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Abstract. The work is dedicated to consequences of analyticity and unitarity of the scattering amplitude.  Using 

the Gaussian quasipotential an equation for the scattering amplitude matrix is obtained and formula is derived 

for the cross sections. The dependence of the cross section and ratio of the real part of the amplitude in the 

forward scattering to its imaginary part of on the momentum are discussed. The steep Gaussian peak for cross 

section at small angles is followed by the exponential (Orear) regime. Results from theoretical approach are 

compared with experimental data. 
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Büyük Etki Parametreleri Bölgesi İçin Elastik Saçılma Genliği  

Özet. Bu çalışmada, saçılma genliğinin analitikliğinin ve uniterliğinin gerekliliği incelenmiştir. 

Gaussiyen yarı-potential kullanılarak, saçılma genliği matrisi için bir denklem elde edilmiş ve tesir 

kesitleri için bir formül elde edilmiştir. Tesir kesitin bağımlılığı ve ileri saçılmadaki genliğin gerçel 

bölümünün momentum üzerindeki sanal kısmına oranı tartışılmıştır.  Küçük açılarda tesir kesiti için 

dik Gaussiyen zirveyi üstel (Orear) rejim takip eder. Teorik yaklaşımdan elde edilen sonuçlar 

deneysel veriler ile karşılaştırılmıştır. 

Anahtar Kelimeler: Yarı potansiyel, saçılma genliği, üniterlik, tesir kesiti, etki parametresi. 

 

1. INTRODUCTION 

A theoretical analysis of the angular distribution of 

the fragments arising from the break-up of the 

projectile by the nuclear and interaction with the 

target is very useful and necessary for the 

experimental investigations. More useful would be 

the exclusive experiments where the scattering 

process of the projectile is separated from the 

background of other reactions by means of the 

coincidence detection of the two outgoing 

fragments together with a simultaneous 

measurement of their energies [1].  

In the theory of diffraction, the reaction is 

considered as a quantum mechanical process due to 

the fact that different components of the wave 

function of the incident hadron have a different 

probability of interaction with the target [2]. As a 

result, the wave function is distorted. If we expand 

it over a complete set of functions, after collision, 

it contains not only the initial hadron function and 

other states of the incident particle. In this case we 

are talking about those components of the wave 

function for which the probability of interaction 

with the target is small, i.e. In the course of the 

collision, only a small part of the target is excited 

(an elastic collision with only one of its constituent 

particles). Since other wise the quark wave 

function of the target will lose its coherence and the 
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target will decay into a large number of secondary 

hadrons. To do this, we must use the "point" 

component of the wave function of the incident 

hadron. This is possible in the following cases: - 

quarks and gluons are at a small distance from each 

other and the scattering cross section is very small; 

- go into the field of large impact parameters. In 

particular, has been the touchstone of the theory 

since its first derivation, showing a remarkable 

agreement between the predicted and experimental 

structure of the angular scattering distribution. The 

analysis of hadron-nucleus cross sections in the 

difraction approximation can be used to extract 

information on the scatering amplitude parameters. 

For this it will be necessary to measure the hadron-

nucleus cross sections at various incident-hadron 

energies.     

According to the model developed in [3], when the 

de Broil wavelength of the incident particle is much 

smaller than the size of the target nucleus, the 

interaction of each incident particle with the 

nucleus can be considered as a process of 

interaction along a narrow tube inside the nucleus, 

whose distance from  

the center of the nucleus is determined by the 

impact parameter b. In this paper, we discuss the 

cross section of elastic scattering for the region of 

large impact parameters b. 

2. THE AMPLITUDE OF ELASTIC 

SCATTERING 

We will discuss some aspects of nucleon-nucleon 

collisions without physical overlap, i.e. collisions 

with impact parameters, b, larger than the sum of 

the nuclear radii, R, i.e. b > 2R. Particles can be 

produced in these collisions through an interaction 

of the fields of the nuclei. The interactions can 

involve both the electromagnetic and nuclear 

fields, but because of the short range of the nuclear 

force, purely nuclear processes are suppressed for 

b > 2R.  

If the momentum transfers from the nuclei are 

small enough (q<kc/R), the fields both nuclei 

couple coherently to all nucleons. This enhances 

the cross sections and gives the events a unique 

signature, which can be used for identification. The 

restrictions on the momentum transfer do not 

prevent the production of heavy systems, however, 

in high-energy collisions.  

The scattering of hadrons at high energies is a 

multiparticle process, as a result of which the 

unitarity condition reduces to an unsolvable infinite 

chain of interlocking equations. One of the 

methods that would allow us to construct an elastic 

scattering amplitude that satisfies at least the two-

particle unitarity condition is the use of a 

quasipotential [4]. 

The quasipotential in space configuration depends 

on the velocity and is nonlocal. In addition, it 

depends on the total energy of the system and is  a 

complex function. Choosing a quasipotential in the 

form of a smooth, local (in configurational space) 

function that depends on energy, with a positive 

definite imaginary part, it is possible to correctly 

describe the basic properties of hadron scattering at 

small and large angles [5,6].  

The potential description of scattering with a given 

quasipotential permits a description region of the 

phase shifts of individual iteration which are 

essential in the transition from the description 

region of momentum transfer to the Orear region. 

The probability description can be considered as a 

justification for the introduction of smooth 

quasipotentials into field theory, and in addition it 

appears to be more promising for describing 

scattering with momentum transfers comparable 

with energy. 

As a concrete example, we choose a quasipotential 

in the form of a Gaussian  

 ar
a

isrsV 4/exp),( 2
2/3









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
,                        (1) 

corresponding to a purely imaginary amplitude of 

diffraction scattering. In (1) the parameter a 

characterizes the effective interaction radius, which 

depends on the energy. With increasing energy, the 

parameter a increases logarithmically: а = а0 +lns. 

The local quasipotential (1) has a positive definite 

imaginary part and is a smooth non-singular 
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function of r which satisfies all of the principles 

enumerated above and also the requirement of 

diffractive behaviour at small transferred momenta. 

The advantage of Gaussian Potential is that it is 

very flexible. In contrast to analytic potentials, the 

accuracy of Gaussian potential can be improved by 

adding more quantum mechanical data at various 

points in configurational space without changing 

the fit globally. The flexibility of the fit ensures that 

the best possible fit is achieved for any given data 

[7]. 

In the representation of invariant variables 

(Mandelstam variables) the standard relationship 

of the scattering amplitude f  with the differential 

cross section of elastic scattering has the following 

form 

,),(
),( 2

tsf
dt

tsd el 


)(4
22

mks  = 4Е2,  

2)( kp t .                                                  (2) 

The scattering amplitude is analytic not only in the 

s plane, but also in the t plane. 

In the description of elastic diffraction, it is 

convenient to use the eikonal model, the advantage 

lies in the fact that in an explicit form it leads to the 

observance of the unitarity condition for the 

scattering amplitude. If the energy of the incident 

particle is sufficiently large, so that the wavelength 

 = к-1 is small in comparison with the 

characteristic dimensions of the interaction region 

R (where R is the nucleus radius), i.e. kR >> 1, the 

so-called high-energy approximation is well-suited 

to explain the scattering of such particles. 

The high-energy or eikonal approximation is 

widely and successfully used to describe the 

scattering of particles also in complex nuclei as 

scattering in a certain optical continuous medium. 

In this approximation, instead of the law of 

conservation of energy, the law of conservation of 

the momentum projection on the direction k takes 

place: pk = const. This means that the movement 

in the transverse directions is completely 

neglected. In addition, in this approximation, no 

restrictions are imposed on the masses and 

coordinates of the particles, both the finite radius 

and the recoil are considered exactly. Therefore, 

the eikonal approximation can be used to calculate 

the differential cross sections for both direct and 

exchange processes. In addition, in the eikonal 

approximation, the effect of distortions is taken 

into account only in the phase of a plane wave. 

Therefore, the high-energy approximation can be 

used to calculate the angular distributions of 

scattered particles.  

For the hadron scattering amplitude at high 

energies, it is very convenient to pass from 

expansion in partial waves to the representation of 

the impact parameter b: 

 
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i
bdbibsf )(exp1),( 22   (3) 

Such a recording of the amplitude in the high-

energy region is not based on a specific mechanism 

of interaction. The entire dynamics of the process 

in the eikonal models should be introduced by 

specifying a specific kind of eikonal [8]: 







  )2()(),( 2222 abexpabexpibs   

(4) 

here the parameters 0  and 0a  have the meaning 

of the reduced mass and the interaction radius: 

2/ln1/0  is  ;                                                 (5)

2/ln1/0 isaa   

 

In the eikonal approximation, the characteristic 

scattering angle is determined by the quantity 

b/ .  

(3) can be expressed in terms of the eikonal  

   )(),(exp1),( 0 tbJbsibdbitsf   

(6) 

where J0 is the Bessel function. 
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We note that the function ),( bsf , which 

determines the amplitude for purely nuclear 

scattering according to Eq. (6), is virtually equal to 

unity within the nucleus, both in the case of 

antinucleon scattering, and in that of nucleon 

scattering. This means that for these particles the 

nucleus acts as an absolutely black sphere (in the 

central region) with a diffuse boundary. 

At high energies, each value of b corresponds to its 

partial wave 2/sbl   and the unitarity 

condition has the form 

),(),(),(Im2
2

bsbsfbsf in ,                         (7) 

here ),( bsin is the contribution of inelastic 

channels, i.e. probability of inelastic interaction at 

a point b . 

The total collision cross section and the inelastic 

scattering cross section are determined as follows 

 bdbbsftot ),(Im4  

 bdbbsinin ),(2                                         (8) 

 

The differential cross section for elastic scattering 

is related to the amplitude as follows 

 22 ),(Im),(Re
)(

tsftsf
dt

sd



                       (9) 

The elastic scattering amplitude must satisfy the 

general principles of analyticity and unitarity.  

After simple calculations for the differential cross 

section for elastic scattering, we obtain 

    0
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/ln1)(2exp ssta
dt
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t
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


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


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


         (10) 

The differential cross sections of binary processes 

(in particular, the elastic pp scattering reactions), 

according to formula (10), are concentrated in a 

narrow region of transmitted momentum |t|, whose 

width decreases logarithmically with increasing 

energy. This phenomenon in elastic processes is 

usually called the reduction of the diffraction cone. 

Reduction of the cone of the angular distribution 

was observed experimentally in all binary 

reactions.  

The total cross section is related to the imaginary 

part of the scattering amplitude according to the 

optical theorem. 

s

f
bdbbsftot

)0(Im
),(Im4                 (11) 

In the b representation the total cross section 

increases with increasing s as 

stot
2ln .                                                           (12) 

Due to the fact that with increasing energy the cross 

section grows in the logarithmic approximation, as 

s increases, it is necessary to noted that the distance 

at which the collision probability is not yet small 

increases with increasing according to the law 

 

scdsasr lnln)(ln                                  (13) 

where a, d, c are constants. The cross section with 

amplitude  ),( bsf  and with radius (13) is a disc 

with radius sr ln . Inside the disk (b <r) Im f 1, 

and at the periphery of the disk (b> r) 

 )(2exp rbmf   . This behaviour ensures 

the correct position of the nearest feature of the t 

channel 
24mt   .  

The amplitude can be expanded in a series b 

containing only even powers of the regularity 

condition for the Fourier-Bessel transform of the 

function (6): 
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Figure 1. Dependence of the differential cross section of an 

elastic pp scattering from.  Points-experimental data from 

[9,10]. 

 

On the basis of the obtained formulas, we first 

consider proton-proton scattering. 

For 











2
ln

2



a

a
t

 the contribution of the second 

term in the expansion (14) is comparable with the 

first term. Therefore, a second minimum must 

appear in the differential cross section. This fact is 

confirmed by the known experimental data [9,10] 

for measuring the differential cross section for 

elastic pp scattering at s  =53GeV. The 

parameters are adjusted to experimental data. As 

can be seen from Fig.1, the model predicts the first 

minimum at 1.2 (GeV/c)2 and the second 

minimum at 7.0 (GeV/c)2. There are three 

minimums for the cross section in the experiment. 

The first and third coincide with the theoretical 

values, but the second minimum does not exist on 

the theoretical curve. Undoubtedly, the imaginary 

part of the elastic scattering amplitude dominates at 

small angles in the diffraction cone and the 

problem of the behaviour of the real part of the 

amplitude of elastic scattering for nonzero 

momentum transfers becomes very relevant. 

One might think that the discrepancy is due to the 

fact that at high energies because of intense meson 

formation, all phases become complex and the 

nuclear amplitude - forward scattering is almost 

completely imaginary. In this case, the scattering 

can be represented as due to the action of the one-

pion exchange potential. In the paper [11], proton-

proton elastic scattering was studied in the 

framework of one pion exchange model and a 

scalar theory in an attempt to simulate nucleon-

nucleon interactions covering a large energy range. 

When the models were compared with the 

available total cross-sectional data, it was found 

that the scalar theory best fits the data below the 

below labotary momentum of 0,5 GeV. However, 

compliance with high-energy data is not as good as 

it was found in a very low momentum region. 

In Fig. 2 compares the results of calculations using 

formula (11) with experimental data for the 

scattering cross section p9Be [12]. The solid line 

corresponds to the cross-section calculated from 

equation (11), the points correspond to the 

experimental data. 

 
Figure2. Differential cross section for p9Be scattering. The 

solid line corresponds to the cross-section calculated from 

equation (11), the points correspond to the experimental data 

from [12]. 
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It can be seen from Fig. 2 that the model of a 

composite nucleon leads to a satisfactory 

agreement between the calculated cross section and 

its t-dependence and experimental data. As in the 

usual    eikonal approach, at large t values are 

predicted dtd /  (Fig.1. and Fig.2) that are 

significantly smaller than in the experiment. In 

addition, there is no pronounced minimum in the 

experiment. The experimental cross section has a 

slight inflection at | t | = 0.4 (GeV / c) 2. The 

unitarity condition predicts an exponential fall for 

the differential cross section with additional 

substructure to occur exactly between the low 

momentum transfer diffraction cone and high 

momentum transfer. As can be seen from the Fig.2, 

the steep Gaussian peak at small angles is followed 

by the exponential (Orear) regime with some 

shoulders and dips and then by the power-law drop.  

 It is known that the 9Be nucleus does not have 

spherical symmetry, and one of the reasons may be 

a significant deformation of the nucleus, which has 

a significant quadrupole moment Q = 53 mb. We 

made very simple assumptions about the structure 

of the nuclei and indicated the main theoretical 

considerations for detailed calculations. Depending 

on the number of nucleons, the number of channels 

influencing the decay channel increases. If 

deformed nucleus, the deformation also affects the 

process. Other reasons are an increase in the ratio 

of the real part of the elementary scattering 

amplitude to the imaginary one and the presence of 

some incoherent scattering channels. Accounting 

for all of these factors sharply increases the 

complexity of the calculations. Therefore, this 

article did not take into account the role of 

deformation and number of channels. 

It follows from (9) that the ratio of the real part of 

the amplitude in the forward scattering to its 

imaginary part 

),(Re

),(Im
),(

tsf

tsf
tsA                                          (15) 

must tend to zero in the asymptotic as s increases. 

A definite relation between the real and imaginary 

parts of the amplitude is valid for a certain energy 

interval. 

The dependence of the ),( tsA  on t for E>150 

GeV is shown in Fig.3. The ratio )(tA   becomes 

zero for 42,0
2
t  and for large values of t it 

tends to 9 . The result, shown in Fig.3, must be 

considered as follows from the unitarity condition. 

This decrease shows that it is more difficult for 

particles to dissipate with larger transverse 

momenta, preserving their integrity. As we can see, 

the real part of the amplitude can overexceed at 

large momentum transfers, according to the 

unitarity condition. In this region, the real part of 

the amplitude can be large and negative in 

comparison with its imaginary part. We note that 

)(tA  vanishes and becomes negative. This result 

agrees with the general theorem on the change in 

the sign of the real part of the elastic scattering 

amplitude at high energies [13]. But on the other 

hand, the decrease in )(tA  with an increase in  t 

is unsatisfactory. )(tA  is very sharply decreasing 

in the region 0.4-0.7 GeV2.  More peripheral 

interactions with large A(t) are characterized by 

small momentum transfers. The result given in 

Fig.3 should be considered as one more extreme 

approximation to the true solution of the equation 

expressing the unitarity condition. 

 

Figure 3. Dependence of the A(t) of an ||t|2. 
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general theorem on the change in the sign of the 

real part of the elastic scattering amplitude at high 

energies [13]. But on the other hand, the decrease 

in )(tA  with an increase in t is unsatisfactory. 

)(tA  is very sharply decreasing in the region 0.4-

0.7 GeV2. More peripheral interactions with large 

A(t) are characterized by small momentum 

transfers. The result given in Fig.3 should be 

considered as one more extreme approximation to 

the true solution of the equation expressing the 

unitarity condition. 

In explaining the energy dependence of the hadron-

hadron scattering cross section, the t-channel 

exchange picture is more adequate, which for high 

energies was formulated in the form of the Regge 

model. Diffraction scattering in the Regge model is 

described by the exchange of a pomeron-a vacuum 

moving pole in the complex plane of the angular 

momentum. But this model also can not explain all 

the data. (s, t) -dependence of the differential cross 

sections and the ratio A(t) in a wide energy range 

and momentum transfers can not be solved without 

introducing fitting parameters. 

3. CONSCLUSION 

In this paper we carried out a study on the basis of 

the continued unitarity method in which the main 

equation for the scattering amplitude is the elastic 

unitarity condition, analytically continued to the 

region above the first inelastic threshold. Here we 

considered only the Gaussian potential. 

Nevertheless, the physical interpretation of the 

results suggests [14], that the qualitative scattering 

pattern described in the main features is valid for a 

larger class of strong potentials that decrease 

rapidly at infinity. 

We have made very simple assumptions regarding 

the structure of the nuclei and pointed out the main 

theoretical considerations for detailed calculations. 

More specific structure effects, such as e.g. 

resonances, are expected to appear on a 

background parameterized by the above equations. 

The availability of experimental data in the near 

future will certainly arouse interest on the detailed 

investigation of such effect. Such experiments 

would give valuable information on disintegration 

reactions and about the distribution of the nuclear 

density in the nuclear surface. At high energies 

both the electromagnetic and the nuclear 

interaction between projectile and target will be 

important. Far from being a drawback, this can be 

of utility to extract complementary information 

about these different reaction mechanisms in the 

peripheral collisions. A decomposition of these 

mechanisms from the analysis of angular 

distribution of the fragments or from the 

dependence of the cross sections on the energy, 

charge and mass parameters is possible in accurate 

measurements.  

There are many models, but it is still difficult to 

give preference to any one of them. Most models 

are successful at the introduction of different 

assumptions. It is essential how to achieve 

improvement of existing models: by avoiding 

simplifying assumptions or looking for new 

physical arguments that would make the model 

more realistic and save it from simplifications. It is 

from this point of view that one should approach 

the analysis of the further development of the 

model of hadron scattering, caused by new 

experimental facts. 
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