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Abstract. In this paper, a discrete-time prey-predator model with Allee effect is considered. The dynamical 

behavior of the model is investigated. The existence and stability conditions of the coexistence fixed point of 

the model are analyzed. By using bifurcation theory, it is shown that the model undergoes flip bifurcation. Also, 

numerical simulations are presented to support the obtained theoretical results. 

39A33, 37G35, 39A30. 
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Kesik Zamanlı Allee Etkili bir Av-Avcı Modelinin Kararlılığı ve Flip 

Çatallanması 

Özet. Bu makalede, Allee etkili kesik zamanlı bir av-avcı modeli ele alındı. Modelin dinamik davranışları 

incelendi. Modelin her iki türün bir arada olduğu denge noktasının varlığı ve kararlılık şartları elde edildi. 

Çatallanma teorisi kullanılarak, modelin flip çatallanmaya gittiği gösterildi. Elde edilen teorik sonuçların 

doğruluğunu göstermek için nümerik gösterimlere yer verildi. 

39A33, 37G35, 39A30. 

Anahtar Kelimeler: Flip Çatallanma, Kararlılık, Kesik Zamanlı Av-Avcı Modeli, Allee etkisi, Popülasyon 

Modeli. 

 

1. INTRODUCTION  

The dynamics of prey-predator interaction is an important subject in bio-mathematical literature. So, many 

researchers studied the dynamical behavior of the prey-predator system and contributed a lot to the 

improvement of these models [1-21]. In literature, many species have no overlap between generations, 

and their population evolves in discrete-time steps. These population models are expressed by difference 

equations. Moreover, discrete-time models have richer dynamics than continuous models. Therefore, the 

researchers' interest has recently increased to discrete- time systems [1-16,25]. 

In [21],  the author has considered the following continuous-time model with Allee effect on prey 

population: 

1 11 12

2 22

x(b x) x )

y(b )

dx x
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where (t)x  and y(t)  represent population densities of prey and predator at time t, respectively. , 1,2ib i 

are the intrinsic growth rate of the prey x  and predator y , , 1,2i

ii

b
i

a
  is the carrying capacity of prey 

and predator, respectively. 
12a  reflects the efficiency of every single population y   that can contribute to 

population x .  The term 
x

x 
 is Allee effect. The author investigated the local and global property of 

the fixed point of the system (1) with Allee effect on prey population [21].  

We consider discrete- time version of the system (1) with Allee effect on predator species by applying 

the forward Euler scheme as follows: 

1 1 11 12

1 2 22

(x (b x ) x )

(y b )

t t t t t t

t
t t t t

t

x x a a y

y
y y a y

m y









   

  


                                                           (2) 

where 0   is the step size, (t)x  and y(t)  represent population densities of prey and predator at time t, 

respectively. All parameters are positive constants.  The term (y)
y

f
m y




 is called Allee effect where 

m   is Allee constant [17-20].   The Allee effect is a crucial phenomenon in the biological literature. This 

effect describes as a positive relation between population density and the per capita growth rate.   Allee 

function has the following property [21]. 

 1.
'

2
(y) 0

(m y)

y
f  


 for all (0, )y  , it means that Allee effect decreases as density increases. 

2. lim (y) 1y f  , that is, the Allee effect vanishes at high densities. 

Many researchers have studied dynamical behavior of the predator-prey system with Allee effect [17-20].  

The outline of this paper is as follows. In section 2, the stability conditions of the coexistence fixed points 

are discussed. In section 3, Flip bifurcation analysis is investigated by using bifurcation theory. 

parameter is selected as a bifurcation parameter. Furthermore, direction of Flip bifurcation is obtained by 

using normal form theory [22-24]. Moreover, some numerical simulations are presented to illustrate the 

analytic finding. 

2. LOCAL STABILITY ANALYSIS  

In this section, we discuss stability conditions of the coexistence fixed point of model (2). 

Lemma 1 Assume
2

1 0( )F p p      , where 
1p  and 

0p  are two real constants and let (1) 0F  . 

Suppose that 
1  and 

2  are two roots of ( ) 0F    . Then  1 1   and 2 1  if and only if ( 1) 0F    

and 
0 1p  . 

Definition 1.  A fixed point 
* *(x , y )  is called sink if 1 1   and 2 1  , and it is locally asymptotically 

stable. 
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Theorem 1. If 
2 22b ma , the system (2)  has an only positive coexistence point 

* * 1 22 12 2 22 2 22

11 22 22

(b m) b m
E(x , y ) ( , )

b a a a a

a a a

  
  and 

* *E(x , y ) coexistence fixed point is local 

asymptotically stable if 
1 20 min{ , }     

 where 2
1 2 2

2 22 2

2

(b ma )

b

b
 

 
 and  22

2

1 22 12 2 22

2

b (b ma )

a

a a
  

 
. 

Proof:  The fixed point of the system (2) satisfy the following equations  

* * * * * *

1 11 12

*
* * * *

2 22*

( (b ) )

( b )

x x x a x a x y

y
y y y a y

m y





   

  


                                                               (3) 

It is clear that 
* * 1 22 2 2 22 2 22

11 22 22

(b m) b m
E(x , y ) ( , )

b a a a a

a a a

  
   is coexistence positive fixed point of the 

system (2) if 
2 22b a m  . The Jacobian matrix of the model (2) at 

* *E(x , y ) coexistence fixed point is 

following form: 

12

2 11 1

1

22
1

(E)
2

0 1

a

a
J



 





 
  

 
 

 
 

                                                                        (4) 

where 2
1 2 2

2 22 2

2

(b ma )

b

b
 

 
 and  22

2

1 22 12 2 22

2

b (b ma )

a

a a
  

 
.  

The characteristic equation of the matrix  (E)J  is  

                   
2

1 2 1 2

2 2 2 2
( 2 ) (1 )(1 ) 0

   
 

   
                                                                        (5)                                                                              

The two eigenvalues of (E)J are 
1

1

2
1





    and 

2

2

2
1





  .  From definition 1, we get 

1    and 

2  . This completes the proof.  

Example 1. For the parameter values 
11 12 22 1 21, 1, 1,b 1,b 2, 1.2, 0.5a a a m        and initial 

condition 
0 0(x , y ) (1.5,1.6) , the positive coexistence fixed point of the model (2) is obtained as E

* *(x , y ) (1.8,0.8) . From Figure 1, the fixed point 
* *E(x , y ) (1.8,0.8)  of the system (2) is local 

asymptotically stable for 
2 1.11111111111    which shows the correctness of the Theorem 1. 
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Figure1. A stable coexistence fixed point for the system (2). 

 

3. FLIP BIFURCATION ANALYSIS 

Theorem 2. [6,24] For the system (2), one of the eigenvalues is 1   and the other eigenvalues lie inside 

the unit circle if and only if 

a)
1 0(1) 1 p 0F p      

b)
1 0( 1) 1 0F p p       

c)
1 01 0D p      

d) 
1 01 0.D p     

Lemma 2. (Eigenvalue Assignment). Let 
12 22a ma  and 

10 2   . If  
2F   then the eigenvalue 

assignment condition of Flip Bifurcation in Theorem 2. 

Proof. From characteristic equation (5), we can write  

1

2 1

2 2
2p

 

 
                                                                                (6) 

0

2 1

2 2
(1 )(1 )p

 

 
   .                                                                     (7) 

Condition (a) of theorem 2 gives the inequality 

2

1 2

4
(1) 0F



 
                                                                          (8) 

which always satisfied since 
1 20, 0    and 0.    
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2

2 1 1 2

4 4 4
( 1) 4 0F

  

   
                                                            (9) 

which gives 
*

1 1   and 
*

1 2  . 

From condition (c) of theorem 1, we get the inequality 

2

1 2 2 1
1

1 2

2( 2 )
0D

    

 

   
   .                                              (10) 

Eq.(10)  leads to 
2

1 2 1 22 ( )        which is always satisfied. 

1 2
1

1 2

2 ( 2 )
0D

   

 

  
                                                           (11) 

which leads to 1 20
2

 



   .  

Now, it is easy to see that the Jacobian matrix J have the eigenvalues 
1 1    and 

* 2
2

1

2
( ) 1


 


   

which show the correctness Lemma 2. 

To compute the coefficients of the normal form, we convert the origin of the coordinates to coexistence 

fixed point 
* * 1 22 12 2 22 2 22

11 22 22

(b m) b m
E(x , y ) ( , )

b a a a a

a a a

  
  by the change of variables  

*

*

x x X

y y Y

 

 
        .                                                                (12) 

Then, this system can be rewritten in the form 

4

1

1 1
JX (X ,X ) C(X ,X ,X ) O(X )

2 2
t t t t t t t tX B      

where  

*( )J J 
 

And the multilinear functions B and C are defined by 

22

0

, 1

( ,0)
(x, y) , 1,2i

i j k

j k j k

F
B x y i



 





 

 
  

and  
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32

0

, , 1

( ,0)
(x, y,z) z , 1,2i

i j k l

j k l j k l

F
C x y i



  





 

  
  

The values of B and C of the system can be obtained as 

6 4 2 2

2 2 22
1 2 26

2

2 ( b b a m )
(x, y)

b
B x y

  
  , 

2(x, y) 0B  , 

4 2

22
1 2 2 23

2

6
(x, y, z)

a m
C x y z

b

 
  
 

 

2(x, y,z) 0C   

and 
2   . 

We know that 
2J( )  has eigenvalue 

1 2( ) 1    , and the corresponding eigenspace 
cE   is one-

dimensional and spanned by an eigenvector 
2q R  such that 

2J( )q q   . Let
2p R  be the adjoint 

eigenvector, that is, 
2J ( )p .t p    By calculation we obtain  

(1,0)Tq , 

2 1 11

12 1

( )a
( ,1)

a

Tp
 




. 

In order to normalize p   with respect to ,q  we denote 

1 2

2 1 11

(1, )
( )a

Ta
p



 



  . 

To determine the direction of the flip bifurcation, the sign of the critical normal form coefficient (0)c  is 

computed by the below formula: 

11 1
(0) , (q,q,q) ,B(q,(J I) B(q,q)) .

6 2
c p C p          (12) 

From the above analysis, we give below theorem. 

Theorem 3.  Suppose that 
* *E(x , y ) is a positive coexistence fixed point of the system (2). Lemma 2 holds 

and c(0) 0 , then system (2) undergoes a flip bifurcation at the fixed point 
* *E(x , y )  when the 

parameter   varies in a small neighborhood of 
2 . Moreover, if c(0) 0 (respectively, c(0) 0 ), then 

the period-2 orbits that bifurcate from 
* *E(x , y )are stable (respectively, unstable). 
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Example 2. Taking parameters 
11 12 22 1 21, 1, 1,b 1,b 2, 1.2a a a m      , the coexistence fixed 

point of the system (2) is obtained as 
* *(x , y ) (1.8,0.8) . The critical value of Flip bifurcation point is 

obtained as 
2 1.11111111111.F     The Jacobian matrix 

2( )J   of the system (2) is given; 

2

1 2
( )

0 0.6444444444
J 

 
  
 

. 

The characteristic polynomial of the system (2) at the coexistence fixed point 
* *(x , y ) (1.8,0.8)  is 

written by  

2( ) +0.3555555556 0.6444444444F      

The eigenvalues of the system (2) are 
1 1   and

2 0.6444444444  <1.  Moreover, 

(1) 0.7111111116F  >0,   ( 1) 0,F    
1 10.3555555556 0, 1.6444444444 0.D D       This 

verifies Theorem 2.  Also, the eigenvectors 
2,p Rq   corresponding to 

1 2( ) 1     are  

(1,0)Tq  

and  

(-0.8222222222,1)Tp . 

To achieve the necessary normalization , 1p q  , we get 

(1,0)Tq  , 

(0.9999999998,-1.216216216)Tp  . 

By using the formula (12), the critical norm form coefficient (0)c  0.36452221>0.  Therefore, a unique 

and stable period-two cycle bifurcation from 
* *(x , y ) (1.8,0.8)  for 

2 1.111111111.      In Figure 

2, the phase portraits of the system (2) for different values of the    are given. It is clear that system (2) 

undergoes Flip bifurcation in critical value of 
F =1.11111111 parameter. 
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Figure 2. Phase portrait for different values of   parameter.  

 

4.  CONCLUSION 

In this study, the dynamics of a discrete-time prey-predator model with Allee effect has been investigated. 

Local stability conditions of the coexistence fixed point of the model are analyzed. It is shown that Flip 

bifurcation has been observed in the presented model. The parameter   is selected as a bifurcation 

parameter. When   reaches to 1,11111111111F  , the system (2) goes a flip bifurcation (see Figure 

2).  So, we can say that  parameter has a strong effect on the system.  
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