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1. Introduction

One of the most fundamental problems in a Riemannian submanifold theory is to establish a simple sharp
relationship between intrinsic and extrinsic invariants. The main extrinsic invariants are the extrinsic normal
curvature, the squared mean curvature and the main intrinsic invariants include the Ricci curvature and
the scalar curvature. In 1979, Wintgen [27] obtained a basic inequality involving Gauss curvature K, normal
curvature K⊥ and the squared mean curvature ‖H‖2 of an oriented surface M2 in E4 , that is ,

K ≤ ‖H‖2 −
∣∣K⊥∣∣ (1.1)

with the equality holding if and only if the ellipse of curvature of M2 in E4 is a circle. The inequality (1.1), now
called Wintgen inequality, attracted the attention of several authors.

Over time P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken [11] gave a conjecture for Wintgen
inequality in an n-dimensional Riemannian submanifold Mn of a real space form Rn+p(c), namely,

ρ ≤ ‖H‖2 − ρ⊥ + c, (1.2)

where
ρ =

2

n(n− 1)

∑
1≤i<j≤n

〈R(ei, ej)ej , ei〉 , (1.3)

is the normalized scalar curvature of Mn

ρ⊥ =
2

n(n− 1)

√ ∑
1≤i<j≤n

∑
1≤α<β≤m

〈R⊥(ei, ej)uα, uβ〉2 , (1.4)

where {e1, ..., en} and {u1, ..., up} respectively orthonormal frames of tangent bundle TM and normal bundle
T⊥M and they also proved that this conjecture holds for codimension p = 2. This type of inequality later came
to be known as the DDVV conjecture. A special version of the DDVV conjecture,

ρ ≤ ‖H‖2 + c, (1.5)
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was proved by B.Y. Chen in [9]. F. Dillen, J. Fastenakels and J. Van der Veken [12] proved that DDVV conjecture
is equivalent to an algebraic conjecture. Recently DDVV-conjecture was proven by Z. Lu [19] and by Ge and Z.
Tang [15] indepently.

In recent years, I. Mihai [20] proved DDVV conjecture for Lagrangian submanifolds in complex space forms
and obtained Wintgen inequality for Legendrian submanifolds in Sasakian space forms (see [21]). On the other
hand, the product spaces Sn(c)×R and R×Hn(c) are studied to obtain generalized Wintgen inequality by
Q. Chen and Q. Cui [10]. Then J. Roth [24] extended DDVV inequality to submanifolds of warped product
manifolds R×f Mn(c). Furuhata et al. [14] studied on statistical warped product and Kenmotsu statistical
manifolds.

Nowadays, Wintgen inequality of statistical submanifolds in statistical manifolds of constant curvature has
been studied in [2], [3] and [4]. The generalized Wintgen inequality for statistical submanifolds of statistical
warped product manifolds was proved in [22]. Furthermore, in [5], the generalized Wintgen inequality for
statistical submanifolds in statistical manifolds of quasi-constant curvature was obtained. Motivated by the
studies in [22], we consider generalized Wintgen inequality for Legendrian submanifolds in almost Kenmotsu
statistical manifolds in this article.

2. Preliminaries

An almost Hermitian manifold (N2n, g, J) is a smooth manifold endowed with an almost complex structure
J and a Riemannian metric g compatible in the sense

J2X = −X, g(JX, Y ) = −g(X, JY )

for any X,Y ∈ Γ(TN). The fundamental 2-form Ω of an almost Hermitian manifold is defined by

Ω(X,Y ) = g(JX, Y )

for any vector fields X,Y on N . For an almost Hermitian manifold (N2n, g, J) with Riemannian connection∇,
the fundamental 2-form Ω and the Nijenhuis torsion of J , NJ satisfy

2g((∇XJ)Y,Z) = g(JX,NJ(Y, Z) + 3dΩ(X, JY, JZ)− 3dΩ(X,Y, Z) (2.1)

where NJ(X,Y ) = [X,Y ]− [JX, JY ] + J [X,JY ] + J [JX, Y ] (see [28]). An almost Hermitian manifold is said to
be an almost Kaehler manifold if its fundamental form Ω is closed, that is, dΩ = 0. If dΩ = 0 and NJ = 0, the
structure is called Kaehler. Thus by (2.1), an almost Hermitian manifold (N, J, g) is Kaehler if and only if its
almost complex structure J is parallel with respect to the Levi-Civita connection ∇0, that is, ∇0J = 0 ([28]).

It is known that a Kaehler manifold N2n is of constant holomorphic sectional curvature c if and only if

R(X,Y )Z =
c

4
(g(X,Z)Y − g(Y,Z)X + g(JX,Z)Y − g(JY, Z)JX + 2g(JX, Y )JZ), (2.2)

and is denoted by N2n(c) (see [28]).
Let M be a (2n+ 1)-dimensional differentiable manifold and φ is a (1, 1) tensor field, ξ is a vector field and η

is a one-form on M. If φ2 = −Id+ η ⊗ ξ, η(ξ) = 1 then (φ, ξ, η) is called an almost contact structure on M . The
manifold M is said to be an almost contact manifold if it is endowed with an almost contact structure [6].

Let M be an almost contact manifold. M will be called an almost contact metric manifold if it is additionally
endowed with a Riemannian metric g , i.e.

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2.3)

For such manifold, we have
η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0. (2.4)

Furthermore, a 2-form Φ is defined by
Φ(X,Y ) = g(φX, Y ), (2.5)

and usually is called fundamental form.
On an almost contact manifold, the (1, 2)-tensor field N (1) is defined by

N (1)(X,Y ) = [φ, φ] (X,Y )− 2dη(X,Y )ξ,
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where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X,Y ) = φ2 [X,Y ] + [φX, φY ]− φ [φX, Y ]− φ [X,φY ] .

If N (1) vanishes identically, then the almost contact manifold (structure) is said to be normal [6]. The
normality condition says that the almost complex structure J defined on M ×R

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),

is integrable.
An almost contact metric manifold M2n+1, with a structure (φ, ξ, η, g) is said to be an almost cosymplectic

manifold, if
dη = 0, dΦ = 0. (2.6)

If additionally normality conditon is fulfilled, then manifold is called cosymplectic.
On the other hand, Kenmotsu studied in [16] another class of almost contact metric manifolds, defined by

the following conditions on the associated almost contact structure

dη = 0, dΦ = 2η ∧ Φ. (2.7)

A normal almost Kenmotsu manifold is said to be a Kenmotsu manifold.

3. Statistical Manifolds

Let (M, g) be a Riemannian manifold and∇ an affine connection on M . An affine connection∇∗ is said to be
dual connection of ∇ if

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗ZY ) (3.1)

for any X,Y, Z ∈ Γ(M).The notion of “conjugate connection" is given an excellent survey by Simon [25]. In
the triple (g,∇,∇∗) is called a dualistic structure on M . It appears that (∇∗)∗ = ∇. The manifold structure of
statistical distributions was first introduced by Amari [1] and used by Lauritzen [17].

A statistical manifold (M,∇, g) is a Riemannian manifold (M, g) endowed torsion free connection ∇ such
that the Codazzi equation

(∇Xg)(Y,Z) = (∇Y g)(X,Z) (3.2)

holds for any X,Y, Z ∈ Γ(TM) (see [1]). If (M,∇, g) is a statistical manifold, so is (M,∇∗, g). For a statistical
manifold (M, g,∇,∇∗) the difference (1, 2) tensor K of a torsion free affine connection ∇ and Levi-Civita
connection ∇0 is defined as

KXY = K(X,Y ) = ∇XY −∇0
XY. (3.3)

Because of ∇ and ∇0 are torsion free, we have

KXY = KYX, g(KXY,Z) = g(Y,KXZ) (3.4)

for any X,Y, Z ∈ Γ(TM). By (3.1) and (3.3), one can obtain

KXY = ∇0
XY −∇∗XY. (3.5)

Using (3.3) and (3.5), we find
2KXY = ∇XY −∇∗XY. (3.6)

By (3.3), we have
g(∇XY, Z) = g(KXY,Z) + g(∇0

XY, Z). (3.7)

It can be also shown that any torsion-free affine connection ∇ has a dual connection given by

∇0 =
1

2
(∇+∇∗), (3.8)

where∇0 is Levi-Civita connection of the Riemannian manifold (M, g). If∇ = ∇∗ then (M,∇, g) is called trivial
statistical manifold.
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Denote by R and R∗ the curvature tensors on M with respect to the affine connection∇ and its conjugate∇∗,
respectively. Then the relation between R and R∗ can be given as following

g(R(X,Y )Z,W ) = −g(Z,R∗(X,Y )W ) (3.9)

for any X,Y, Z,W ∈ Γ(TM).
By using (3.3) and (3.5), we have

R(X,Y )Z +R∗(X,Y )Z = 2R0(X,Y )Z + 2[K,K](X,Y )Z,

where [K,K](X,Y )Z = [KX ,KY ]Z = KXKY Z −KYKXZ (see [23]).
In [29], L.Todjihounde gave a method how to establish a dualistic structure on the warped product manifold.

If we adapt this method for I ×f N , we have the following result.

Proposition 3.1 ( [29]). Let (R, dt,∇) be a trivial statistical manifold and (N, gN ,
N ∇, N∇∗) be a statistical manifold.

If the connections ∇̄ and ∇̄∗ satisfy the following relations on R×N
(a) ∇̄∂̄t ∂̄t = ∇∂t∂t = 0,

(b) ∇̄∂̄tX̄ = ∇̄X̄ ∂̄t = f ′(t)
f(t) X,

(c) ∇̄X̄ Ȳ = N∇XY − <X,Y >
f f ′(t)∂t,

and
(i) ∇̄∗

∂̄t
∂̄t = ∇∗∂t∂t = 0,

(ii)∇̄∗
∂̄t
X̄ = ∇̄∗

X̄
∂̄t = f ′(t)

f(t) X,

(iii) ∇̄∗
X̄
Ȳ = N∇∗XY −

<X,Y >
f f ′(t)∂t,

then (R×f N,<,>, ∇̄, ∇̄∗) is a statistical manifold, where X̄, Ȳ are vertical lifts of X,Y ∈ Γ(TN) and ∂̄t = ∂
∂t is

horizontal lift of ∂t and the notation is simplified by writing f for f ◦ π and gradf for grad(f ◦ π).

Assuming (R, dt,∇) is trivial statistical manifold and denoting R and R∗ are curvature tensors respect to the
dualistic structure (<,>, ∇̄, ∇̄∗) on R×N then we can give the following lemma by using Proposition 3.1. In
practise, (−) is ommited from lifts.

Lemma 3.1 ( [29]). Let (M̃ = R×f N,<,>, ∇̄, ∇̄∗) be a statistical warped product. If U, V,W ∈ Γ(N), then:
(a) R(V, ∂t)∂t = − f

′′(t)
f(t) V,

(b) R(V,U)∂t = 0,

(c) R(∂t, V )W = − f
′′(t)
f(t) < V,W > ∂t,

(d) R(V,W )U = RN (V,W )U − (f ′(t))2

(f(t))2 [< W,U > V− < V,U > W ],

and
(a∗) R∗(V, ∂t)∂t = − f

′′(t)
f(t) V,

(b∗) R∗(V,U)∂t = 0,

(c∗) R∗(∂t, V )W = − f
′′(t)
f(t) < V,W > ∂t,

(d∗) R∗(V,W )U = R∗N (V,W )U − (f ′(t))2

(f(t))2 [< W,U > V− < V,U > W ]

where R
∗N and RN are curvature tensors of N with respect to the connections N∇ and N∇∗ .

3.1. Statistical submanifolds

In this section, we will give some basic notations, formulas, definitions taken from reference [26].
Let (Mn, g) be a statistical submanifold of (M̃n+d, <,>). Then the Gauss and Weingarten formulas are given

respectively by
∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +DXξ, (3.10)

∇̃∗XY = ∇∗XY + h∗(X,Y ), ∇̃∗Xξ = −A∗ξX +D∗Xξ, (3.11)

for X,Y ∈ Γ(TM) and ξ ∈ Γ(T
⊥
M), respectively. Furthermore, the followings hold :

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗XZ),

< h(X,Y ), ξ >= g(A∗ξX,Y ), < h∗(X,Y ), ξ >= g(AξX,Y )
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and
X < ξ, η >=< DXξ, η > + < ξ,D∗Xη >

for X,Y, Z ∈ Γ(TM) and ξ, η ∈ Γ(T
⊥
M).

The mean curvature vector fields of M are defined with respect to ∇̃ and ∇̃∗ by

H =
1

n

n∑
i=1

h(ei, ei) and H∗ =
1

n

n∑
i=1

h∗(ei, ei)

where {e1, ..., en} is a local orthonormal frame of the tangent bundle TM of M . By (3.10) and (3.11), we have
2h0 = h+ h∗ and 2H0 = H +H∗, where h0 and H0 are second fundamental form and mean curvature with
respect to Levi-Civita connection ∇̃0.

Proposition 3.2 ([26]). Let (Mm, g,∇,∇∗) be a statistical submanifold of (M̃m+n, <,>, ∇̃, ∇̃∗). Denote R̃ and R̃∗ the
curvature tensors on M̃m+n with respect to connections ∇̃ and ∇̃∗. Then

< R̃(X,Y )Z,W >= gM (R(X,Y )Z,W )+ < h(X,Z), h∗(Y,W ) > − < h∗(X,W ), h(Y,Z) >, (3.12)

< R̃∗(X,Y )Z,W >= gM (R∗(X,Y )Z,W )+ < h∗(X,Z), h(Y,W ) > − < h(X,W ), h∗(Y, Z) >, (3.13)

< (R⊥(X,Y )ξ, η >=< R̃(X,Y )ξ, η > +gM ([A∗ξ , Aη]X,Y ), (3.14)

< (R∗⊥(X,Y )ξ, η >=< R̃∗(X,Y )ξ, η > +gM ([Aξ, A
∗
η]X,Y ), (3.15)

where R⊥ and R∗⊥ are curvature tensors with respect to D and D∗ and

[Aξ, A
∗
η] = AξA

∗
η −A∗ηAξ,

[A∗ξ , Aη] = A∗ξAη −AηA∗ξ

for X,Y, Z,W ∈ Γ(TM) and ξ, η ∈ Γ(T⊥M).

4. Almost Kenmotsu statistical manifolds

Definition 4.1 ([13]). Let (M, g,∇) be a statistical manifold with almost complex structure J ∈ Γ(TM (1,1)).
Denote by Ω the fundamental form with respect to J and g, that is, Ω(X,Y ) = g(X, JY ). The triplet (∇,g, J) is
called a holomorphic statistical structure on M if Ω is a ∇-parallel 2-form.

Definition 4.2 ([30]). Let (N2n, g,∇,∇∗) be a statistical manifold. If (N2n, g, J) is an almost Hermitian manifold
then (N2n, g, J,∇,∇∗) is called almost Hermitian statistical manifold. If (N2n, g, J) is an (almost) Kaehler
manifold then (N2n, g, J,∇,∇∗) is called (almost) Kaehler statistical manifold.

Lemma 4.1 ([30]). For an almost Hermitian statistical manifold we have

(∇XΩ)(Y, Z) = g((∇XJ)Y,Z)− 2g(KXJY, Z), (4.1)

and
(∇∗XΩ)(Y,Z) = g((∇∗XJ)Y, Z) + 2g(KXJY, Z) (4.2)

for any X,Y, Z ∈ Γ(TM).

Corollary 4.1 ([30]). For an almost Hermitian statistical manifold we have

(∇XΩ)(Y, Z) = (∇0
XΩ)(Y,Z)− g(KXJY + JKXY,Z) (4.3)

and
(∇∗XΩ)(Y, Z) = (∇0

XΩ)(Y,Z) + g(KXJY + JKXY,Z) (4.4)

for any X,Y, Z ∈ Γ(TM).
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By Lemma 4.1 and Corollary 4.1, we have following.

Proposition 4.1 ([13],[30].). Let (M, g,∇, J) be a holomorphic statistical manifold and KXJY + JKXY = 0 for any
X,Y ∈ Γ(TM). Then following staments are equivalent.

• (M, g,∇, J) is a holomorphic statistical manifold,
• (M, g,∇∗, J) is a holomorphic statistical manifold,
• (M, g,∇0, J) is a Kaehler manifold.

Definition 4.3. Let (M2n+1, g,∇,∇∗) be a statistical manifold. If M2n+1 is an almost contact metric manifold
then M2n+1 is called almost contact metric statistical manifold.

Corollary 4.2 ([30]). For an almost contact metric statistical manifold we have

(∇XΦ)(Y,Z) = (∇0
XΦ)(Y,Z)− g(KXφY + φKXY,Z) (4.5)

and
(∇∗XΦ)(Y,Z) = (∇0

XΦ)(Y,Z) + g(KXφY + φKXY,Z) (4.6)

for any X,Y, Z ∈ Γ(TM).

Proposition 4.2 ([30]). Let (Mn, g,∇,∇∗) be a statistical manifold and ψ be a skew symmetric (1, 1) tensor field on M .
Then we have

g(KXψY + ψKXY,Z) + g(KZψX + ψKZX,Y ) + g(KY ψZ + ψKY Z,X) = 0 (4.7)

for any X,Y, Z ∈ Γ(TM).

If we resort to the relation (4.5) and (4.7), we have

(∇XΦ)(Y,Z) + (∇ZΦ)(X,Y ) + (∇Y Φ)(Z,X) = (∇0
XΦ)(Y, Z) + (∇0

ZΦ)(X,Y )

+(∇0
Y Φ)(Z,X)

−2(g(KXφY + φKXY,Z)

+g(KZφX + φKZX,Y )

+g(KY φZ + φKY Z,X))

= (∇0
XΦ)(Y, Z) + (∇0

ZΦ)(X,Y )

+(∇0
Y Φ)(Z,X),

where U, V,W ∈ Γ(TM).
This relation shows clearly that

3dΦ(X,Y, Z) = (∇0
XΦ)(Y,Z) + (∇0

ZΦ)(X,Y ) + (∇0
Y Φ)(Z,X) (4.8)

= (∇XΦ)(Y,Z) + (∇ZΦ)(X,Y ) + (∇Y Φ)(Z,X).

Let (N,∇, g, J) be an almost Hermitian statistical manifold and (R, dt,R∇) be trivial statistical manifold. Let
us consider the warped product M̃ = R×f N , with warping function f > 0, endowed with the Riemannian
metric

<,>= dt2 + f2g.

Denoting by ξ = ∂
∂t the structure vector field on M̃ , one can define arbitrary any vector field on M̃ by

X̃ = η(X̃)ξ +X, where X is any vector field on N and dt = η. By the help of tensor field J, a new tensor field φ

of type (1, 1) on M̃ can be given by
φX̃ = JX, X ∈ Γ(TN), (4.9)

for X̃ ∈ Γ(TM̃). So we get φξ = 0, η ◦ φ = 0, φ2X̃ = −X̃ + η(X̃)ξ and < φX̃, Ỹ >= − < X̃, φỸ > for X̃, Ỹ ∈
Γ(TM̃). Furthermore, we have < φX̃, φỸ >=< X̃, Ỹ > −η(X̃)η(Ỹ ). Thus (M̃,<,>, φ, ξ, η) is an almost contact
metric manifold. By Proposition 3.1 and similar argument as in [8] we have

(∇̃X̃φ)Ỹ = (∇XJ)Y − f ′(t)

f(t)
< X̃, φỸ > ξ − f ′(t)

f(t)
η(Ỹ )φX̃. (4.10)
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Using Proposition 3.1, we get

K̃XY = KXY, K̃Xξ = K̃ξX = 0, K̃ξξ = 0,

where KXY = ∇XY −∇0
XY and K̃XY = ∇̃XY − ∇̃0

XY.
By (4.10) and (4.8), it is readily found that the relation

(∇̃X̃Φ)(Ỹ , Z̃) = f2(∇XΩ)(Y, Z)− f ′(t)

f(t)
< X̃, φỸ > η(Z̃)

−f
′(t)

f(t)
η(Ỹ )Φ(X̃, Z̃).

We thus conclude that
dΦ = f2dΩ + 2(−f

′(t)

f(t)
)η ∧ Φ (4.11)

and Proposition 3.1 leading to the following theorem.

Theorem 4.1. Let (R, dt,R∇) be a trivial statistical manifold. Then the warped product M̃ = R×f N is an almost
(− f

′(t)
f(t) )−Kenmotsu statistical manifold if and only if (N,∇, g, J) is an almost Kaehler statistical manifold. Moreover

K̃XY = KXY , K̃Xξ = K̃ξX = 0, K̃ξξ = 0, where K = ∇−∇g, and K̃ =∇̃ − ∇̃<,>.

Chosing f = const 6= 0, we have following corollary.

Corollary 4.3. Let (R, dt,R∇) be a trivial statistical manifold. Then the product manifold M̃ = R×N is an almost
cosymplectic statistical manifold if and only if (N,∇, g, J) is an almost Kaehler statistical manifold.

Using same methods as in [18], we get following proposition.

Proposition 4.3. Let M̃ = I ×f N(c) be a statistical warped product manifold and X̃, Ỹ , Z̃, W̃ ∈ Γ(M̃), where I ⊂ R
is trivial statistical manifold and N(c) is statistical complex space form. Then the curvature tensors R̃ and R̃∗ are given
by

R̃(X̃, Ỹ , Z̃, W̃ ) = R̃∗(X̃, Ỹ , Z̃, W̃ )

= [
c

4f2
− (f ′)2

f2
][< Ỹ , Z̃ >< X̃, W̃ > − < X̃, Z̃ >< Ỹ , W̃ >]

+[
c

4f2
− (f ′)2

f2
+
f ′′

f
][ < X̃, Z̃ >< Ỹ , ∂t >< W̃ , ∂t >

− < Ỹ , Z̃ >< X̃, ∂t >< W̃ , ∂t > + < Ỹ , W̃ >< X̃, ∂t >< Z̃, ∂t >

− < X̃, W̃ >< Ỹ , ∂t >< Z̃, ∂t >]

+
c

4f2
[ < X̃, φZ̃ >< φỸ , W̃ > − < Ỹ , φZ̃,>< φX̃, W̃ >

+2 < X̃, φỸ >< φZ̃, W̃ >]

and [K,K] = 0.

Remark 4.1. In [14] Furuhata et al. introduced Kenmotsu statistical manifolds. They proved that if M has a
holomorphic statistical structure, (N = R×et M,<,>, φ, ξ) is Kenmotsu manifold satisfying property K̃XY =

KXY , K̃Xξ = K̃ξX = 0, K̃ξξ = λξ then N has a holomorphic statistical structure, where λ ∈ C∞(N).

We now give a new example of a statistical warped product manifold.

Example 4.1 ([22]). We consider (R2, g̃ = dx2 + dy2) Euclidean space and define the affine connection by

∇̃2
∂
∂x

∂

∂x
=

∂

∂y
, ∇̃2

∂
∂y

∂

∂y
= 0, (4.12)

∇̃2
∂
∂x

∂

∂y
= ∇̃2

∂
∂y

∂

∂x
=

∂

∂x
.
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Then its conjugate ∇̃2∗ is given as follows;

∇̃2∗
∂
∂x

∂

∂x
= − ∂

∂y
, ∇̃2∗

∂
∂y

∂

∂y
= 0, (4.13)

∇̃2∗
∂
∂x

∂

∂y
= ∇̃2∗

∂
∂y

∂

∂x
= − ∂

∂x
.

Thus we can verify that (R2, ∇̃2, g̃) is a statistical manifold of constant curvature −1. An affine connection and
its conjugate connection are defined on (R, dt2) Euclidean space as following

∇̃1
∂
∂t

∂

∂t
= 0, ∇̃1∗

∂
∂t

∂

∂t
= −0.

On the other hand, (R×et R2, <,>= dt2 + e2t(dx2 + dy2)) is a warped product model of hyperbolic space (H̃3 =

{(x, y, z) ∈ R3 | z > 0}, g̃H̃3 = dx2+dy2+dz2

z2 ) and it has natural Kenmotsu structure. We also have (R×et R2, <,>)
is a statistic manifold with following affine connection ∇̄ ;

∇̄ ∂
∂t

∂

∂t
= 0, ∇̄ ∂

∂t

∂

∂x
=

∂

∂x
, ∇̄ ∂

∂t

∂

∂y
=

∂

∂y
,

∇̄ ∂
∂x

∂

∂t
=

∂

∂x
, ∇̄ ∂

∂x

∂

∂x
=

∂

∂y
− e2t ∂

∂t
, ∇̄ ∂

∂x

∂

∂y
=

∂

∂x
,

∇̄ ∂
∂y

∂

∂t
=

∂

∂y
, ∇̄ ∂

∂y

∂

∂x
=

∂

∂x
, ∇̄ ∂

∂y

∂

∂y
= −e2t ∂

∂t
.

5. Generalized Wintgen Inequality for (−f ′(t)
f(t)

)−Kenmotsu statistical manifold

Let M̄m be a complex m-dimensional (real 2m dimensional) almost Hermitian manifold with Hermitian
metric gM̄ and almost complex structure J and Nn be a Riemannian manifold with Riemannian metric gN .
If J(TpN) ⊂ T⊥p N , at any point p ∈ N , then is called totally real submanifold. In particular, a toatally real
submanifold of maximum dimension is called a Lagrangian submanifold.

Let Mn be a submanifold of M̃2m+1. φ maps any tangent space of Mn into the normal space, that is,
φ(TpM

n) ⊂ T⊥p M̃2m+1, for every p ∈Mn, thenMn is called anti invarant submanifold. If dim(M̃) = 2 dim(M) +
1 and ξp is orthogonal to TpM for all p ∈Mn then Mn is called Legendre submanifold.

I. Mihai, [20],[21] obtained the DDVV inequality, also known as generalized Wintgen inequality for
Lagrangian submanifold of a complex space form M̄m(4c) and Legendrian submanifolds in Sasakian space
forms,

(ρ⊥)2 ≤ (‖H‖2 − ρ+ c)2 +
4

n(n− 1)
(ρ− c) +

2c2

n(n− 1)
,

(ρ⊥)2 ≤ (‖H‖2 − ρ+ c)2 +
4

n(n− 1)
(ρ− c+ 3

4
)
c− 1

4
+

(c− 1)2

8n(n− 1)
,

respectively.
In [7], the following theorem is proved.

Theorem 5.1 ([7]). Let Mn be a Lagrangian submanifold of a holomorphic statistical space form M̄m(c). Then

(ρ⊥)2 ≥ c

n(n− 1)
(ρ− c

4
) +

c

(n− 1)2
[g(H∗, H)− ‖H‖ ‖H∗‖].

Now, we will prove Generalized Wintgen Inequality for almost (− f
′(t)
f(t) )−Kenmotsu statistical manifold.

Theorem 5.2. Let (R, dt,R∇) be a trivial statistical manifold and N(c) be a holomorphic statistical space form. If Mn is
a Legendrian submanifold of the statistical warped product manifold M̃ = R×f N(c), then we have

ρ⊥∇,∇
∗
≤ 2ρ∇,∇

∗
− 8ρ0 +

1

4f2
(2f | c | −c+ 4(f ′)2)

+4 ‖ H0 ‖2 + ‖ H ‖2 + ‖ H∗ ‖2 .
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Proof. Let Mn be an n-dimensional Legendrian real submanifold of a 2n+ 1-dimensional almost
(− f

′(t)
f(t) )−Kenmotsu statistical manifold M̃ = R×f N(c) and {e1, e2, ..., en} an orthonormal frame on Mn and

{en+1 = φe1, en+2 = φe2, ..., e2n = φen, e2n+1 = ξ} an orthonormal frame in normal bundle T⊥Mn, respectively.
By Proposition 4.3 and (3.12), we have

gM (R(X,Y )Z,W ) = < R̃(X,Y )Z,W > + < h∗(X,W ), h(Y,Z) >

− < h(X,Z), h∗(Y,W ) >

= [
c

4f2
− (f ′)2

f2
][< Y,Z >< X,W > − < X,Z >< Y,W >] (5.1)

+ < h∗(X,W ), h(Y, Z) > − < h(X,Z), h∗(Y,W ) > .

and

gM (R∗(X,Y )Z,W ) = [
c

4f2
− (f ′)2

f2
][< Y,Z >< X,W > − < X,Z >< Y,W >]

+ < h(X,W ), h∗(Y, Z) > − < h∗(X,Z), h(Y,W ) > . (5.2)

for X,Y, Z,W ∈ Γ(TM). Setting X = ei = W , Y = ej = Z in (5.1) and (5.2), we have

gM (R(ei, ej)ei, ej) = (
c

4f2
− (f ′)2

f2
)(< ej , ej >< ei, ei > − < ei, ej >< ei, ej >)

+ < h∗(ei, ei), h(ej , ej) > − < h(ei, ej), h
∗(ei, ej) > (5.3)

and

gM (R∗(ei, ej)ei, ej) = (
c

4f2
− (f ′)2

f2
)(< ej , ej >< ei, ei > − < ei, ej >< ei, ej >)

+ < h(ei, ei), h
∗(ej , ej) > − < h∗(ei, ej), h(ei, ej) > . (5.4)

Using (5.1) in (3.14), we have

< (R⊥(X,Y )U, V >=
c

4f2
(− < φX,U >< φY, V > (5.5)

+ < φX, V >< φY,U >) + gM ([A∗U , AV ]X,Y ),

If we make use of the equality (5.2) in (3.15), we obtain

< (R∗⊥(X,Y )U, V >=
c

4f2
(− < φX,U >< φY, V > (5.6)

+ < φX, V >< φY,U >) + gM ([Aξ, A
∗
η]X,Y ).

Since < R̃(X,Y )Z,W > is not skew-symmetric relative to Z and W . Then the sectional curvature on M̃ can
not be defined. But < R(X,Y )Z,W > + < R∗(X,Y )Z,W ) > is skew-symmetric relative to Z and W. So the
sectional curvature K∇,∇

∗
is defined by

K∇,∇
∗
(X ∧ Y ) =

1

2
[< R(X,Y )Y,X > + < R∗(X,Y )Y,X) >],

for any orthonormal vectors X,Y,∈ TpM , p ∈M, (see [3]).
In [3], the normalized scalar curvature ρ∇,∇

∗
and the normalized normal scalar curvature ρ⊥∇,∇

∗
are

respectively defined by

ρ∇,∇
∗

=
2

n(n− 1)

∑
1≤i<j≤n

K∇,∇
∗
(ei ∧ ej)

=
2

n(n− 1)

∑
1≤i<j≤n

(< R(ei, ej)ej , ei > + < R∗(ei, ej)ej , ei >)
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and

ρ⊥∇,∇
∗

=
1

n(n− 1)

 ∑
n+1≤α<β≤2n+1

∑
1≤i<j≤n

(< R⊥(ei, ej)eα, eβ > + < R∗⊥(ei, ej)eα, eβ >)2


1/2

,

where {e1, ..., en} and {en+1 = φe1, ..., e2n = φen, e2n+1 = ξ} are respectively orthonormal basis of TpM and
T⊥p M for p ∈M . Due to the equations (5.2) and (5.3), we obtain

ρ∇,∇
∗

=
1

2n(n− 1)

∑
i 6=j

[(
c

4f2
− (f ′)2

f2
)+ < h∗(ei, ei), h(ej , ej) >

− < h(ei, ej), h
∗(ei, ej) > +(

c

4f2
− (f ′)2

f2
)

+ < h(ei, ei), h
∗(ej , ej) > − < h∗(ei, ej), h(ei, ej) >]

= (
c

4f2
− (f ′)2

f2
) +

1

2n(n− 1)

∑
i 6=j

[< h∗(ei, ei), h(ej , ej) >

+ < h(ei, ei), h
∗(ej , ej) > −2 < h(ei, ej), h

∗(ei, ej) >]

= (
c

4f2
− (f ′)2

f2
)

+
1

2n(n− 1)

∑
i6=j

[ < h(ei, ei) + h∗(ei, ei), h
∗(ej , ej) + h(ej , ej) >

− < h(ei, ei), h(ej , ej) > − < h∗(ej , ej), h
∗(ej , ej) >

−( < h(ei, ej) + h∗(ei, ej), h(ei, ej) + h∗(ei, ej >

− < h(ei, ej), h(ei, ej) > − < h∗(ei, ej), h
∗(ei, ej) >)].

Because of 2h0 = h+ h∗ and 2H0 = H +H∗, we thus get

ρ∇,∇
∗

= (
c

4f2
− (f ′)2

f2
) +

1

2n(n− 1)

∑
i 6=j

[4 < h0(ei, ei), h
0(ej , ej)) >

− < h(ei, ei), h(ej , ej) > − < h∗(ej , ej), h
∗(ej , ej) >

−(4 < h0(ei, ej), h
0(ei, ej) > − < h(ei, ej), h(ei, ej) >

− < h∗(ei, ej), h
∗(ei, ej) >)].

ρ∇,∇
∗

= (
c

4f2
− (f ′)2

f2
) +

1

2n(n− 1)
[4n2 ‖ H0 ‖2 −n2 ‖ H ‖2 −n2 ‖ H∗ ‖2

−(4 ‖ h0 ‖2 − ‖ h ‖2 − ‖ h∗ ‖2].

Denote τ0 = h0 −H0g, τ = h−Hg and τ∗ = h∗ −H∗g the traceless part of second fundamental forms. Then we
find ‖ τ0 ‖2=‖ h0 ‖2 −n2 ‖ H0 ‖2, ‖ τ ‖2=‖ h ‖2 −n2 ‖ H ‖2 and ‖ τ∗ ‖2=‖ h∗ ‖2 −n2 ‖ H∗ ‖2. Thus, we get

ρ∇,∇
∗

= (
c

4f2
− (f ′)2

f2
) +

1

2n(n− 1)
[4n2 ‖ H0 ‖2 −n2 ‖ H ‖2 −n2 ‖ H∗ ‖2

−(4 ‖ τ0 ‖2 +4n ‖ H0 ‖2 − ‖ τ ‖2 −n ‖ H ‖2 − ‖ τ∗ ‖2 −n ‖ H∗ ‖2).

This relation gives rise to

ρ∇,∇
∗

=
c

4f2
− (f ′)2

f2

+2 ‖ H0 ‖2 − 2

n(n− 1)
‖ τ0 ‖2

−1

2
‖ H ‖2 +

1

2n(n− 1)
‖ τ ‖2 (5.7)

−1

2
‖ H∗ ‖2 +

1

2n(n− 1)
‖ τ∗ ‖2 .
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From (5.5) and (5.6), the normalized normal scalar curvature satisfies

ρ⊥∇,∇
∗

=
1

n(n− 1)


∑

1≤r<s≤n+1

∑
1≤i<j≤n

 g([A∗en+r
, Aen+s ]ei, ej) + g([Aen+r , A

∗
en+s

]ei, ej)

+ 2c
4f2 (− < φei, en+r >< φej , en+s >

+ < φei, en+s >< φej , en+r >)

2


1/2

(5.8)

By Proposition 3.1 and the equations (3.10), (3.11), we have

AξX = A∗ξX = −f
′(t)

f(t)
X . (5.9)

Hence we have

g([A∗ξ , Aen+s
]ei, ej) = g(A∗ξAen+s

ei, ej)− g(Aen+s
A∗ξei, ej)

(5.9)
= −f

′(t)

f(t)
g(Aen+s

ei, ej) +
f ′(t)

f(t)
g(Aen+s

ei, ej) (5.10)

= 0

and by using similar calculation we obtain

([Aen+r
, A∗en+s

]ei, ej) = 0. (5.11)

On the other hand, we recall
< φX, ξ >= 0. (5.12)

Using the equations (5.10), (5.11) and (5.12) in (5.8) we find that

ρ⊥∇,∇
∗

=
1

n(n− 1)


∑

1≤r<s≤n

∑
1≤i<j≤n

 g([A∗en+r
, Aen+s ]ei, ej)

+g([Aen+r , A
∗
en+s

]ei, ej)

− 2c
4f2 (δirδjs − δisδjr)

2


1/2

(5.13)

which is equivalent to

ρ⊥∇,∇
∗

=
1

n(n− 1)

{ ∑
1≤r<s≤n

∑
1≤i<j≤n

[
4g([A0

en+r
, A0

en+s
]ei, ej) + g([Aen+r

, Aen+s
]ei, ej)

+g([A∗en+r
, A∗n+ss ]ei, ej)−

2c
4f2 (δirδjs − δisδjr)

]2
}1/2

, (5.14)

where 2A0
ξr

= Aξr +A∗ξr . By the Cauchy–Schwarz inequality, we have the algebraic inequality

(λ+ µ+ ν + w)2 ≤ 4(λ2 + µ2 + ν2 + w2),∀λ, µ, ν ∈ R. (5.15)

We obtain from (5.15) that

ρ⊥∇,∇
∗
≤ 2

n(n− 1)


∑

1≤r<s≤n
(
∑

1≤i<j≤n
(16g([A0

en+r
, A0

en+s
]ei, ej)

2

+g([Aen+r
, Aen+s

]ei, ej)
2

+g([A∗en+r
, A∗n+ss ]ei, ej)

2 + c2

4f2 (δirδjs − δisδjr)2


1/2

≤ 2

n(n− 1)

 c2

4f2n
2(n− 1)2 + 1

4

n∑
r,s=1

(
m∑

i,j=1

16g([A0
ξr
, A0

ξs
]ei, ej)

2

+g([Aξr , Aξs ]ei, ej)
2 + g([A∗ξr , A

∗
ξs

]ei, ej))
2


1/2

≤ 2

n(n− 1)


c2

4f2n
2(n− 1)2

+ 1
4

n∑
r,s=1

(16‖[A0
ξr
, A0

ξs
‖2 + ‖[Aξr , Aξs ]‖2 + ‖[A∗ξr , A

∗
ξs

]‖2)


1/2

.

Now we define sets {S0
1 , ..., S

0
n}, {S1, ..., Sn}, {S∗1 , ..., S∗n} of symmetric with trace zero operators on TpM by

< S0
αX,Y >=< τ0(X,Y ), ξα >,

< SαX,Y >=< τ(X,Y ), ξα >,

< S∗αX,Y >=< τ∗(X,Y ), ξα >
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for all X,Y,∈ TpM , p ∈M . Clearly, we obtain

S0
α = A0

ξα− < H0, ξα > I,

Sα = Aξα− < H, ξα > I,

S∗α = A∗ξα− < H∗, ξα > I

and

[S0
α, S

0
β ] = [A0

ξα , A
0
ξβ

],

[Sα, Sβ ] = [Aξα , Aξβ ],

[S∗α, S
∗
β ] = [A∗ξα , A

∗
ξβ

].

Therefore, it is clear that

ρ⊥∇,∇
∗
≤ 2

n(n− 1)

{
c2

4f2
n2(n− 1)2 +

1

4

n∑
r,s=1

(16‖[S0
r , S

0
s ]‖2 + ‖[Sr, Ss]‖2 + ‖[S∗r , S∗s ]‖2)

}1/2

. (5.16)

In [19], Lu proved following theorem.

Theorem 5.3 ( [19]). For every set {B1, ..., Bn} of symmetric (n× n)-matrices with trace zero the following inequality
holds:

n∑
α,β=1

‖[Bα, Bβ ]‖2 ≤ (

n∑
α=1

‖Bα‖2)2.

By Theorem 5.3, (5.16) can be written as

ρ⊥∇,∇
∗
≤ | c |

2f
+

4

n(n− 1)

n∑
r=1

‖S0
r‖2 +

1

n(n− 1)

n∑
r=1

‖[Sr‖2 +
1

n(n− 1)

n∑
r=1

‖[S∗r‖2

≤ | c |
2f

+
4

n(n− 1)
‖ τ0 ‖2 +

1

n(n− 1)
‖ τ ‖2 +

1

n(n− 1)
‖ τ∗ ‖2 . (5.17)

Using (5.7) in (5.17), we get

ρ⊥∇,∇
∗
≤ | c |

2f
+

8

n(n− 1)
‖ τ0 ‖2 +2ρ∇,∇

∗
− 2c

4f2
+

2(f ′)2

f2
(5.18)

−4 ‖ H0 ‖2 + ‖ H ‖2 + ‖ H∗ ‖2 .

On the other hand normalized scalar curvature ρ0 of Mm with respect to Levi-civita connection ∇0 can be
obtained as

ρ0 = (
c

4f2
− (f ′)2

f2
) +

1

n(n− 1)
[n2 ‖ H0 ‖2 − ‖ h0 ‖2] (5.19)

(see [24]).
Now, if we set ‖ τ0 ‖2=‖ h0 ‖2 −n ‖ H0 ‖2 in (5.19), then we get

ρ0 = (
c

4f2
− (f ′)2

f2
)+ ‖ H0 ‖2 − 1

n(n− 1)
‖ τ0 ‖2 . (5.20)

In view of the equations (5.18) and (5.19), we have

ρ⊥∇,∇
∗
≤ 2ρ∇,∇

∗
− 8ρ0 +

1

4f2
(2f | c | −c+ 4(f ′)2)

+4 ‖ H0 ‖2 + ‖ H ‖2 + ‖ H∗ ‖2

which completes the proof.
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Corollary 5.1. Let (R, dt,R∇) be a trivial statistical manifold and N(c = 0) = Cn be a holomorphic statistical space
form. If Mn be a Legendrian submanifold of the statistical Kenmotsu manifold R×et Cn, then we get

ρ⊥∇,∇
∗
≤ 2ρ∇,∇

∗
− 8ρ0 + 4 ‖ H0 ‖2 + ‖ H ‖2 + ‖ H∗ ‖2 +1.

In this case R×et Cn is locally isometric to the hyperbolic space H2n+1(−1).

Corollary 5.2. Let (R, dt,R∇) be a trivial statistical manifold and N(c) be a holomorphic statistical space form. If Mn

be a Legendrian submanifold of the statistical cosymplectic manifold R×N(c), then we have

ρ⊥∇,∇
∗
≤ 2ρ∇,∇

∗
− 8ρ0 + 4 ‖ H0 ‖2 + ‖ H ‖2 + ‖ H∗ ‖2 +

1

4
(2 | c | −c).

Acknowledgments

The authors are grateful to the referee for his/her valuable comments and suggestions.

References

[1] Amari, S., Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics. 28 Springer, Berlin 1985.
[2] Aydın, M. E., Mihai, A. and Mihai, I., Some inequalities on submanifolds in statistical manifolds of constant curvature. Filomat 29(3)

(2015), 465-477.
[3] Aydın, M.E., Mihai, A. and Mihai I., Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant

curvature. Bull. Math. Sci. 7(1) (2017), 155-166.
[4] Aydın, M.E. and Mihai I., Wintgen inequality for statistical surfaces. Math. Inequal. Appl. 22(1)(2019), 123–132.
[5] Aytimur, H. and Özgür, C., Inequalities for submanifolds in statistical manifolds of quasi-constant curvature. Ann. Polon. Math. 121 (2018),

no. 3, 197–215.
[6] Blair D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhâuser 2002.
[7] Boyom, M. N., Aquib, M., Shahid M.H. and Jamali,M., Generalized Wintgen Type Inequality for Lagrangian Submanifolds in

Holomorphic Statistical Space Forms. Frank Nielsen • Frédéric Barbaresco (Eds.) Geometric Science of Information Third International
Conference, GSI 2017 Paris, France, November 7–9, 2017.

[8] Carriazo, A. and Perez-Garcia, M.J., Slant submanifolds in neutral almost contact pseudo-metric manifolds. Differ. Geom. Appl. 54 (2017),
71–80.

[9] Chen, B. Y., Mean curvature and shape operator of isometric immersions in real-space forms. Glasgow Math. J. 38 (1996), 87-97.
[10] Chen, Q. and Cui, Q., Normal scalar curvature and a pinching theorem in Sm × R and Hm × R. Science China Math. 54(9) (2011), 1977-

1984.
[11] De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L., A pointwise inequality in submanifold theory. Arch. Math. (Brno) 35 (1999),

115-128.
[12] Dillen, F., Fastenakels, J. and Van der Veken, J., Remarks on an inequality involving the normal scalar curvature. Pure and Applied

Differential Geometry-PADGE 2007, 83-92, Ber. Math., Shaker Verlag, Aachen, 2007.
[13] Furuhata, H., Hypersurfaces in statistical manifolds. Diff. Geom. Appl. 27 (2009), 420-429.
[14] Furuhata, H., Hasegawa, I., Okuyama, Y. and Sato, K., Kenmotsu statistical manifolds and warped product. J. Geom. 108 (2017), 1175–1191.
[15] Ge, J. and Tang, Z., A proof of the DDVV conjecture and its equality case. Pacific J. Math. 237 (2008), 87-95.
[16] Kenmotsu, K., A class of contact Riemannian manifold. Tohoku Math. Journal 24 (1972), 93-103.
[17] Lauritzen, S., Statistical manifolds. In: Amari, S., Barndorff-Nielsen, O., Kass, R., Lauritzen, S., Rao, C.R. (eds.) Differential Geometry in

Statistical Inference, 10, 163–216. IMS Lecture NotesInstitute of Mathematical Statistics, Hayward 1987.
[18] Lawn, M. and Ortega, M., A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90 (2015), 55-70.
[19] Lu, Z., Normal scalar curvature conjecture and its applications. J. Funct. Analysis 261 (2011), 1284-1308.
[20] Mihai, I., On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms. Nonlinear Anal. 95 (2014), 714-720.
[21] Mihai, I., On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms. Tohoku Math. J. 69 (2017), 43-53.
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