
 

  
 

Cumhuriyet Science Journal 
CSJ 

 

 
 

  
  

e-ISSN: 2587-246X 
  ISSN: 2587-2680 Cumhuriyet Sci. J., Vol.40-1(2019) 108-116  

 

* Corresponding author. Email address:  iadalar@cumhuriyet.edu.tr 
http://dergipark.gov.tr/csj     ©2016 Faculty of Science, Sivas Cumhuriyet University 

 

On Mochizuki-Trooshin Theorem for Sturm-Liouville Operators 

İbrahim ADALAR  

Sivas Cumhuriyet University Zara Veysel Dursun Colleges of Applied Sciences Zara/Sivas, TURKEY 

Received: 14.10.2018; Accepted: 02.01.2019 http://dx.doi.org/10.17776/csj.470328 
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Sturm-Liouville Operatörleri için Mochizuki-Trooshin Teoremi Üzerine 
Özet. Bu makalede, Sturm-Liouville operatörlerinin ters spektral problemleri ele alınmıştır. Bazı yeni teklik 
teoremleri ve Mochizuki-Trooshin teoreminin benzetimleri ispatlanmıştır. 

Anahtar Kelimeler: Ters spektral problem, Sturm-Liouville denklemi. 
 
1. INTRODUCTION 

We consider the classical Sturm-Liouville problem ( ( ), , )L L q x h H  

'' ( )y q x y y                                                              (1) 

'(0) (0) 0y hy                                                             (2) 

'(1) (1) 0y Hy                                                              (3) 

where , ,h H    is a spectral parameter and 1( ) (0,1).q x L  The spectrum of such problems consists 
of countable many real eigenvalues, which have no finite limit point.  

The inverse spectral problem for L is to determine the potential function ( )q x from some given data. The 
first result on this area is given by Ambarzumian [1]. Borg [2] showed that generally a single spectrum is 
insufficient to determine the potential. Levinson [9] showed that if the potential ( )q x is symmetric, 

( ) (1 ),q x q x  then it is determined uniquely by a single spectrum. Later Gelfand and Levitan [3] 
proved that the eigenvalues and normalizing coefficients uniquely determine the potential ( ).q x  
Hochstadt and Lieberman [7] proved that a single spectra and the potential on the interval [1 / 2,1]  
uniquely determine the potential ( )q x on the whole interval [0,1] . 
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In 2001, Mochizuki and Trooshin [5] proved a uniqueness theorem for interior spectral data of the Sturm-
Liouville operator. They used similar techniques in [7]. This kind of problems for the Sturm-Liouville 
operator were formulated and studied in [12-19]. 

Together with ,L we consider a boundary value problem  ( ( ), , )L L q x h H  of the same form but with a 

different coefficient .q  We agree that if a certain symbol s  denotes an object related to L , then s  will 

denote an analogous object related to .L  The eigenvalues and the corresponding eigenfunctions of the 
problem L  are denoted by n  and  ( ) ( , ),n nx x   respectively.  

The statement of Mochizuki and Trooshin theorem is as following: 

Theorem 1.1.  [5]   If for every 0,1,2,n     we have  

,n n     



' (1 / 2) ' (1/ 2)
(1/ 2) (1/ 2)

n n

n n

 
 

                                                   (4) 

then ( ) ( )q x q x  almost everywhere on [0,1].   

The purpose of the present study is to prove some analogies of this theorem and new uniqueness theorems 
for inverse Sturm-Liouville problems.  

In the second section, we give some preliminaries. Section 3 contains new uniqueness theorems and 
alternative proofs for Mochizuki-Trooshin theorem and Levinson’s theorem.  

2. PRELIMINARIES 

We shall first mention some known results which will be needed later. Let ( , )x   be the solution of 
equation (1) satisfying the initial conditions, 

(0, ) 1,    '(0, ) .h                                                           (5) 

We need specifically to focus on the properties of (1/ 2, ).   It is known that, [4,8,17,18] for each 

[0,1],x ( , )x   and '( , )x  are entire functions of  and there exist some constants 1 2, 0c c   such 

that (1 / 2, )  and '(1/ 2, )  are all bounded by 1/2
1 2exp( ).c c   For    uniformly with respect 

to [0,1],x              

exp( , ) cos ( )

'( , ) sin (exp ).

xx x O

x x O x

  


    

 

  
                                        (6) 

Here    and Im .   The function 

( ) '(1, ) (1, )H        

is entire in   and it has an at most countable set of zeros, .n  Denote 

 : , 0, 1, 2, , 0.G k k             

We have that [8] 



 

  

110 Adalar / Cumhuriyet Sci. J., Vol.40-1 (2019)  

( ) expC                                                              (7) 

for ,G  *   and sufficiently large *.  The Weyl m  function is defined by: 

( , )( , )
'( , )
am a
a

 
     

where [0,1].a  The following Marchenko’s uniqueness theorem [6] is also necessary 

for our analysis. 

Theorem 2.1.  [6]   The Weyl ( , )m a   function uniquely determines h as well as ( )q x  almost 

everywhere on [0, ].a   

3. UNIQUENESS THEOREMS  

Here we provide an alternative proof for Mochizuki and Trooshin theorem. 

Proof of the Theorem 1.1. Consider the initial-value problems: 

'' ( )
(0) 1, '(0)

q x
h

  
 
  

 
                                                           (8) 

and 
   

 
'' ( )

(0) 1, '(0) .

q x

h

  

 

  

 
                                                          (9) 

The functions ( , )x   and '( , )x  satisfy 

 (0, ) '(0, ) (0, ) '(0, ) 0.          

Multiplying (8) by ( , )x  and (9) by ( , ),x  subtracting, and integrating from 0 to 1/ 2,  we obtain 

    
1/2

0

( ) ( ) ( ) ( , ) ( , ) (1 / 2, ) '(1 / 2, ) (1/ 2, ) '(1 / 2, ).f q x q x x x dx                            (10) 

The conditions of the theorem imply 

( ) 0.nf    

Define 
( )( ) ,
( )

fh 
 

  which is an entire function. From the asymptotics (6) and (7) for ( )f  and 

( ),   we see that 

1( )h O


 
   

 
 

for large .  Thus, by Liouville’s theorem, we obtain for all ,   
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( ) 0h    
or 

( ) 0.f    
From (10), we have that 




(1/ 2, ) (1/ 2, )
'(1/ 2, ) '(1/ 2, )

   
   

  

and hence 
(1/ 2, ) (1/ 2, ).m m    

By Theorem 2.1, we prove ( ) ( )q x q x  almost everywhere on [0,1 / 2].   

To prove that ( ) ( )q x q x  almost everywhere on [1 / 2,1],  we will consider the supplementary problem 

L : 

'' (1 )y q x y y     

'(0) (0) 0y Hy   

'(1) (1) 0y hy  . 

Since (1 ) ( ),nn x x    the assumption conditions in Theorem 1.1 are still satisfied. If we repeat the 

above arguments then this yields (1 ) (1 )q x q x    on [0,1 / 2],  that is ( ) ( )q x q x  almost everywhere 
on [1 / 2,1].  This completes the proof.                                       

By the remark to proof of Theorem 1, we have proved the following result:   

Corollary 3.1.  Let ( ) 0f    for all .  If for every 0,1,2,n     we have  

,n n   

then ( ) ( )q x q x  almost everywhere on [0,1].   

Let 0 :L   

'' ( )y q x y y    

'(0) (0) 0y hy   

'(1) (1) 0y hy  . 

Here we provide an alternative proof for the following Levinson's theorem [9].   

Theorem 3.2. [9]   If ( ) (1 )q x q x   then the function ( )q x and h are uniquely determined by the 

spectrum of problem 0.L   
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Proof.  Applying the same arguments as that in the proof of Theorem 1.1, we can see that 

  
1/2

0

( ) 2 ( ) ( ) ( , ) ( , ) 0f q x q x x x dx        

and hence 

  
1/2

0

( ) 2 ( ) ( ) ( , ) ( , ) 0.n n nf q x q x x x dx        

We obtain for all ,   
 ( ) (1 / 2, ) '(1 / 2, ) (1/ 2, ) '(1/ 2, ) 0f             

Thus we arrive at 
(1/ 2, ) (1/ 2, ).m m    

By Theorem 2.1, the proof is complete.                                                                                          

Let us consider the following Sturm-Liouville problems 

'' ( )y q x y y                                                                 (11) 

(0) (1 / 2) 0y y                                                               (12) 

(0) '(1 / 2) 0y y  .                                                            (13) 

Let   0n n
 


and   0n n

 


 be the spectra of the problems (11), (12) and (11), (13), respectively. Consider 

the problem: given three spectra   0
,n n

 

   0n n
 


 and   0n n

 


 determine ( ).q x  Knowledge of   0n n

 


 

and   0n n
 


is equivalent to the knowledge of ( )q x on [0,1 / 2].  Thus this problem is the Hochstadt-

Lieberman problem in [7].  Now consider the problem: given       0 0 0n n nn n n    

  
  determine 

( ).q x  In this case, only spectra   0n n
 


 uniquely determine the potential ( )q x  on the whole  0,1 .  We 

can give the following uniqueness theorem. 

Theorem 3.3.   Let       0 0 0n n nn n n    

  
  and       0 0 0

.n n nn n n
  

 

  
   If for every 

0,1,n     we have  
,n n   

then ( ) ( )q x q x  almost everywhere on [0,1].   
 
Proof.  As in the proof of Theorem 1.1, we can show that 

    
1/2

0

( ) ( ) ( ) ( , ) ( , ) (1 / 2, ) '(1 / 2, ) (1/ 2, ) '(1 / 2, ).f q x q x x x dx                 

To prove, as in the Corollary 3.1, it suffices to show that ( ) 0f   for all .  The assumptions of the 
theorem imply that 

(1/ 2, ) 0n n    or ' (1 / 2, ) 0n n    and  (1/ 2, ) 0n n   or  ' (1/ 2, ) 0.n n    
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Hence, we have  

( ) 0.nf    
Thus, repeating the proof Theorem 1.1, we arrive at 

( ) 0,f    
which implies that 

(1/ 2, ) (1/ 2, )m m    

and ( ) ( )q x q x  almost everywhere on [0,1 / 2].  The supplementary problem L  in proof of Theorem 
1.1 completes the proof.                                                                                                  

Let us define 

    
1/2

0

( ) ( ) ( ) ( , ) ( , ) (1/ 2, ) '(1/ 2, ) (1/ 2, ) '(1/ 2, )g q x q x x x dx                                (14) 

where .   The asymptotics (6) imply that the entire function ( )g  is a function of exponential type 

1.  As shown by the above discussion, let ( ) 0g   then only spectra  0n n
 


 uniquely determine the 

potential ( )q x on [0,1].  We now consider the problem: If the zeros of an entire function of exponential 
type are known to include a given sequence of positive real numbers what can be said about growth of 
the function. The first result of this type is given by Carlson's Theorem. This theorem [11, p.153] says, if 
g is entire function of exponential type   and vanishes on the positive integers then g vanishes 
everywhere. This 

idea has been further developed by Rubel [10, p.422]: 

 

Theorem 3.4. [10]   Let t i    and  1: 0, 0, .n n n n n     
        In order to each 

entire function ( )g   satisfying 

( ) (1) exp( ),g O a   a                                                         (15) 

( ) (1) exp( ),g i O b  b                                                        (16)  

( ) 0ng                                                                                            (17) 
vanish identically, it is sufficient that 

1

1

1inf lim sup(ln ) ( ) .
n

k pk n

L







 


 


                                             (18) 

Here, ( )L  is the logarithmic block density of .   

We turn repeat that equation (14). From asymptotics (6), the entire function 

  
1/2

0

( ) ( ) ( ) ( , ) ( , )g q x q x x x dx       
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satisfies (15) and (16). Also we have that 

1 0n n     

where .n n   In this case, we can give a uniqueness theorem by using Theorem 3.4. 

Theorem 3.5.    Let  0    be a subset of nonnegative integer numbers and let  : n n


   be a 

part of the spectrum of L  such that the numbers n n   satisfy (18) for function ( ).g   If  for ,n  

we have  

,n n     



' (1 / 2) ' (1/ 2)
(1/ 2) (1/ 2)

n n

n n

 
 

  

then ( ) ( )q x q x  almost everywhere on [0,1].   

Proof.  As in the proof of Theorem 1, we obtain 

    
1/2

0

( ) ( ) ( ) ( , ) ( , ) (1/ 2, ) '(1/ 2, ) (1/ 2, ) '(1 / 2, ).g q x q x x x dx                 

The assumptions of the theorem imply 

( ) 0,ng    .n  

By the Theorem 3.4, we have that 

( ) 0g    

on the whole  -plane. Thus, ( , )x  and ( , )x  satisfy 

 (1/ 2, ) '(1/ 2, ) (1 / 2, ) '(1 / 2, ) 0          

and hence 

(1/ 2, ) (1/ 2, ).m m    

By the Theorem 2.1, we prove ( ) ( )q x q x  almost everywhere on [0,1 / 2].  Repeating the supplementary 
problem in the last part of proof of Theorem 1.1, we can show that ( ) 0g   on the whole  -plane, 

which implies that ( ) ( )q x q x on [1 / 2,1]  and consequently, ( ) ( )q x q x  almost everywhere on [0,1].  
This completes the proof.                                                                 

Let us consider the Sturm-Liouville problem L  for 2( ) (0,1).q x L  Horvath [15, 19, p.268] proved 
Hochstadt-Lieberman type an uniqueness theorem by using simple closedness properties of the 
exponential system corresponding to the known eigenvalues. We can give the following uniqueness 
theorem with same arguments in [15] for Mochizuki-Trooshin type theorem. 
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Theorem 3.6.    Let  0    be a subset of nonnegative integer numbers and let  : n n


   be 

a part of the spectrum of L  such that the system of functions  cos 2 n nx


 is complete in 2 (0,1/ 2).L   

If  for ,n  we have  

,n n     



' (1 / 2) ' (1/ 2)
(1/ 2) (1/ 2)

n n

n n

 
 

  

then ( ) ( )q x q x  almost everywhere on [0,1].   

Proof.  As in the proof of Theorem 1, we can show that 

    
1/2

0

( ) ( ) ( ) ( , ) ( , ) (1 / 2, ) '(1 / 2, ) (1/ 2, ) '(1 / 2, ).f q x q x x x dx                 

Hence, we have that 

( ) 0,nf    .n                                                                           (19) 

The following representation holds [4,6,8] 

0

( , ) cos ( , ) cos
x

x x K x t tdt       

where ( , )K x t is a continuous function which does not depend on .   Hence, 


1

0

1( , ) ( , ) 1 cos 2 ( , )cos
2

x

x x x K x t tdt     
 

   
 

                                         (20) 

where 1( , )K x t is a continuous function which does not depend on .  From (19) and (20), we have 

1/2 1/2 1/2

1
0 0

( ) ( , ) ( ) cos 2 ( ) 0,n
x

x K x t t dt xdx x dx   
 

   
 
    ,n  

where ( ) ( ) ( ).x q x q x    By the Riemann-Lebesgue lemma, 

1/2

0

( ) 0.x dx   

By the completeness of the functions  cos 2 n nx


we have 

1/2

1( ) ( , ) ( ) 0.
x

x K x t t dt    
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Since this homogeneous integral equation has only the trivial solution it follows that and ( ) ( )q x q x  

almost everywhere on [0,1 / 2].  The supplementary problem L   in proof of Theorem 1.1 completes the 
proof.   
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