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ABSTRACT 
This paper presents a numerical method for the approximate 

solution of m.th-order linear delay equations with variable coefficients 
under the mixed conditions in terms of shifted Chebyshev polynomials. The 
technique we have used is an improved Chebyshev collocation method. In 
addition, examples that illustrate the pertinent features of the method are 
presented and the results of study are discussed. 

Keywords: Shifted Chebyshev polynomials and series, delay equations, 
Chebyshev collocation method 

ÖZET 
Bu çalışmada m.mertebeden değişken katsayılı lineer delay 

denklemlerinin karışık koşullar altında Chebyshev polinomları ile numerik 
çözümleri verilmiştir. Burada önerilen yöntem Chebyshev sıralama 
yönteminin genelleştirilmiş halidir. Yöntemin hassasiyetini belirtmek için 
örnekler verilmiş ve bulunan sonuçlar tartışılmıştır.  

Anahtar Kelimeler: Ötelenmiş Chebyshev polinomları ve serileri, delay 
denklemleri, Chebshev sıralama yöntemi 

1. INTRODUCTION 

It is well known that linear delay equations have been 
considered by many authors (El-Safty and Abo Hassa, 1990; Arıkoğlu 
and Özkol, 2006; Derfel, 1980; Gulsu and Sezer, 2005; Xiong and 
Liang, 2007). The past couple decades have seen a dramatic increase 
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in the application of delay models to problems in biology, physics 
and engineering (Zhou et. al., 2006; Zhang et. al., 2006, Duman et. al., 
2009). In the field of delay equation the computation of its solution 
has been a great challenge and has been of great importance due to 
the versatility of such equations in the mathematical modeling of 
processes in various application fields, where they provide the best 
simulation of observed phenomena and hence the numerical 
approximation of such equations has been growing more and more. 
Based on the obtained method, we shall give sufficient approximate 
solution of the linear delay difference Eq.(1). The results can extend 
and improve the recent works. An example is given to demonstrate 
the effectiveness of the results. 

In recent years, Chebyshev matrix and Chebyshev collocation 
methods have been given to find polynomial solutions of differential, 
integral and integro-differential equations by many authors (Sezer, 
1996; Gulsu and Sezer, 2005). 

Our purpose in this study is to develop and to apply the 
Chebyshev collocation methods to the high-order linear delay 
equation with variable coefficients 
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where  and  are analytical functions, )(tPk )(tf iikikik andcba λ,,  are 
real or complex constants. The aim of this study is to get solution as 
truncated Chebyshev series defined by 
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where   denotes the shifted Chebyshev polynomials of the first 

kind,  denotes a sum whose first term is halved,   
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are unknown Chebyshev coefficients and N is chosen any positive 
integer such that . mN ≥

The rest of this paper is organized as follows. Higher-order 
linear delay equation with variable coefficients and fundamental 
relations are presented in Section 2. The new scheme is based on 
Chebyshev collocation method. The method of finding approximate 
solution is described in Section 3. To support our findings, we present 
result of numerical experiments in Section 4. Section 5 concludes this 
article with a brief summary. Finally some references are introduced 
at the end.         

2. FUNDAMENTAL RELATIONS 

Let us consider the mth-order linear delay difference equation 
with variable coefficients (1) and find the matrix forms of each term 
in the equation. First we can convert the solution   defined by a 
truncated Chebyshev series (3) to matrix forms 

)(ty

                           ,                          (4) AT )()( * tty = AT )()( * ktkty +=+
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On the other hand, it is well known (Synder, 1966), that the relation 
between the powers  and the shifted Chebyshev polynomials  
is 

nt *( )nT t

                                
,)(

2
'2 *

0

12 tT
k
n

t kn

n

k

nn
−

=

+−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ 10 ≤≤ t                         (5) 

By using the expression (5) and taking n=0,1,…,N we find the 
corresponding matrix relation as follows 

                                        (6) TTT ttandtt DTXTDX )()())(())(( ** ==

where 
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Then, by taking into account (6) we obtain 
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To obtain the matrix )( kt +X  in terms of the matrix , we can use 
the following relation: 

)(tX

X(t)= [1  t  t2… tN],  X(t+k)=[1  t+k  (t+k)2  … (t+k)N]                                              
  X(t+k)=X(t)Bk                                                                                             9) 
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Consequently, by substituting the matrix forms (7) and (8) into (4), 
we have the matrix relation of solution 

                                        (11) ADXAT 1* ))(()()( −+=+=+ Tktktkty

and by means of (4), (7) and (11), the matrix relation is 

                                                                  (12) ADBX 1)()()( −=+ T
ktkty

3. METHOD OF SOLUTION 

In this section, we consider high order linear delay equation in 
(1) and approximate to solution by means of finite Chebyshev series 
defined in (3). The aim is to find Chebyshev coefficients, which are 
the matrix A. For this purpose, substituting the matrix relations (12) 
into Eq. (1) and then simplifying, we obtain the fundamental matrix 
equation 
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Hence, the fundamental matrix equation (15) corresponding 
to Eq. (1) can be written in the form 
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Here, Eq.(16) corresponds to a system of ( 1N )+  linear 
algebraic equations with unknown Chebyshev coefficients  

. We can obtain the corresponding matrix forms for the 
conditions (2), by means of the relation (12),  
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 On the other hand, the matrix form for conditions can be written as 
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To obtain the solution of Eq. (1) under conditions (2), by 
replacing the row matrices (17) by the last m  rows of the matrix (22), 
we have the new augmented matrix, 
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If  1]~;~[~ +== Nrankrank FWW  , then we can write 

         F~)W~(A 1−=                                                                                     (24) 

Thus the matrix  (thereby the coefficients ) is 
uniquely determined. Also the Eq. (1) with conditions (2) has a 
unique solution. This solution is given by truncated Chebyshev series 
(3).  We use the relative error to measure the difference between the 
numerical and analytic solutions. The result with N=4(1)6 using the 
Chebyshev collocation method discussed in Section 2 are shown in 
Table1.  

A 0 1, , , Na a aK

   We can easily check the accuracy of the method. Since the 
truncated Chebyshev series (3) is an approximate solution of Eq.(1), 
when the solution  is substituted in Eq.(1), the resulting 
equation must be satisfied approximately, that is, for   
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and   (  positive integer). qk
qtE −≤ 10)( qk

If max 10 10qk k− −=  ( k  positive integer) is prescribed, then the 
truncation limit  is increased until the difference N ( )qE t  at each of 
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the points becomes smaller than the prescribed 10 k− . On the other 
hand, the error can be estimated by the function  

                                    
                         (26) ∑

=

−+=
m

k
kN tfktytPtE

0
)()()()(

If , when  is sufficiently large enough, then the error 
decreases. 

0)( →tEN N

4. ILLUSTRATIVE EXAMPLE 

In this section, several numerical examples are given to 
illustrate the accuracy and effectiveness properties of the method and 
all of them were performed on the computer using a program written 
in Maple9. The absolute errors in Tables are the values of 

)()( xyxy N−  at selected points. 

Example 1. Let us first consider the second order linear delay 
difference equation with variable coefficients 

                             1)(2)1()32()2()1( =++−++− ttytyttyt  
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                                             2)1(,2)0( == yy  

and seek the solution    as a truncated Chebyshev series )(ty
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So that P0(t)=2t, P1(t)=2-3t, P2(t)=t-1,  g(t)=1. Then, for N=4, the  
collocation points are 

                          t0=0, t1=1/4, t2=1/2, t3=3/4, t4=1 

and the fundamental matrix equation of the problem is defined by  

                        { }  FADXBPXBPXBP =++ −1
221100 )( T

  where P0, P1, P2, X are matrices of order (5x5) defined by 
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If these matrices are substituted in (16), it is obtained linear 
algebraic system. This system yields the approximate solution of the 
problem. In Table1, the resulting values using the present method 
together with various N and also the exact values of . 12 +−= ty t

Table 1.  Error analysis of Example 1 for the t value  

t Exact 
Solution 

 
N=4 

 
Ne=4 

Present Method 
N=5           Ne=5 

 
N=6 

 
Ne=6 

0.0 2.00000 2.00000 0.00000 2.00000 0.00000 2.00000 0.00000 

0.1 1.97177 1.96995 0.0018 1.97201 0.00034 1.97177 0.00000 

0.2 1.94870 1.94591 0.0028 1.94901 0.00031 1.94870 0.00000 

0.3 1.93114 1.92799 0.0031 1.93146 0.00032 1.93115 0.00001 

0.4 1.91951 1.91645 0.0031 1.91978 0.00027 1.91952 0.00001 

0.5 1.91421 1.91155 0.0027 1.91441 0.00020 1.91423 0.00002 

0.6 1.91572 1.91359 0.0021 1.91586 0.00014 1.91572 0.00000 

0.7 1.92450 1.92299 0.0015 1.92459 0.00009 1.92452 0.00002 

0.8 1.94110 1.94017 0.0093 1.94114 0.00004 1.94111 0.00001 

0.9 1.96607 1.96565 0.0042 1.96609 0.00002 1.96606 0.00001 

1.0 2.00000 1.99999 0.00001 1.99999 0.00001 2.00000 0.00000 

       
Fig.1. Numerical and exact solution                    Fig.2. Error function of Example1 for  
             of the Example1 for N=4,5,6                         various N.                                                                                                      
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Fig.1 shows the resulting graph of solution of Example1 for N 
= 4,5,6  and it is compared with exact solution. In Fig.2 we plot error 
function for Example1. 

Example 2. Let us find the Chebyshev series solution of the following 
first order linear delay equation  

                                 )sin()1sin()()1( tttyty −+=−+  

with . The exact solution of this problem is 
. Using the procedure in Section 3 for the interval  

and taking N=8,9 and 10 the matrices in Eq.(18) are computed. Hence 
linear algebraic system is gained. This system is approximately 
solved using the Maple9. 

1)0(,1)0( =′= yy
tty sin)( = ]1,0[∈t

We display a plot of absolute difference exact and 
approximate solutions in Fig.3. and error functions for various N is 
shown in Fig.4. The solution of the linear delay equation is obtained 
for N=8, 9, 10. The difference between the respective solutions is of 
the order of 10-6and the accuracy increases as the N is increased.            

 Table 2. Error analysis of Example 2 for the t value  

t Exact 
Solution 

    
    N=8 

  
 Ne=8 

Present Method 
     N=9         Ne=9 

 
N=10 

 
Ne=10 

0.0 0.000000 0.370E-6 0.37E-6 0.109E-6 0.10E-6 0.117E-6 0.11E-6 

0.1 0.099833 0.099801 3.20E-5 0.099821 1.20E-5 0.099791 4.30E-5 

0.2 0.198669 0.198594 7.50E-5 0.198560 1.09E-4 0.198607 6.20E-5 

0.3 0.295520 0.295402 1.18E-4 0.295256 2.64E-4 0.295467 5.31E-5 

0.4 0.389418 0.389273 1.45E-4 0.389003 4.15E-4 0.389403 1.50E-5 

0.5 0.479426 0.479284 1.42E-4 0.478931 4.95E-4 0.479458 3.21E-5 

0.6 0.564642 0.564532 1.10E-4 0.564161 4.81E-4 0.564717 7.50E-5 

0.7 0.644218 0.644152 6.60E-5 0.643842 3.76E-4 0.644311 9.32E-5 

0.8 0.717356 0.717334 2.20E-5 0.717130 2.26E-4 0.717438 8.22E-5 

0.9 0.783327 0.783330 9.30E-5 0.783243 8.40E-5 0.783372 4.51E-5 

1.0 0.841470 0.841470 0.00000 0.841467 3.00E-6 0.841468 0.20E-5 
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     Fig.3.Numerical and exact solution            Fig.4.Error function of Example2 for   
              of the Example2 for N=8,9,10               various N.                                          

Example 3. Consider another linear delay equation  

                                            tt eetyty +=++ + )2()()2(
We follow the same procedure as in Example1 to find the solution of 
delay equation with the conditions    

                                                 eyy == )1(,1)0(                                    
The exact solution of the problem is given by )exp()( tty = . For 
numerical results, see Table 3. We display a plot of absolute 
difference exact and approximate solutions in Fig.5. and error 
functions for various N  is shown in Fig.6. This plot clearly indicates 
that when we increase the truncation limit N, we have less error.            

Table 3.  Error analysis of Example 3 for the t value  
t Exact 

Solution 
    
    N=8 

  
 Ne=8 

Present Method 
     N=9         Ne=9 

 
N=10 

 
Ne=10 

0.0 1.00000 0.99999 0.00001 0.99999 0.00001 1.000000 0.00000 
0.1 1.10517 1.10495 0.00022 1.09904 0.00613 1.10473 0.00044 
0.2 1.22140 1.22115 0.00025 1.21024 0.01116 1.22099 0.00041 
0.3 1.34985 1.34982 0.00003 1.33593 0.01392 1.35016 0.00031 
0.4 1.49182 1.49214 0.00032 1.47771 0.01411 1.49328 0.00146 
0.5 1.64872 1.64939 0.00067 1.63660 0.01212 1.65133 0.00261 
0.6 1.82211 1.82305 0.00094 1.81339 0.00872 1.82549 0.00338 
0.7 2.01375 2.01475 0.00100 2.00872 0.00503 2.01724 0.00349 
0.8 2.22554 2.22638 0.00084 2.22365 0.00189 2.22843 0.00289 
0.9 2.45960 2.46009 0.00049 2.45948 0.00012 2.46126 0.00166 
1.0 2.71828 2.71827 0.00001 2.71828 0.00000 2.71828 0.00000 
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        Fig.5. Numerical and exact solution           Fig.6. Error function of of the       

                    Example 3 for N=8, 9, 10                             Example 3 for various N.                                                

Example 4. We consider another linear delay equation to demonstrate 
that the Chebyshev polynomials are powerful to approximate the 
solution to desired accuracy. The equation we consider is 

                               0)()1()1()2(2)2()3( =+−++−++ tyttyttyt  

with the conditions 

                                                 2/1)1(,0)0( == yy  

We again use Chebyshev polynomials to approximate the solution of 

problem and compare it with the exact solution given by 
1+

=
t

ty  

following the procedure given in Section 3. The comparison of the 
solutions given above with the exact solution of the problem is given 
in Table 4. We plot the approximate solutions by this method and the 
exact solution in Fig.7 and the error functions in Fig.8. 
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 Table 4. Error analysis of Example 5 for the t value  

 

t Exact 
Solution N=8 Ne=8 Present Method    

N=9            Ne=9 N=10 Ne=10 

0 0.000000 0.349E-6 0.349E-6 0.330E-7 0.331E-7 0.736E-6 0.736E-6 
0.1 0.090909 0.094226 0.003317 0.093012 0.002103 0.090332 0.000577 
0.2 0.16667 0.172692 0.006022 0.170669 0.003999 0.165128 0.001542 
0.3 0.23077 0.237849 0.007079 0.235699 0.004929 0.228341 0.002429 
0.4 0.28571 0.292247 0.006537 0.290537 0.004827 0.282772 0.002938 
0.5 0.33333 0.338277 0.004947 0.337292 0.003962 0.330370 0.002960 
0.6 0.37500 0.377987 0.002987 0.377728 0.002728 0.372454 0.002546 
0.7 0.41176 0.413010 0.001250 0.413269 0.001509 0.409911 0.001849 
0.8 0.44444 0.444540 0.000100 0.445006 0.000566 0.443360 0.001080 
0.9 0.47368 0.473384 0.000296 0.473737 0.000057 0.473260 0.000420 
1 0.50000 0.500003 0.000003 0.500003 0.000003 0.500005 0.000005 

         Fig.7.Numerical and exact solution         Fig.8.Error function of Example4  
                  of the Example4 for N=8,9,10                    for various N.                                                              

Example 5 (Sezer, 2005, Example2) 

Let us find the Chebyshev series solution of the following first order 
linear delay equation 

                                              tetyty =−+ )()1(

with conditions  1)2/1( =y
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Table 5. Absolute errors obtained for Example5 

t Exact 
Solution 

Taylor method 
N=7                  Ne=7 

Present method 
N=7                Ne=7 

0.1 0.683664 0.683668 0.400E-5 0.683663 0.100E-5 

0.2 0.751306 0.751311 0.500E-5 0.751308 0.200E-5 

0.3 0.826064 0.826069 0.500E-5 0.826068 0.400E-5 

0.4 0.908687 0.908690 0.300E-5 0.908689 0.200E-5 

0.5 1.000000 1.000000 0.000E-0 0.999999 0.100E-6 

0.6 1.100916 1.100912 0.400E-5 1.100912 0.400E-5 

0.7 1.212445 1.212438 0.700E-5 1.212438 0.700E-5 

0.8 1.335701 1.335691 0.100E-4 1.335693 0.800E-5 

0.9 1.471918 1.471904 0.140E-4 1.471911 0.700E-5 

 

 
          Fig.9. Numerical solution for                 Fig.10. Comparison of error function    
                  different method                                          for different method 

The solution of linear delay equation is obtained for N=7. For 
numerical results, see Table 5. We display a plot of Taylor matrix 
method and Exact solution for N=7 in Fig.9 and we compare errors 
Taylor matrix method and Present method for N=7 in Fig.10. It seems 
that the solutions almost identical. One can obtain a better 
approximation to the numerical solutions by adding new terms to the 
series in Eq.(3). 
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Example 6. Let us find the Chebyshev series solution of third order 
linear delay equation                                                        

1923)3(2)2(2)1()( 242 ++−=+++−+− tttttytytytyt  

with conditions 

1)1(,4/7)2/1(,2)0( −=−=−= yyy  

and the exact solution . Using the procedure in Section 3, 
we find the approximate solution of this equation for N=4 which is 
the same with the exact solution.  

22 −= ty

5. CONCLUSION 

In recent years, the studies of high order linear delay 
difference equation have attracted the attention of many 
mathematicians and physicists. The Chebyshev collocation methods 
are used to solve the high order linear delay equation numerically. A 
considerable advantage of the method is that the Chebyshev 
polynomial coefficients of the solution are found very easily by using 
computer programs. Shorter computation time and lower operation 
count results in reduction of cumulative truncation errors and 
improvement of overall accuracy. For this reason, this process is 
much faster than the other methods. Illustrative examples are 
included to demonstrate the validity and applicability of the 
technique, and performed on the computer using a program written 
in Maple9. To get the best approximating solution of the equation, we 
take more forms from the Chebyshev expansion of functions, that is, 
the truncation limit N must be chosen large enough. In addition, an 
interesting feature of this method is to find the analytical solutions if 
the equation has an exact solution that is a polynomial functions. 
Illustrative examples with the satisfactory results are used to 
demonstrate the application of this method. Suggested 
approximations make this method very attractive and contributed to 
the good agreement between approximate and exact values in the 
numerical example. 

As a result, the power of the employed method is confirmed. 
We assured the correctness of the obtained solutions by putting them 
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back into the original equation with the aid of Maple, it provides an 
extra measure of confidence in the results. We predict that the 
Chebyshev expansion method will be a promising method for 
investigating exact analytic solutions to linear delay equations. The 
method can also be extended to the system of linear delay equations 
with variable coefficients, but some modifications are required. 
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