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Abstract. In this study, firstly, it was shown that the set of real quaternion matrices Mp(Hg ) is a 4 -
dimensional module over the real matrix ring My, (R) and 2 -dimensional module over the complex matrix

ring Mp, (C) Moreover, some new properties of the real quaternion matrices were described. Then, matrix

representations of the real quaternion matrices were found easily by Matlab. These matrices were also applied
to find the inverse of the real quaternion matrices and inverse matrices were obtained easily with these matrices.
In addition, some new properties for matrix representations of the real quaternion matrices were found. Also,
the inverse of the 2x 2 real quaternion block matrices was obtained by new methods. Finally, a new method to

calculate the determinant of the 2 x 2 real quaternion matrices was found and the determinant of these matrices
was calculated easily with Matlab application.

Keywords: Quaternions, real quaternions, real quaternion matrices, real matrix representation, determinant,
block matrices.

Reel Kuaterniyon Matrislerinin Baz1 Yeni Ozellikleri ve Matlab
Uygulamalan

Ozet. Bu galismada, ilk olarak, M, (H R ) reel kuaterniyon matrislerin kiimesinin Mp, (R) reel matris halkasi

tizerinde 4 boyutlu bir modiil oldugu ve M, (C) kompleks matris halkasi iizerinde 2 boyutlu bir modiil oldugu

gosterilmigtir. Ayrica, reel kuaterniyon matrislerin bazi yeni o6zellikleri tanimlanmistir. Daha sonra, reel
kuaterniyon matrislerin matris temsilleri Matlab uygulamalar1 ile kolayca elde edilmistir. Bu matrisler reel
kuaterniyon matrislerin tersini bulmak i¢in de uygulanmis ve bu matrislerle ters matrisler kolaylikla elde
edilmistir. Buna ek olarak, reel kuaterniyon matrislerin matris temsilleri igin bazi yeni 6zellikler bulunmustur.
Ayrica, 2 x 2 tipindeki reel kuaterniyon blok matrislerin tersi yeni yontemlerle elde edilmistir. Son olarak, 2 x 2
tipindeki reel kuaterniyon matrislerin determinantin1 hesaplamak icin yeni bir yontem bulunmus ve Matlab
uygulamasti ile bu matrislerin determinanti kolayca hesaplanmistir.

Anahtar Kelimeler: Kuaterniyonlar, reel kuaterniyonlar, reel kuaterniyon matrisler, reel matris temsili,
determinant, blok matrisler.
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1. INTRODUCTION

The set of quaternions can be represented as
Hr ={0=0g+ig+ jaz +kag | do.0p.0p.G3 € R} 1)

where

i2=j2=k®=-1 ij=—ji=k, jk=—kj=i, Ki=-ik=],
which given by Hamilton [1], in 1843. From these rules one can see that multiplication of quaternions is
not commutative.

Several authors worked on algebraic properties of quaternion matrices [2-8]. In 1997, Zhang [8] gave a
brief survey on quaternions and matrices of quaternions. In his study, properties such as addition,
multiplication, conjugate, transpose, conjugate transpose, inverse were examined and adjoint of a
guaternion matrix was defined and eigenvalues, determinants of quaternion matrices were discussed.
Moreover, properties such as equality, rank, inverse, transpose, conjugate transpose and determinant of
quaternion matrices were investigated in [9]. The eigenvalues and properties of quaternion matrices were
investigated in [10, 11].

Calculating the inverse of real and complex matrices are great importance. In [12], the Study determinant
and (- determinant were used. Moreover, they saw that it is very difficult to generalize inverse method

of adjoint matrix to quaternion matrices. The details can be found in [13]. Aslasken investigated many
different definitions of determinant (Cayley determinant, Study determinant, Dieudonne determinant and
Moore determinant) [13]. Gelfand et al. [14] others investigated Moore determinants of Hermitian
guaternion matrices and Quasideterminants, Study determinants of quaternion matrices. Moreover, Lewis
mentioned relation between the Bagazgoitia's identity [15] and the Dieudonné determinant [16].

Jiang and Wei [17] defined the real representation of the quaternion matrix and gave their properties.
Then, they studied the solution of the quaternion matrix equation by means of real representation. Song
and others used real representation method for solving Yakubovich-j-conjugate quaternion matrix
equation in [18]. Two types of universal factorization equalities for real quaternions and matrices of real
guaternions were presented in [19] and real representation of the quaternion matrix was used in this study.
In [20], determinants based on real matrix representations of quaternion matrices and linear matrix
equations with quaternion coefficients are studied.

Lin and Wang [21] completed a 2x 2 block matrix of real quaternions with a partially specified inverse.

Also in [22], the general partitioned linear representation form of matrix quaternions are obtained.
Localization theorems are discussed for the left and right eigenvalues of block gquaternion matrices in
[23]. In [24], some sufficient conditions for two, three and four quaternion matrices are block independent
in the least squares inverse, the minimum norm inverse and the 1,3,4-inverse are derived respectively.

2. REAL QUATERNIONS
A set of real quaternions is denoted by

Hr ={g=a+bi+cj+dk|ab,c,deR,i,jk¢R}

where the basis elements i, j,k satisfy the following multiplication rules [25]:
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i2=j2=k?=-1 ij=—ji=k jk=—Kj=iki=—ik=].

A real quaternion may be defined as a pair (Sq.Vq), where Sy=2a€R is scalar part and

Vg =bi+cj+dke RS is the vector part of (. If a=0, then { is called pure real quaternion. Addition of

any real quaternions q=a+bi+cj+dk and p=ay +bpi+Cy j+dok is defined as

g+ p=(a+bi+cj+dk)+(ay+byi+cyj+dok)
=(a+ay)+(b+b)i+(c+cr)j+(d+do)k

The addition rule preserves the associativity and commutativity properties of addition. The product of
scalar («eR) and a real quaternion are defined as

0= (ua)L+ (ub)i+ (uc) j+ (ud)k = (uSq) + (1Vg).

The real quaternion product of two quaternions g=a-+bi+cj+dk and p=ay+boi+cyj+dok is
defined as:

qp=aap —(bby +ccy +ddy)+a(bpi+cy j+dok)+an(bi+cj+dk)
+(cdy —dcp)i+(-bdy +dby) j+(bcy —chy)k
The conjugate of a real quaternion is denoted by g and norm of a real quaternion is denoted by “Q“ as
follows:
q=a-(i+cj+dk)=Sq-Vy.

ol = 3G =G0 = Va2 +b2 +c? + 42,

If |la| =1, then q is called unit real quaternion. The inverse of the real quaternion g is

-1 7 .
Qo =—0, ff Jla] = 0.

Jal

The set H is a 4-dimensional vector space on R and its basis is the set {,i, j,k} [8, 26].

Theorem 2.1. Let p,qe Hp and u,n<R. The conjugate, norm and inverse of real quaternions satisfy
the following properties [8];

Ql

(i) =q,
(i)  pg=qp,
(i) Jap]=(allrl
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2.1.Real Matrix Representations of Real Quaternions

Let g=a+bi+cj+dkeHp be a real quaternion. The left linear map Lg:HR — Hp is defined by

Lq(P) =pq forall peHp . Then the left real matrix representation of real quaternion ¢ is

a -b ¢ —d

b a d -c
Lq = .

c -d a b

d ¢ -b a

Furthermore det(L€1):||q||4. Here det(Ly) is usual determinant of Lg. The right linear map
Rq ‘Hp — Hp is defined by Rq(p) =qp for all peHp . Then the right real matrix representation of

real quaternion ( is

a -b -¢c -d

b a -d ¢
Rq -

c d a -b

d ¢ b a

Furthermore det(Rq)=||q||4 [26]. Here det(Ry) is usual determinant of Ry .

3. COMPLEX BLOCK QUATERNIONS

The determinant of a 2x2 complex block matrix can be calculated by

A B 1
det =det(A-BD “C)det(D). 2
C D
where A,B,C,DeMy(C) and D is invertible [27, 28]. If D1 does not exist, then the determinant of a
2x2 block matrix can be calculated by
A B 1
det c pl” det(D—-CA “B)det(A). (3)

where A,B,C,DeM,(C) and A is invertible [27, 29]. If neither inverse exists, then generalized inverses
must be used [30-32].

The inverse of a 2x2 complex block matrix can be calculated by

[A Bj_l ) (Al +AB(D-ca By tcat -alB(D-calB)t @

c D ~(D-ca1g)lcal (D-ca1p)l




Nalbant, Yiice | Cumhuriyet Sci. J., Vol.40-1 (2019) 42-60

where A,B,C,DeM(C). If A andthe 2x2 block matrix are nonsingular. Then, the Schur complement

D—CA_lB is nonsingular, too [29, 33]. This formula is called the Banachiewicz inversion formula for
the inverse of a nonsingular matrix [34].

The inverse of a 2x2 complex block matrix can be calculated by

[A le[ (A-BD 1)L —(A-BDc) 1Dt J -

cD pic(a-BD Iyt ptiplc(a-BD ) tBD ™
where A,B,C,DeMp(C) [27, 29, 35]. If D and the 2x2 block matrix are nonsingular. Then, the Schur

complement A— BDIC is nonsingular, too [29, 33].

If AD and the 2x2 block matrix are nonsingular. Then, the Schur complements A-BD I and

D-cA B nonsingular, too. The inverse of a 2x2 complex block matrix can be calculated by

(A B]_l [ (a-Bple)yt —AlB(D-calB)
c D ~(D-ca gy tcat  (d-cale)?
where A,B,C,DeM(C) [36, 37].

4. REAL QUATERNION MATRICES
The set of real quaternion matrices can be defined as
My (HR ) ={A=A+Bi+C j+Dk|AB,C,D € My (R)}
where A= (ays),B = (brs),.C = (¢rs),D =(dys) and
i2=j%=k?=-1ij=—ji=k, jk=—kj=i, ki=-ik=].
If m=n, then the set of real quaternion matrices is denoted by M,,(Hpr) [16-19].

Let A=Al+BI+CJ+DK be a quaternion matrix. We will define the right linear map Ry as
R My (Hr) —> My (Hg) such that % 5(B)=AB. Using this operator and the basis {I,1,J,K} of the

module M (Hp), we can write
Ri(1)=Al=Al+BI +CJ+DK,
R;i(I)=Al=-Bl+ Al +DJ-CK,
Rz(J)=AJ=-C1-DIi+AJ+BK,
Ri(K)=AK =-DI+Ci-BJ+AK.

Then, the following right real matrix representation can be found as
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A -B —C -D
W |B A DcC St (8)
ASlc b A -B =4n ©)

D C B A 4nx4n
where Sgp(R) = Mg (R) [17-19, 38, 39].

Example 4.1. The real matrix representations of 1,1,J,K are

In Oy Op Op O In 0, Op
Op Oy Op Iy 4nx4n On On In O 4nx4n
0 0 0 | 0, 0, -I 0
iRj _|n n n n "RK _|“n ®n n n
O -In Op Op 4Anx4n Ih On Op  Op 4nx4n

where 11,J,K eMp(HR).R; R R5. R €S4n(R) [38]. Furthermore, these real representation
matrices satisfy [38]:

RE =g, RE=R5 =NZ =—lyy,
RiRy =-RjRj =Ry,
RjRg =-Rg Rj =Ry,
R Ry =-RyRg =Rj.

Then, left real matrix representation can be found in the same way as follows:

A B C D
. |8 A DC S ()
Al.c D A -B € 4n (7)

b C B A 4nx4n
where Sgp (R) = My (R) [16].

Example 4.2. The real matrix representations of 1,1,J,K are

|n On On On On |n On On

[/1: On |n On On Lo = _ln On On On
On On |n On ' On On On _ln ,
On On On lnJgnesn On On In On Jynuan
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Op O In Oy Op On Op Ip
[+ = Op 0y 0 Iy [ = Op Oy —Iy Oy
~ln 0y O Oy K Op In Op Oy
On  =In On OnJgnean “In 00 On OnJynuan

where 1,1,J,K e My (HR).£5,Lj L7, L €San(R).
Furthermore, these real representation matrices satisfy [38]:

2 _ 2 _p2 _p2 _
LiLly=-LyLp=Lg,
LyLg =-Lg Ly =Ly,
Lg Ly =-Li Lg =L3.

Corollary 4.1. S4,(RR) is a special subset of My, (R).

4.1. Determinant of 2x2 Real Quaternion Matrices
In practice, the determinant of a 2x 2 real quaternion matrix is defined by
R A
dEt[~ - |Fa18 —ady (8)
a1 a2

In the above definition the so-called rule “multiplication from above to down below” rule is used [9].

5. SOME NEW PROPERTIES OF REAL QUATERNION MATRICES

In this Section, we will investigate some new properties of quaternion matrices and their real matrix
representations. After that we will give some relations between quaternion matrices and their real matrix
representations. In addition, matlab applications on this subject will be done.

Definition 5.1. For A= (dg)=A+Bi+C j+Dk € Myun(HR),
B= (Brs) =M +Boi+Cy j+ Dok e My n(HR), the ordinary matrix addition is defined by

or

A+B=(A+A)+(B+By)i+(C+Cy)j+(D+Dy)k.

Definition 5.2. For A= (&) =A+Bi+Cj+DkeMpyn(Hr) and
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B=(bg)=Ap +Byi+Cyj+ Dok e Mnxp(HR) . the ordinary matrix multiplication is defined by

-~ n ~
S=

or
AB = AAy —(BBy +CCy + DDy) +(ABy + BAy +CD, — DC))i
+(AC» +CAy—BDy +DBy) j+(ADy + DAy + BCy» —CBy)k.

Corollary 5.1. AB = BA (in general), for suitable real quaternion matrices A and B .

5.1.Module M (Hp) Structure Over the Ring M (C)

Definition 5.3. For Q=(q)eM,(C) and A:(érs)=A+Bi+Cj+DkeMn(HR), the left

multiplication of a real quaternion matrix and a real matrix is defined as
~ n 5
QA=(X Grdrs) eMp(HR)
r=1
or
QA=QA+QBi+QC j+QDk. 9)
The right multiplication can be defined in the same way.

Lemma 5.1. The left multiplication has the following properties:

for A BeM,(Hg),Q.Q eM,(C),

i) (Q+R)A=QA+QA,
(i) (QRA=Q(A),

(i)  Q(A+B)=QA+QB,
(iv)  In(A)=A,

v  (QAB=Q(AB),

(vi)  (AQ)B=A(QB)

Proof. (ii), (iii), (iv), (v) and (vi) can be easily shown. Now we will prove (i): Let

A=A+Bi+Cj+DkeM,(Hg) and Q;,Qp € M(C). From (9) we get
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(Q+Q2)A=(Qu+Q2)A+(Qu+Q2)Bi+(Q+Q)C j+(Qu+Q)Dk
= (QA+QA) + (B +Q2B)i +(QC +QxC) j+ (D +Q2D)k
=(QLA+ ) Bi+ QiCj + 1 DK) + (Q2 A+ Q2 Bi + QoCj + Qo Dk)
=QA+QA
The properties of the right multiplication can be shown in the same way. With the properties above, the
following theorems can be given without the proof.

Theorem 5.1. M,(Hp) is a 4-dimensional module left (right) module over My, (R) .

Forall A=A+Bi+Cj+DkeM,(Hg) we can write

where i:In,f:iIn,j:jln,szln.So, the span of M,(Hr ) module over the ring M (R) is
S ={L1,J,K}
where
1 0 i 0 0 ] 0 0
0 0 0 i 0 0 j 0 0 k

=
1l
—
1l
[
1l
~7<¢
1l
m
<
=]
T
=

and
1220, 12=32=R%=—i, 1§ =-J7 =K, JK =—KJ =T KT =-TK =J.
Theorem 5.2. M,(Hp) is a 2-dimensional module module over M (C).
For all A=A+Bi+Cj+DkeMn(HR) we can write
A=21+2,]

where Z3 = A1+ BI,Zy =C1+ DIl eM(C) and 1=1,,I =ily,J = jI,,K =KI,,. So, the span of
Mp(Hgr) module over the ring M (C) is

Sp={LJ}

where
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Definition 5.4. Let A:A+Bi+Cj+DkeMn(HR) and Qe M,(R) where AB,C,DeM,(R).We

define the Kronecker product of a nxn real quaternion matrix with 4nx4n real matrix as follows:

A -B -C -D) (QA -QB -QC -QD

B A -D C QB QA -QD QC

Q®MA=R® ¢ b A B|7loc o0 oA -gB | TQA: (10)

D -C B A)(QD -QC QB QA
Let ABe Mp(Hgr), Qe Mp(R) and Rz, Rz, R € S4n(R) . Then the following properties are satisfied;
(1) Q®SRA=§RQA=‘.RQ9%A,
(i) Q®R;+NE)=QON;+Q®NRg,
(i) (Q+Q)®N;=QOR;+Q @R, for Q.Qz € Mp(R),
V) (QQ)®RE=Q®Q®NRZ), for Q,Q eMp(R).

Note 5.1. The real matrix representation of quaternion matrix obtained as a result of this external operation
is equal to Kronecker product of Q € M, (R) and Ri.

Now, we will investigate some new properties of the real matrix representation of a quaternion matrix.

1+2i—-4j+5k 2-i+2j+k

Example 5.1. Let A= .. Ca
2+5i+ j-2k 3+4i-3j+k

] be a real quaternion matrix.

Then the right real matrix representation of A is

2 -2 1 4 -2 -5 -1

1
2 3 5 -4 -1 3 2 -1
2 -1 1 2 -5 -1 -4 2
5 4 2 3 2 -1 1 =3
R A=

-4 2 5 1 1 2 -2 1
1 3 -2 1 2 3 -5 -4
5 1 4 -2 2 -1

-2 1 -1 3 5 4 2

and the left real matrix representation of A is
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2 -1 4 2 5 1
5 4 1 -3 -2
-2 1 1 2 5 -1 -4
5 -4 2 3 2 -1 1 -3
L =
4 -2 5 1 1 2 21
-1 3 21 2 3 -5 -4
-5 -1 4 -2 2 -1
2 -1 -1 3 5 4 2

We can find the real representation of real quaternion matrix in Example 5.1 with Matlab. The Matlab
command, followed by the output, is shown in the box below.

>>m=2; A=[12; 2 3]; B=[2-1;54]; C=[-42;1-3]; D=[51; -2 1];
Rel=vertcat(A, B, C, D); Re2=vertcat(-B, A, D, -C);
Re3=vertcat(-C, -D, A, B); Red=vertcat(-D, C, -B, A);
Re=horzcat(Rel, Re2, Re3, Re4)

Re =

12-214-2-5-1

23-5-4-132-1

2-112-5-1-42

54232-11-3

425112-21

1-3-2123-5-4

514-22-112

-21-1354 23

Lel=vertcat(A, -B, -C, -D); Le2=vertcat(B, A, D, -C);
Le3=vertcat(C, -D, A, B); Led=vertcat(D, C, -B, A);
Le=horzcat(Lel, Le2, Le3, Led)

Le=

122-1-4251

23541-3-21

-2112-5-1-42

5-4232-11-3

4-25112-21

-13-2123-5-4

5-14-22-112

2-1-13542 3

Theorem 5.3. Let ABeM,(Hp). Then the followings are satisfied;

(1) San =lyn,

(i) Let Ae Mp(HR) . Then A is Hermitian, anti-Hermitian, unitary or normal if and only if RA

is symmetric, anti-symmetric, orthogonal or normal, respectively,
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(i)  Let Ae Mp(HR) be an invertible matrix. If the inverse of the 4nx4n real matrix is

A By -Cp -Dy
B, A -Dp C

where Ay,By,Co,Dy e M,(RR) then
A_1:A2+Bzi+C2j+D2k,

(iv) Let Ae M, (Hg) be an invertible matrix. If the inverse of the 4nx4n real matrix is
A B C D
B, A Db G
=L._4
-C D A -B A
D C By A

(£3) " =

where Ay,By,Co, Dy e Mj(R) then

A=Ay +Byi+Cyj+Dyk.
Proof. (i) and (iv) can be easily shown. Now we will prove one condition of (ii):
Let Ae Mp(Hpg) . Firstly, A is Hermitian matrix. Then we get
A=AT B=-B",c=—CT D=-D'. (11)

and
R A)T = : (12)

If we use (11) in (12), we get
AT -
Rg) =Nji.

Thus we find, if A is Hermitian matrix, then *RA is symmetric matrix. Secondly, if ERA is symmetric
matrix, we get (11). By using (11) in A, we obtain

~% ~

A =-A.
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So we find, if %3 is symmetric matrix, then A is Hermitian matrix. Consequently, A is Hermitian if and

only if R 3 is symmetric.
The other conditions can be done in the same way. Then, we will prove (iii):
If A is invertible then AAL= ALA=1,. By property (i), we get
= T :S = ~
Thus, we obtain

(Rz) = R

Hence, we may find inverse of A by using Theorem 5.3 / (iii), (iv). Following example will show us how
to find the inverse of a dual quaternion matrix by using inverse of its real matrix representation.

~ (1] .
Example 5.2. Let A:[O i}e My (HR) . The right real matrix representation of A is

00-100-10 0
00 0 0O O O 1
10 0 000 0 1
00 0 O0O0O-10 0
Ri = .
01 0 0 O0O0 -10
00 0 1 00 0 O
00 0 -110 0
01 0 0 0 O 0
Here det(% ;) =1#0. Hence, A is invertible.
The inverse of (E}{A)_l is found by using Matlab as follows:
0 1.1 0 0000
0 0 00 0 0O0T1
-1 0 01 0 0O0O
41 /0 0 0 0 0 100
MR "=16 000 0110
0 0 0-1 0000
0 000 10001
0 -1 0 0 0 O0O00O

By using the inverse of R 5 we find
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Moreover, the left real matrix representation of A is

01 00 1 00O
0 0000 0 01
-1 0 00 00 01
Ci- 0 00 00 -10 0.
0 -10 0 0 0 -10
0 001 00 00O
0 0 -11 0 0O
0 -10 0 0 0 0O
Here det(£z)=1#0. Hence, A is invertible.
The inverse of (5'5\)‘1 is found by using Matlab as follows:
01-10 0O0©O0TDO
00 0 0O O O0O0 -1
100 1 0 O0O0 O
1 /000 0 0 100
A " =l00 0 0 011 0f
00 0 -1 0 0O0O
00 0 0 -100 1
010 0 0 O0O0TUDO

By using the inverse of EA we find

-0 5

Corollary 5.2. Each real quaternion matrix can be factorized. The number of elementary row (column)
operations for a real matrix representation of a quaternion matrix is four times than the number of
elementary row (column) operations for this quaternion matrix.

6. THE INVERSE OF 2x2 REAL QUATERNION MATRICES
We will find the inverse of 2x2 real quaternion block matrices.

Theorem 6.1. The inverse of a 2x2 real quaternion block matrix can be calculated by

¢

where A,B,C,DeMp(Hp) if D is invertible.

[osh

-1 5 ar—1xy-1 5 ar-lav-lge-1
j :( (A-BD'C) —(A-BD™*C)™*BD 13

B A-8o16)Y B lipE(A-Bo ) tED L)

(WN)
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Proof.

A B)(x) [c
¢ bly) d)
where A B,C,DeM,(Hg), x,y,c,d € Hp . Namely,

Ax+By=c
Cx+Dy=d

If D is invertible, we solve for y getting
y=D"1(d-Cx)
and using Y in the first equation, we get
(A-BD1C)x=c-BD .
If the quaternion matrix (A— Eﬁ_lé)_l is invertible, then we can get

x=(A-BD ) (c-BD1d)
y=D1(d-C(A-BD 1) L(c-BD10)).

E

[Z\ é]—l_ (A-BD1¢) ~(A-BD1¢)1a5 L
= D b l6(A-80"16)t B liplE(A-BD 1) tEpt

O >
O o

Then, we get the inverse of (

B (14)

We can write (14) as

I | ~ ~ B T - .
[A B] _{ In On} (A-BB16) 4, [|n _BD_ll
¢ b) |-57% I, 0, 6t \0

[A B] i BOL)(A-BD%C) G,)f T On
¢ o) (o, Ty 0 b5l T,

The above expression shows that only the inverse of D is needed.

and we obtain

Theorem 6.2. The inverse of a 2x2 real quaternion block matrix can be calculated by
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(15)

O
(W

sr (ARG -CAlE) ATt —ATIB(B-CA ) !
~(D-CA1B) 1At (D-CA1g)!

|

where A,Ig,é,f)eMn(HR) if A is invertible.

eMy4(Hp) be areal quaternion matrix.

0
< i
Example 6.1. Let Q= :
0

X O N =
x —_— O x

i
0
1
0
We can write Q as 2x2 real quaternion block matrix.

ot

where A B,C,De Mo(Hp) . D is invertible. Then by using Theorem 6.1, we get

1 1. 1.1 1 1. 1.1 1 1. 1.1

——Zi—-=j+=k ——Zi+=j+=-k =-Zi-=j-=k i

2° 2 2 2 2 2 2 2 2" 2

VR 11 JENE I
Q—l_ 2 2 2 2 2 2

11 1. 1 .

——=k =i-=] —-Zi+=] 0

2 2 2 2

—|+£j —l+£k —+=k -k

2 2 2 2

7. THE DETERMINANT OF 2x2 REAL QUATERNION MATRICES

We now discuss the determinant of 2x 2 real quaternion matrices. We will find (8) by a different method.
The determinant of a 2x 2 real quaternion matrix A is a real quaternion number and denoted by det(A).

Theorem 7.1. Let A=A+Bi+Cj+Dke My (Hp). Then,

det(A) =det(A) —det(B) — det(C) — det(D) + ( ; {det([A] B]s) +det([C| D];)})i
s=1
(16)

2 * 2 *
+( Zl{det([A| Cls) +det([D[Bls)} i +( Zl{det([A| Dls) +det([B[Cls)}k.
S= S=

Proof.  Let A=A+ Bi+Cj+DkeMy(Hg). By  det([A|B]s) det([A[C]s), det([A|D]s),

det([C| D];),det([D| B]:),det([B | C]:) and usual determinant of A,B,C,D, we can obtain (16), easily.
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Note 7.1. The matrices [A|B]s,[A|C]s and [A|D]s mean changing s. column components of the

matrices B,C and D instead of s. column components of matrix A. The matrices [C|D]: mean
changing s. column components of the matrices D instead of s. column components of matrix C . The
matrices [D|B]’Sc mean changing S. column components of the matrices B instead of s. column

components of matrix D. The matrices [B|C]’Sc mean changing s. column components of the matrices
C instead of s. column components of matrix B.

* means product s. component of the second column with minus one.

2+i+2j+k -1-i+2j+k

Example 7.1. Let A= . L
3+2i—j+k 1+2i+j+2k

je My (Hg ). Then we get the determinant of A as

det(A) =—4+10i — 6 +3k.

We can find determinant of real quaternion matrix on Example 7.1 by (16) with Matlab. The Matlab
command, followed by the output, is shown in the box below.

>> A=[2 -1;3 1]; B=[1-1;2 2]; C=[2 2;-1 1]; D=[1 1;1 2]; Aoriginal=A; Boriginal=B;
Coriginal=C; Doriginal=D; X1=det(A)-det(B)-det(C)-det(D); X2=0; X3=0; X4=0;
forr=1:2

B(,r) = A(GD;

D(:,n) =C(,n);

D(2,r) =-D(2,n);

X2 = X2+det(B)+det(D);

B=Boriginal;

D=Doriginal;

end

forr=1:2

CG,n) =A(D);

B(:,r) =D(:,r);

B(2,nN=-B(2,r);

X3 = X3+det(C)+det(B);

B=Boriginal;

C=Coriginal,

end

forr=1:2

D(G,r) = AGD;

C(,r)=B(,n);

C(2,r)=-C(2,r);

X4 = X4+det(C)+det(D);

C=Coriginal,

D=Doriginal;

end

disp(['Det= "num2str(X1) ' + 'num2str(X2) " i 'num2str(X3) ' j +'num2str(X4) 'k ')
Det=-4 + 10i - 6j + 3k
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Note 7.2. It is difficult to directly calculate the determinant of the real quaternion matrix, the determinant
of the 2x2 real quaternion matrices can be easily calculated by this method with Matlab.
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