BP)(Akinsete et al. [13]), Generalized Exponential (GE)(Gupta and Kundu
[14]), Exponential Poisson (EP) (Kus [15]), Beta Generalized Half-Normal (BGHN) (Pescim et al.
[16]), Generalized Half-Normal (GHN)(Cooray and Ananda [17]) and Gamma-Uniform (GU) (Torabi
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and Montazeri [18]) distributions are fitted to data. Table 3 shows that the APTP distribution gives a
better fit than the other models for all criteria except GU distribution.

Table 3. Results of AIC, BIC and log-likelihood for APTP and other distributions for the data set

Model IML Estimates of Parameters AIC BIC V4
APTP & = 485.771,3 =1.034 1273 128.9 61.6
Pareto & = 0431 135.2 135.9 -66.6
BGHN a=009,b=040,6 =599, §=132.49 131.9 134.9 -61.9
GHN & =0.76,0 = 73.62 130.2 131.8 -63.1
GE & =0.757,0 = 0.013 129.5 131 -62.7
EP & =0.01,0=0.016 129.1 130.6 62.5
BP a=2035b=2327,4=0.01,0 = 0.06 129.7 132.8 -62.8
Weibull & = 0.948, 3 = 0.055 129.4 130.9 -62.6
EE & = 0.968,0 = 0.053 129.5 131.0 -62.7
APE & = 0.364, 3 = 0.042 129.1 130.6 62.5
BGE a=137.95b=2333,4=0.013,0 = 0.04 132.9 135.9 -62.4
BE b =2.998,4& = 0.96,0 = 0.017 131.5 133.8 -62.7
GU a=199,b=16539,4 = 0.46,0 = 0.30 123 126.1 57.5
1
0.9 -
0.81 APT-Pareto
Real Data
0.7 Weibull
0.6 ~ T TAPE
. -—-—-EE
0.5 ]
[T
0.4 _
0.3 8
0.2 -
0.1 —
0 | | | | | 1 -
0 10 20 30 40 50 60

Myelogenousleukemia data (AG negative)

Figure 3. Empirical and some fitted distribution functions based on myelogenous leukemia data

Second real data set: The real dataset is taken from Nassar and Nada [19], which gives the relief times
of 32 patients receiving an analgesic. The data are: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6,
13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9,16.7,
21.3,354,14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6,
11.9,5.2, 6.8, 8.9, 7.1, 10.8. APTP, Burr XII distribution by Burr[20], Kumaraswamy Rayleigh (Kum-
R) by Rashwan [21], Beta Bur XII (Beta-BXII) by Paranaiba et al.[22], Weibull Lomax (W-L) by Tahir
et al. [23]. Odd log-logistcWeibull (OLL-W) by Cruz et al. [24], and Exponentiated Generated Weibull
(EG-W) by Cordeiro et al. [25] distributions are fitted to data. From Table 4, it is clear that the APTP
distribution provides the overall best fit and therefore could be chosen as the most adequate model
among the fitted models to second data.
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Table 4. Results of AIC and log-likelihood for APTP and other distributions for the data set.

Model ML Estimates of Parameters AIC BIC 14
APTP & = 485.77,3 =1.03 221.9 228.8 109.2
Pareto a = 0.39 285.9 287.4 142.0
Burr XII A=0.07,0 =561 518.5 521.3 257.2
Kum-R & =149,0 =73.62,\ = 4.70, 3 = 0.19 400.9 401.8 196.5
Beta-Burr XII & =37.30,0 =1.09, A = 0.89, 3 = 3.84 385.9 386.8 188.9
W-L &=3.94,3=326A=261,0=026 396.6 397.5 194.3
OLL-W & = 28.15,1 = 0.08,0 = 793.68 387.5 389.4 190.8
EG-W &=0.19,4 =11.15,A = 0.77,6 = 0.38 387.5 388.3 189.7
TLG-Burr XII & =629,3=1732,1=0680 =181 385.5 386.4 188.8
APE & =328.19,3 =1.64 2235 226.4 109.7
Weibull B=1.76,\ = 0.06 225.5 228.4 110.8

1 R p—
09— - =
APTP
0.8 Real Data
— — —APE
0.7 _
0.6 — =
%os - |
04— =
03 =
0.2 _
01— =
ol ==" g | | | | | |
0 5 10 15 20 25 30 35 40
Relief times of 20 patients receiving an analgesic
Figure 4. Empirical and some fitted distribution functions based on relief times data
6. CONCLUSION

In this study, APT family is considered with baseline Pareto distribution. ML and LS estimation are
discussed for the parameters. An application of the APTP distribution to a real data set is given to
demonstrate that this distribution can be used quite effectively to provide better fit than other available
models.
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