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Abstract. In this paper, the inverse spectral problems of Sturm-Liouville operators are considered. Some new
uniqueness theorems and analogies of the Mochizuki-Trooshin Theorem are proved.
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Sturm-Liouville Operatorleri icin Mochizuki-Trooshin Teoremi Uzerine

Ozet. Bu makalede, Sturm-Liouville operatérlerinin ters spektral problemleri ele almmistir. Bazi yeni teklik
teoremleri ve Mochizuki-Trooshin teoreminin benzetimleri ispatlanmistir.

Anahtar Kelimeler: Ters spektral problem, Sturm-Liouville denklemi.

1. INTRODUCTION
We consider the classical Sturm-Liouville problem L = L(g(x),h,H)

-y"+q(x)y =2~y
»'(0)—hy(0)=0

y'()+Hy(1)=0

where h,H € R, Ais a spectral parameter and g(x) € L,(0,1). The spectrum of such problems consists

of countable many real eigenvalues, which have no finite limit point.

The inverse spectral problem for L is to determine the potential function g(x) from some given data. The

first result on this area is given by Ambarzumian [1]. Borg [2] showed that generally a single spectrum is
insufficient to determine the potential. Levinson [9] showed that if the potential g(x)is symmetric,

q(x)=¢q(1—x),then it is determined uniquely by a single spectrum. Later Gelfand and Levitan [3]

proved that the eigenvalues and normalizing coefficients uniquely determine the potential ¢(x).
Hochstadt and Lieberman [7] proved that a single spectra and the potential on the interval [1/2,1]

uniquely determine the potential ¢(x) on the whole interval [0,1].
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In 2001, Mochizuki and Trooshin [5] proved a uniqueness theorem for interior spectral data of the Sturm-
Liouville operator. They used similar techniques in [7]. This kind of problems for the Sturm-Liouville
operator were formulated and studied in [12-19].

Together with L, we consider a boundary value problem L = L((}(x), h,H) of the same form but with a
different coefficient (} We agree that if a certain symbol s denotes an object related to L , then s will

denote an analogous object related to L. The eigenvalues and the corresponding eigenfunctions of the

problem L are denoted by A and ¢, (x)=@(x,A,), respectively.

The statement of Mochizuki and Trooshin theorem is as following:

Theorem 1.1. [5] Iffor every n=0,1,2,... we have

_7 0,0/2) _¢,(/2)
T 9,(1/2)  @,(1/2)

4)

then q(x) = &(x) almost everywhere on [0,1].

The purpose of the present study is to prove some analogies of this theorem and new uniqueness theorems
for inverse Sturm-Liouville problems.

In the second section, we give some preliminaries. Section 3 contains new uniqueness theorems and
alternative proofs for Mochizuki-Trooshin theorem and Levinson’s theorem.

2. PRELIMINARIES

We shall first mention some known results which will be needed later. Let ¢(x,A) be the solution of

equation (1) satisfying the initial conditions,
¢(0,4)=1, ¢'(0,A)=h. (5)

We need specifically to focus on the properties of @(1/2,A). It is known that, [4,8,17,18] for each

x €[0,1], (x,A) and @'(x,A)are entire functions of A and there exist some constants ¢,,c, >0 such

that @(1/2,1)and ¢'(1/2,A) are all bounded by c, exp(c, |l|l/2). For|l| — oo uniformly with respect
to x €[0,1],

o(x,A)=cos px+O( XpTY

)

@'(x,A)=—psin px+O(exprx).

(6)

Here p = JA and 7 = |Im p|. The function
o(2)=¢'(L,A)+Ho(l,2)

is entire in A and it has an at most countable set of zeros, {ln } Denote

G, ={p:|p—kn|=8,k=0,%1,42,..},5 > 0.
We have that [8]
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|a)(l)| > Cy |p|exp1 (7
for p € Gy,

p| > p* and sufficiently large p*. The Weyl m_ function is defined by:

m_(a,A) = _e@r)
¢'(a,2)

where a €[0,1]. The following Marchenko’s uniqueness theorem [6] is also necessary
for our analysis.

Theorem 2.1. [6] The Weyl m_(a,A) function uniquely determines h as well as q(x) almost

everywhere on [0, a].

3. UNIQUENESS THEOREMS
Here we provide an alternative proof for Mochizuki and Trooshin theorem.

Proof of the Theorem 1.1. Consider the initial-value problems:

—@"+q(x)p =A@ ®)
p(0)=1,0'0)=h
and
_N n, -~ -~ — AN
P"+q(x)p =21 )

9(0)=1'(0)=h.
The functions @(x,A) and ¢@'(x, A) satisfy

0(0,1)p'(0,4)— (0, 1)p'(0,1) = 0.

Multiplying (8) by g?)(x, A)and (9) by @(x, 1), subtracting, and integrating from Oto 1/2, we obtain

172

S = [(2G)=a(0) p(x, p(x, A)dx = p(1/ 2, ) (1/2,2) = p(1/ 2, )'(1/ 2, 1), (10)

The conditions of the theorem imply

J(4,)=0.

A
Define h(A) = %, which is an entire function. From the asymptotics (6) and (7) for f(A4)and
0]

h(L) = o(i]
||

for large | p|. Thus, by Liouville’s theorem, we obtain for all A,

w(A), we see that
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h(A) =0
or
f(A)=0.

From (10), we have that

o(1/2,4) _ o(1/2,4)
9'(1/2.4) @'(1/2,A)

and hence
m (1/2,2)=m_(1/2,2).

By Theorem 2.1, we prove ¢g(x) = &(x) almost everywhere on [0,1/2].

To prove that g(x) = &(x) almost everywhere on [1/2,1], we will consider the supplementary problem

L:
—y"+q(-x)y =21y
y'(0)-Hy(0)=0
y'(H)+hy(1)=0.

Since @, (1-x) = g_on (x), the assumption conditions in Theorem 1.1 are still satisfied. If we repeat the

above arguments then this yields g(1—-x) = é(l —x) on [0,1/2], thatis g(x) = &(x) almost everywhere
on [1/2,1]. This completes the proof. i

By the remark to proof of Theorem 1, we have proved the following result:

Corollary 3.1. Let f(1)=0 forall A. If for every n=0,1,2,... we have

A=A,

then q(x) = &(x) almost everywhere on [0,1].

Let L, :

—y"+q(x)y=~1y

y'(0)=hy(0)=0

y'Q)+hy(1)=0.

Here we provide an alternative proof for the following Levinson's theorem [9].

Theorem 3.2. [9] If g(x) = q(1—x) then the function q(x)and h are uniquely determined by the
spectrum of problem L,,.
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Proof. Applying the same arguments as that in the proof of Theorem 1.1, we can see that
1/2

S =2 (400 -4 Jp(x. (. A)dx =0

and hence
1/2

£ =2[ (400 =) Jo(x, 2, )0(x, 2,)dx = 0.
We obtain for all A,
FA)=01/2,)0'1/2,2)—p(1/2,)p'(1/2,1) =0

Thus we arrive at
m (1/2,2)=m_(1/2,2).
By Theorem 2.1, the proof is complete. m|

Let us consider the following Sturm-Liouville problems

-y"+q(x)y =21y (11)
¥(0)=y(1/2)=0 (12)
»(0)=y'(1/2)=0. (13)

Let { u, }j: ,and {Un }j: , be the spectra of the problems (11), (12) and (11), (13), respectively. Consider

the problem: given three spectra {l }:; 0? { u, }10 and {Un }10 determine g(x). Knowledge of { u, }OO

n n=0
and {Un }10 is equivalent to the knowledge of g(x)on [0,1/2]. Thus this problem is the Hochstadt-

n

Lieberman problem in [7]. Now consider the problem: given { A, }:): 0 C {{ v, }f: 0 U { un} O} determine

q(x). In this case, only spectra {ln}:; , uniquely determine the potential g(x) on the whole [0,1]. We

can give the following uniqueness theorem.
Theorem 3.3. Let {ln}:):o (- {{Un }::o U{,un}:ozo} and {Z}io c {{UNn}OOO U{/AJ;}OOO}. If for every

n=0,1,... we have

A=A,

n n

then q(x) = &(x) almost everywhere on [0,1].

Proof. As in the proof of Theorem 1.1, we can show that
172

S = [ (4G =) p(x, p(x, A)dx = p(1/ 2, M) (1/2,2) = p(1/ 2, 1)'(1/ 2, 1),

To prove, as in the Corollary 3.1, it suffices to show that f(1) =0 for all A. The assumptions of the
theorem imply that

0,(1/2,2)=0 or ¢' (1/2,2)=0 and ¢,(1/2,A)=00r @' (1/2,A)=0.
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Hence, we have

f(4,)=0.
Thus, repeating the proof Theorem 1.1, we arrive at
f(A1)=0,

which implies that

m (1/2,2)=m_(1/2,2)
and g(x) = &(x) almost everywhere on [0,1/2]. The supplementary problem L in proof of Theorem
1.1 completes the proof. |

Let us define

1/2

2(p) = [ (4(x)=q(0) p(x. D)p(x, Ddx = p(1/ 2, 1)1/ 2, 1)~ p(1/ 2, 1)'(1/ 2, 1) (14)

where p = \/E . The asymptotics (6) imply that the entire function g(p) is a function of exponential type

<1. As shown by the above discussion, let g(p) =0 then only spectra{ln }:; , uniquely determine the

potential g(x)on [0,1]. We now consider the problem: If the zeros of an entire function of exponential

type are known to include a given sequence of positive real numbers what can be said about growth of
the function. The first result of this type is given by Carlson's Theorem. This theorem [11, p.153] says, if
g is entire function of exponential type <7 and vanishes on the positive integers then g vanishes

everywhere. This

idea has been further developed by Rubel [10, p.422]:

Theorem 3.4. [10] Let p=t+it and Q2= {pn P =P, 27 >0,p, >0,ne Z+}. In order to each

entire function g(p) satisfying

g(p)=0()exp(alp), a<oo (15)
g(it)=0()exp(blz|), b<s (16)
g(p,)=0 (17)
vanish identically, it is sufficient that
ot 0 1 o
inf lim sup(In p) z —=L(Q2)=>—. (18)
p>1 k—>o on<pk pn T

Here, L(Q) is the logarithmic block density of €.

We turn repeat that equation (14). From asymptotics (6), the entire function

172

g(0)= [ (40)~g() (. )p(x, A)dx

0
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satisfies (15) and (16). Also we have that

pn+]_pn >0

where /4, = p,. In this case, we can give a uniqueness theorem by using Theorem 3.4.

Theorem 3.5. Let Ac NuU {0} be a subset of nonnegative integer numbers and let Q) == {ln }nEA bea

part of the spectrum of L such that the numbers \/Tn = p, satisty (18) for function g(p). If for ne€ A,

we have

7oL/ _9'\,0/2)
T 9,172 @,(1/2)

then q(x) = &(x) almost everywhere on [0,1].

Proof. As in the proof of Theorem 1, we obtain

1/2

2(p) = [ (4(x)= () Jp(x, p(x, A)dx = p(1/ 2, )1/ 2, 1)~ p(1/ 2, 1)p'(1/ 2, 2).

The assumptions of the theorem imply

g(p,)=0, neA.

By the Theorem 3.4, we have that
g(p)=0

on the whole p -plane. Thus, @(x,4)and g?)(x, A) satisfy

o(1/2,)0'(1/2,)—(1/2,)9'(1/2,2)=0
and hence

m (1/2,2)=m_(1/2,2).

By the Theorem 2.1, we prove g(x) = &(x) almost everywhere on [0,1/2]. Repeating the supplementary
problem in the last part of proof of Theorem 1.1, we can show that g(p) =0 on the whole p -plane,
which implies that g(x) = &(x) on [1/2,1] and consequently, g(x) = &(x) almost everywhere on [0, 1].

This completes the proof. |

Let us consider the Sturm-Liouville problem L for g(x) e L,(0,1). Horvath [15, 19, p.268] proved

Hochstadt-Lieberman type an uniqueness theorem by using simple closedness properties of the
exponential system corresponding to the known eigenvalues. We can give the following uniqueness
theorem with same arguments in [15] for Mochizuki-Trooshin type theorem.
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Theorem 3.6. Let A NU {0} be a subset of nonnegative integer numbers and let Q) = {/I”}nEA be

a part of the spectrum of L such that the system of functions { cos2 pnx}n
If for ne A, we have

is complete in L,(0,1/2).

eA

7oL/ _9'\0/2)
T 9,(1/2)  @,(1/2)

then q(x) = &(x) almost everywhere on [0,1].

Proof. As in the proof of Theorem 1, we can show that

172

S = [ (4G =) p(x, p(x, A)dx = p(1/ 2, ) (1/2,2) = p(1/ 2, )p'(1/ 2, 1),

Hence, we have that
F(A)=0, neA. (19)

The following representation holds [4,6,8]
o(x,A) =cos px+ jiK(x, t)cos ptdt
0
where K (x,t)is a continuous function which does not depend on A. Hence,
o(x, A)q;(x, A)= %(1 +cos2px+ I K, (x,t)cos ptdt] (20)
0

where K, (x,t)is a continuous function which does not depend on A. From (19) and (20), we have

lf P(x) + lj.2 K (x, t)¢(t)dt} cos2p, xdx + Tqﬁ(x)dx =0, neA,

0

where ¢(x) =q(x)— &(x) By the Riemann-Lebesgue lemma,

172

[ p(0)ax=0.

By the completeness of the functions { cos?2 pnx} _, We have

n

172

)+ [ K, (x,)p(0)dt = 0.
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Since this homogeneous integral equation has only the trivial solution it follows that and g(x) = &(x)

almost everywhere on [0,1/2]. The supplementary problem L in proof of Theorem 1.1 completes the

proof. O
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