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The e�ect of changing scores for multi-way tables
with open-ended ordered categories
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Abstract

Log-linear models are used to analyze the contingency tables. If the
variables are ordinal or interval, because the score values a�ect both
the model signi�cance and parameter estimates, selection of score values
has importance. Sometimes an interval variable contains open-ended
categories as the �rst or last category. While the variable has open-
ended classes, estimates of the lowermost and/or uppermost values of
distribution must be handled carefully. In that case, the unknown
values of the �rst and last classes can be estimated �rstly, and then
the score values can be calculated. In the previous studies, the un-
known boundaries were estimated by using interquartile range (IQR). In
this study, we suggested interdecile range (IDR), interpercentile range
(IPR), and mid-distance range (MDR) as alternative to IQR to detect
the e�ects of score values on model parameters.
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1. Introduction

Categorical variables, which have a measurement scale consisting of a set of categories,
are of importance in many �elds often in the medical, social, and behavioral sciences.
The tables that represent these variables are called contingency tables. Log-linear model
equations are applied to analyze these tables. Interaction, row e�ects, and association
parameters are strictly important to interpret the tables.

In the presence of an ordinal variable, score values should be considered. As using
row e�ects parameters for nominal�ordinal tables, association parameter is suggested
for ordinal�ordinal tables. Score values are used to weight these parameters. In that
case, selection of score values is important. For instance, taking the score values equal
does not �t in many studies because these scores may not represent true intervals be-
tween categories. Choice of scores a�ects estimates of model parameters and results of
goodness-of-�t test statistics.

To use quantitative data in contingency tables, the data need to be converted to qual-
itative form. If one category (class) of a variable has either no lower or upper limit,
this category is called open-ended. Age, income, serum cholesterol levels, systolic blood
pressure are some examples of variable which can have open-ended categories. Ku and
Kullback [12] used a contingency table which one of its variable is systolic blood pres-
sure with the levels: (1) "< 127", (2) 127-146, (3) 147-166, (4) "≥ 167". Lower bound
of the �rst and upper bound of the fourth categories are unknown. Agresti [3] applied
linear-by-linear association model to the data and accepted that the distance between
(1�2), (2�3), and (3�4) categories are equal. If it is not allowed to get raw data, it is
not possible to �nd minimum and maximum values. Therefore, it is impossible to �nd
the boundaries of open-ended categories. In this situation, the boundaries need to be
estimated �rst. Then the score values can be calculated.

Determining these boundaries and �tted score values have been discussed by authorities.
The author who studied on score values initially was Birch [6]. Simon [14], Goodman [9],
Agresti [3], Graubard and Korn [10] discussed the equally spaced score values in their
studies. Inequally spaced scores were discussed in the studies of Bross [7] and Agresti
[3]. Iki et al. [11] used ridit scores to analyze square contingency tables by using cumu-
lative probabilities. More recently, Bagheban and Zayeri [5] proposed exponential score
values as an alternative to equal spaced scores. Initially, Frigge et al. [8] proposed the
interquartile range to illustrate the outlier, then Tibshirani and Hastie [15], and Liu and
Wu [13] focused on the interquartile range (IQR) to detect genes with over-expressed
outlier disease samples as we used on estimate of the open ended boundaries. Aktas and
Saracbasi [4] used median and quartile ranges to calculate standardized score values on
open-ended categories. We suggested three di�erent methods as alternative to IQR for
ordinal categories that are grouped from quantitative data.

In this paper, through an application with one open-ended variable, we discussed the
e�ects of score values on model parameters. The proposed new methods used to de-
termine the boundaries of open-ended classes. In section 2, the log-linear models were
introduced. Section 3 outlined the score methods and suggested the methods to estimate
the boundaries of open-ended categories were represented in Section 4. The log-linear
models and the estimation methods were illustrated in Section 5 by an application.
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2. Log-Linear Models

2.1. Models for Two-way Tables. Consider an R×C contingency table that the �rst
variable is represented by X and the second variable is represented by Y. In this two-way
table, cross-classi�es constitute multinominal sample of n subjects on two categorical
responses. Let nij denote the frequency of (i, j) cell and the cell probabilities are πij

and the expected values mij where i = 1, 2, . . . , R and j = 1, 2, . . . , C. The properties of
independence [2], linear by linear association [9], and row e�ects [3] models for two-way
contingency tables are given in Table 1.

Table 1. The properties of most used log-linear models for two-way
contingency tables

Model X Y Equation df

Independence N, O* N,O log mij = λ+ λXi + λYj (R− 1)(C − 1)

Linear by Linear Association O O log mij = λ+ λXi + λYj + βuivj (R− 1)(C − 1)− 1

Row E�ects N O log mij = λ+ λXi + λYj + µivj (R− 1)(C − 2)

*:N: Nominal O: Ordinal

Here, in the equations λ is the overall e�ect parameter, λX
i is e�ect of variable X at i and

λY
j is e�ect of variable Y at j with constraints such as

∑R
i=1 λ

X
i =

∑C
j=1 λ

Y
j = 0. ui and vj

in linear by linear association model are the the known scores where u1 ≤ u2 ≤ . . . ≤ uR

are ordered row scores and v1 ≤ v2 ≤ . . . ≤ vC are column scores. β is the association
parameter. Goodman [9] called the speci�cal case of model uniform association model,
where {ui = i} and {vj = j}. µi in row e�ect model is the row e�ect parameters where

constraints are needed such as
∑R

i=1 µi = 0.

The local log-odds ratios of linear by linear association, uniform association and row
e�ects models are given in the Equations (2.1)-(2.3), respectively.

(2.1) log θij = β(ui − ui+1)(vj − vj+1),

(2.2) log θij = β,

(2.3) log θij = (µi+1 − µi)(vj+1 − vj).

2.2. Models for Multi-way Tables for Nominal × Ordinal × Ordinal Categor-

ical Data. Let X be a nominal variable, Y and Z be ordinal variables and, uj are score
values for variable Y and vk are score values for variable Z. Then the full model is:

(2.4) log mijk = λ+ λX
i + λY

j + λZ
k + µXY

i uj + µXZ
i vk + βY Zujvk.

The constraints are
∑R

i=1 λ
X
i =

∑C
j=1 λ

Y
j =

∑R
i=1 µ

XY
i =

∑R
i=1 µ

XZ
i = 0. In this model,

βY Z represents the linear-by-linear association parameter, µXY
i and µXZ

i represent the
row e�ects model parameters [2].

log θij(k) is the conditional log-odds ratio between X and Y for �xed levels of Z, log θi(j)k
is the conditional log-odds ratio between X and Z for �xed levels of Y and log θ(i)jk is
the conditional log-odds ratio between Y and Z for �xed levels of X can be calculated
from Equation (2.5).
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(2.5)

log θij(k) = (µXY
i+1 − µXY

i )(uj+1 − uj)

log θi(j)k = (µXZ
i+1 − µXZ

i )(vk+1 − vk)

log θ(i)jk = βY Z(uj+1 − uj)(vk+1 − vk).

2.3. Scoring Methods. For log-linear model studies, assignment of score values is
important. Assuming all distance between adjacent categories equal is not always �t
the data. In this situation, the way to assign the scores causes a problem. The score
equality of best �tting model is chosen as the distance between adjacent categories. As
π.j , j = 1, 2, . . . , C are the marginal probabilities of the ordered variable Y, the properties
of equal spaced, ridit [7, 11], and exponential [5] scores are summarized in Table 2.

Table 2. The recommended score equalities

Scores Variables ui vj
Equal spaced N, O i j

Ridit O -
∑j−1

k=1 π.k + 1
2
π.j

Exponential O ia ja

For application of equal spaced scores, all the intervals between adjacent categories are
assumed as equal. The cumulative probabilities are used to calculate ridit scores. Some-
times, non-equality characteristic of scores are observed in the categories of variables. In
this situation, the arithmetic progression between categories disappears. The exponential
scores are used when the baseline characteristic of categories changing by a geometric
progression. a in the exponential score equation is called the power parameter and the
model gives the uniform association model with equal spaced score values for a = 1.

3. Suggested Methods to Estimate the Boundaries of Open-ended

Categories

The most practical scoring method is the exponential scores because it permits di�er-
ent values of the power parameter. However, when working on the open-ended ordered
categories, these methods are insu�cient. Applying the same method both ordered and
open-ended categories is only possible when ignoring the open-ended structure. It makes
the minimum value (lower bound of the �rst category) and the maximum value (upper
bound of the last category) unimportant. However, these unknown values are the proof
of inequality of scores.

Instead of using equal or non-equal scoring method, the di�erent methods need to be
used. To avoid the outlier problem, the interquartile range was suggested as a measure
of dispersion [13]. The �rst quartile of a raw data is de�ned as Q1 and the third quartile
is Q3. Then, the interquartile range is IQR = Q3 − Q1. For a frequency table with k
categories, the values which are less and greater than the limits in the Equation (3.1)
were de�ned as outliers by Frigge et al. [8] under the normality assumption.

(3.1)
LowerBound(LB1) = Q1 − 1.5× IQR
UpperBound(UBk) = Q3 + 1.5× IQR.
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The de�nition of the quartiles can a�ect the number of observations which shown as
outside. This estimation method is used with 25% trimmed range. Changes of trimmed
range may have greater e�ects on the estimate of score values.

3.1. Interdecile and Interpercentile Ranges. In this study, interdecile range (IDR)
and interpercentile range (IPR) were suggested as the alternatives of IQR, having 10%
and 5% trimmed ranges, respectively. The calculations of IDR (IDR = P90 − P10) and
IPR (IPR = P95 − P5) are similar with IQR.

Under the normality assumption, the estimations of the boundaries with these methods
can be limited as following equations, respectively.

(3.2) LB1 = P10 − 0.78× IDR and UBk = P90 + 0.78× IDR,

(3.3) LB1 = P5 − 0.61× IPR and UBk = P95 + 0.61× IPR.
The standard normal distribution graphs and Z-values in order of IQR, IDR, and IPR
are shown in Figure 1. Although the IPR seems to have wider range, this does not mean
that it uses larger part of the distribution and it is better. The aim is to explain the data
well and this depends on the distribution of frequencies.

Figure 1. The trimmed ranges for IQR, IDR, and IPR under the
standard normal distribution

3.2. Mid-distance Range. Mid-distance range (MDR) was suggested to use as an al-
ternative to IQR. The mid-distance (MDi = (LBi + UBi−1)/2) is the midpoint of ith

and (i+ 1)th categories where i = 2, 3, . . . , k. The de�nition of MD is shown in Figure 2.
In this �gure, the �rst and last categories are open-ended and the values in the boxes are
unknown. For a variable with k categories, the frequency table has (k+1) MD. However,
because of open-ended boundaries (LB1 and UBk),MD1 andMDk+1 are not calculated.

Figure 2. The mid-distances of a k-categories frequency table
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Under the normality assumption, the percentage of the �rst category is p1 = P (x < MD2)
and the kth category is pk = P (x > MDk). Then MDR is calculated from MDR =
MDk − MD2. The distribution of frequencies is used to calculate MDR. Under the
normality assumption, the boundaries are suggested,

(3.4) LB1 = MD2 − [1/|Z1|]×MDR and UBk = MDk + [1/|Zk|]×MDR,

where Z1 = Φ−1(p1) and Zk = Φ−1(pk).

For Ku and Kullback [12] example, MD's of systolic blood pressure are calculated and
shown in Table 3 [2].

Table 3. Mid-distances of systolic blood pressure

i LB UB MD

� MD1

1 � 126
126.5 MD2

2 127 146
146.5 MD3

3 147 166
166.5 MD4

4 167 �
� MD5

3.3. Standardized Score Values for Open-ended Categories. For an open-ended
frequency table, because median is the appropriate measure of location and the quartile
deviation is the appropriate measure of dispersion, Aktas and Saracbasi [4] suggested a
score value that is calculated from quartile values. As si is the midpoint of ith class, Q2

is the median and Q1, Q3 are the �rst and third quartiles, respectively. The midpoint is,

(3.5) si = LBi+UBi
2

, i = 1, 2, . . . , k.

Here, the estimated LB1 and UBk, which are de�ned in Equations (3.1)-(3.4), are used
to calculate the midpoints. The standardized score values for row and column variables
are

(3.6)

ui = si−Q2
(Q3−Q1)/2

, i = 1, 2, . . . , R

vj =
sj−Q2

(Q3−Q1)/2
, j = 1, 2, . . . , C.

4. An Application

The 2× 4× 4 contingency table, which is shown in Table 4, is taken from General Social
Survey, 1991, National Opinion Research Center. It refers to the relationship between
job satisfaction and income, strati�ed by gender, for 104 African�Americans [3].

The described models in Section 2 with equal spaced score values for (nominal×ordinal×
ordinal) structure were applied to the data in Table 4. Because the data set contains
sampling zeros, a correction factor for zero of 6 cells (nij = 0 + 0.5) was used. Table 5
shows the value of likelihood ratio statistics (G2) for testing the goodness-of-�t of each
model. λG

i is the e�ect of gender at i, λI
j is the e�ect of income at j, and λS

k is the

e�ect of job satisfaction at k. µGI
i and µGS

i are the row e�ects parameters between



1887

Table 4. Job Satisfaction and income, controlling for gender

Job Satisfaction

Very A Little Moderately Very

Gender Income Dissatis�ed Satis�ed Satis�ed Satis�ed

Female < 5000 1 3 11 2
5000�15,000 2 3 17 3
15,000�25,000 0 1 8 5
> 25, 000 0 2 4 2

Male < 5000 1 1 2 1
5000�15,000 0 3 5 1
15,000�25,000 0 0 7 3
> 25, 000 0 1 9 6

gender�income and gender�job satisfaction, respectively. βIS is the association parame-
ter between income and job satisfaction. Then, Akaike Information Criteria (AIC) was
used to select the best �tting model [1]. Regarding the presented results, all models were
�t the data. Because the Model 6 that contains both association parameter between
income�job satisfaction and the row e�ects parameter between gender�income had the
smallest value of AIC, this model was chosen as the best �tting model.

Table 5. The results of goodness-of-�t test results for equal spaced
score values

Models G2 df P-Value AIC

1 log mijk = λ+ λG
i + λI

j + λS
k 25.326 24 0.388 �22.674

2 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj 13.716 23 0.935 �32.284

3 log mijk = λ+ λG
i + λI

j + λS
k + µGS

i vk 24.983 23 0.351 �21.017

4 log mijk = λ+ λG
i + λI

j + λS
k + βISujvk 20.794 23 0.594 �25.206

5 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + µGS
i vk 13.373 22 0.922 �30.627

6 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + βISujvk 9.184 22 0.992 �34.816

7 log mijk = λ+ λG
i + λI

j + λS
k + µGS

i vk + βISujvk 20.451 22 0.555 �23.549

8 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + µGS
i vk + βISujvk 9.174 21 0.988 �32.826

Thereafter, the recommended score values were applied to Model 6 to choose the appro-
priate score values. Considering the open-ended structure, the standardized score values
for income were calculated. Because gender is a nominal variable, score alternatives were
not considered. For job satisfaction, equal spaced, exponential, and ridit scores were
applied. The IQR, IDR, IPR, and MDR values for income were calculated as 17936.92,
25855.86, 30441.32, and 20000 respectively. To use mid-distance range, the percentages
of �rst and fourth categories were calculated as p1 = 0.2056 and p4 = 0.2337. Then,
LB1 and UBk from the methods, that were previously mentioned, were estimated. The
estimated boundaries and range of income are shown in the Table 6. The estimated
values of the lower bound are negative. This is reasonable when considering the people's
loans. Between these methods, MDR has the largest value.

The score values in the �rst part of Table 7 were calculated for job satisfaction. In the
second part of the table, the standardized score values in Equatin (3.6) were calculated for
income. After analyzing the model with di�erent power parameter values of exponential
score, much appropriate a was found as 2. Because of the di�erences between estimated
lowermost and uppermost values, the only alteration happens on the �rst and last classes.
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Table 6. Estimated lower and upper boundaries of open-ended classes

Method LB1 UBk Range
IQR �20,523 51,219 71,742
IDR �15,304 50,887 67,191
IPR �16,151 51,429 67,580
MDR �19,330 52,510 71,840

Table 7. Estimated score values for income and job satisfaction

Scores v1 v2 v3 v4

Job Satisfaction
Equal Spaced 1 2 3 4
Exponential 1 4 9 16
Ridit 0.0304 0.1285 0.4906 0.8925
Scores u1 u2 u3 u4

Income

IQR �2.457 �0.477 0.638 2.658
IDR �2.166 �0.477 0.638 2.639
IPR �2.213 �0.477 0.638 2.670
MDR �2.390 �0.477 0.638 2.730

Model 6 was analyzed with the score values in Table 7. The results with di�erent score
values for income and job satisfaction were shown in Table 8.

Table 8. The results of parameter estimates for di�erent score values
in Model 6

Scores β̂IS µ̂GI

Income�Job Satisfaction G2 P-value Estimate P-value Estimate P-value
1 IQR�Equal Sapced 10.063 0.986 0.146 0.057 �0.202 0.001
2 IQR�Exponential 9.584 0.990 0.028 0.043 �0.202 0.001
3 IQR�Ridit 9.687 0.989 0.458 0.045 �0.202 0.001
4 IDR�Equal Spaced 9.750 0.988 0.157 0.055 �0.215 0.001
5 IDR�Exponential 9.273 0.992 0.030 0.041 �0.215 0.001
6 IDR�Ridit 9.377 0.991 0.488 0.043 �0.215 0.001
7 IPR�Equal Spaced 9.794 0.988 0.154 0.056 �0.211 0.001
8 IPR�Exponential 9.321 0.991 0.030 0.042 �0.211 0.001
9 IPR�Ridit 9.426 0.991 0.480 0.044 �0.211 0.001
10 MDR�Equal Spaced 9.974 0.987 0.146 0.057 �0.202 0.001
11 MDR�Exponential 9.501 0.990 0.028 0.043 �0.202 0.001
12 MDR�Ridit 9.605 0.990 0.456 0.045 �0.202 0.001

Despite all the models in Table 8 �tted the data based on df = 22, the goodness-of-�t
test statistics di�ered depending on the score alternatives. For these models, the best
�tting one is Case 5 which has standardized scores for income with IDR method and
exponential scores with a = 2 for job satisfaction. The 10% trimmed range was found as
more appropriate. Besides the variation on G2 statistics, estimated association parame-
ter changed for di�erent scores of income and job satisfaction. In general, the exponential
score for job satisfaction had a decreasing e�ect on G2 statistics for all the combinations.

The association between adjacent categories where the gender e�ect is constant could be
explained by odds ratio that θ(i)jk = exp{βIS(uj − uj+1)(vk − vk+1)}. The local odds
ratios from the scores in Table 7 were estimated. The association between adjoint cat-
egories where job satisfaction e�ect was constant could be explained by odds ratio that
θij(k) = exp{(µGI

i+1 − µGI
i )(uj+1 − uj)}. Table 9 and Table 10 show the odds ratios for
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di�erent score values.

Table 9. θ(1)11 for income × job satisfaction for the �xed levels of gender

Job Satisfaction
Income Equal Spaced Exponential Ridit
IQR 1.335 1.181 1.093
IDR 1.304 1.164 1.084
IPR 1.307 1.169 1.085
MDR 1.322 1.174 1.089

Table 10. θ11(1) for gender × income for the �xed levels of job satisfaction

Scores for Income
IQR IDR IPR MDR

2.225 2.067 2.080 2.166

Regarding the presented results in Table 9, using di�erent methods to estimate the lower
and/or upper boundaries of open-ended categories was varying odds ratios. Using the
estimation methods of IDR and IPR generated the odds ratios similar but di�erent from
the odds ratios estimated by using the IQR and MDR. Any category change on gender
does not a�ect the odds ratio. The reason of this is the odds ratio depends on only
changing scores of ordinal variable in row e�ects model. Regarding the presented results
in Table 10, the odds ratios were varied between di�erent scores of income.

By Case 5 in Table 8, the local odds ratios, which were calculated from parameter esti-
mates, are shown in the following matrix.

θ̂(i)jk =

1.164 1.288 1.426
1.105 1.182 1.264
1.197 1.350 1.522


θ̂ij(k) =

[
2.067 1.615 2.364

]
The odds ratio that income was "5000−15, 000" rather than "15, 000−25, 000" estimated
to be 1.182 times higher than when the job satisfaction was "A little satis�ed" rather
than "Moderately satis�ed". The odds ratio that males rather than female estimated to
be 2.067 times higher than when the income was "< 5000" rather than "5000− 15, 000".

5. Conclusions

In this study, we focused on determining the model which explains the data well for
open-ended categories. This determination depends on the changing score values. When
working on the contingency tables, which contain open-ended ordered categories, the
open-ended boundaries of the distribution is suggested to be estimated. In the previous
studies, utilizing the interquartile range, which is calculated from the �rst and the third
quartiles, the unknown boundaries were estimated. In this study, we suggested alterna-
tive methods of interquartile range. We estimated the unknown boundaries of the table
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with these methods.

The used method is important because di�erent methods cause di�erences on the esti-
mated boundaries and accordingly midpoints. Di�erences in midpoints cause di�erences
in score values. The changing score values also in�uenced the model signi�cance and
model �t. Parameter estimates and odds ratios varied between the methods which we
utilized.

The di�erence between these four methods is that the estimation methods of IQR, IDR,
and IPR use the trimmed range, which is a constant value, and trimmed ranges from the
both side of the frequency distribution is equal. However, to estimate the MDR, we used
the trimmed range where the information comes from the distribution of open-ended
variable itself. Therefore, the trimmed ranges are di�erent between the left and the right
sides of the distribution. This di�erence comes from the percentages of the �rst and last
categories.
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