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aDepartment of Statistics, Faculty of Arts and Sciences, Amasya University, 05000, Amasya, TURKEY
bDepartment of Mathematics, Faculty of Arts and Sciences, University of Gaziosmanpasa, 60100, Tokat, TURKEY .

Received: 15-08-2018 • Accepted: 10-12-2018

Abstract. The object of the present paper is to study the differential geometry of contact CR-submanifolds
of a Kenmotsu manifold. Necessary and sufficient conditions are given for a submanifold to be a contact CR-
submanifold in Kenmotsu manifolds. Finally, the induced structures on submanifolds are investigated, these struc-
tures are categorized and we discuss these results.
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1. Introduction

Kenmotsu [13] introduced a class of almost contact Riemannian manifolds known as Kenmotsu manifolds. The
study of the differential geometry of contact CR-submanifolds, as a generalization of invariant(holomorphic) and anti-
invariant(totally real) submanifolds of an almost contact metric manifold was initiated by A. Bejancu [6, 7] and was
followed by several researchers. Some authors [1, 7, 8, 12, 14] studied contact CR-submanifolds of different classes
of almost contact metric manifolds given in the references of this paper. Recently, in different studies M. Atçeken et
al. [2–5] and S. Uddin et al. [15,16] studied contact CR-submanifold and warped product CR-submanifolds in various
type manifolds. The contact CR-submanifolds are rich and interesting subject. Therefore, it was continued to work in
this subject matter. This study the present paper is organized as follows.

In this paper, contact CR-submanifolds of a Kenmotsu manifold were studied. In Section 2, basic formulas and
definitions for a Kenmotsu manifold and their submanifolds were reviewed. In Section 3, the definition and some
basic results of a contact CR-submanifold of a Kenmotsu manifold was recalled. Finally, some new results for contact
CR-submanifolds in a Kenmotsu manifold was given.
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2. Preliminaries

In this section, we give some terminology and notations used throughout this paper. We recall some necessary fact
and formulas from the theory of Kenmotsu manifolds and their submanifolds.

Let M̃ be a (2n + 1)-dimensional almost contact metric manifold with structure (φ, ξ, η, g), where φ is a (1, 1)−type
tensor field , ξ a vector field, η is a 1-form and g is the Riemann metric on M̃,such that

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1, η(X) = g(X, ξ) (2.1)

and

g(φX, φY) = g(X,Y) − η(X)η(Y), g(φX,Y) = −g(X, φY) (2.2)

for any X,Y ∈ Γ(M̃), where Γ(M̃) denotes the set differentiable vector fields on M̃. If in addition to above relations

(∇̃Xφ)Y = g(φX,Y)ξ − η(Y)φY and ∇̃Xξ = X − η(X)ξ (2.3)

for any X,Y ∈ Γ(M̃), then, M̃ is called a Kenmotsu manifold, where ∇̃ is the Levi-Civita connection of g. Now, let M
be an isometrically immersed submanifold in a Kenmotsu manifold M̃. Then the formulas Gauss and Weingarten for
M in M̃ given by

∇̃XY = ∇XY + σ(X,Y) (2.4)

and
∇̃XV = −AV X + ∇

⊥

XV, (2.5)

for any vector fields X,Y tangent to M and V normal to M, where, ∇ denotes the induced Levi-Civita connection on
M, ∇⊥ is the normal connection , AV is the shape operator of M with respect to V and σ is second fundamental form
of M in M̃. The second fundamental form σ and shape operator AV are related by

g(AV X,Y) = g(σ(X,Y),V) (2.6)

for all X,Y ∈ Γ(T M) and V ∈ Γ(T⊥M).

The mean curvature vector H of M is given by H = 1
m

m∑
i=1
σ(ei, ei), where m is the dimension of M and {e1, e2, ..., em} is

a local orthonormal frame of M. A submanifold M of an contact metric manifold M̃ is said to be totally umbilical if

σ(X,Y) = g(X,Y)H, (2.7)

for any X,Y ∈ Γ(T M). A submanifold M is said to be totally geodesic if σ = 0 and M is said to be minimal if H = 0.
Now, let M be a submanifold of an almost contact metric manifold M̃. Then for any X ∈ Γ(T M), we can write

φX = T X + NX, (2.8)

where T X is the tangential component and NX is the normal component of φX. Similarly for V ∈ Γ(T⊥M), we can
write

φV = tV + nV, (2.9)

where tV is the tangential component and nV is also the normal component of φV .
Furthermore, for any X,Y ∈ Γ(T M),we have g(T X,Y) = −g(X,TY) and V,U ∈ Γ(T⊥M), we get g(U, nV) = −g(nU,V).
These show that T and n are also skew-symmetric tensor fields. Moreover, for any X ∈ Γ(T M) and V ∈ Γ(T⊥M), we
have

g(NX,V) = −g(X, tV), (2.10)

which gives the relation between N and t.
Now, applying φ to (2.8) and (2.9), we respectively, obtain

T 2X = −X + η(X)ξ − tNX, NT X + nNX = 0 (2.11)

and
TtV + tnV = 0, NtV + n2V = −V (2.12)

for any vector fields X tangent to M and V normal to M.
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We define the covariant derivatives of the tensor field T , N, t and n by (∇XT )Y = ∇XTY − T∇XY , (∇XN)Y =

∇⊥X NY − N∇XY , (∇Xt)V = ∇XtV − t∇⊥XV and (∇Xn)V = ∇⊥XnV − n∇⊥XV respectively.
Since M is tangent to ξ, making use of (2.4), ( 2.6) and (2.8), we obtain

∇Xξ = X − η(X)ξ, σ(X, ξ) = 0, AVξ = 0 (2.13)

for all V ∈ Γ(T⊥M) and X ∈ Γ(T M).

Let X and Y be vector fields tangent to M. Then we obtain

(∇XT )Y = ANY X + tσ(X,Y) + g(T X,Y)ξ − η(Y)T X (2.14)

and
(∇XN)Y = nσ(X,Y) − σ(X,TY) − η(Y)NX. (2.15)

Similarly, for any vector field X tangent to M and any vector field V normal to M. Then we have

(∇Xt)V = AnV X − T AV X + g(NX,V)ξ (2.16)

and
(∇Xn)V = −σ(tV, X) − NAV X. (2.17)

3. Contact CR-Submanifold of a Kenmotsu Manifold

In this section, we shall define contact CR-submanifolds in a Kenmotsu manifold and research fundamental proper-
ties of their from theory of submanifold.
Let M be submanifold of an almost contact metric manifold M̃, then M is called invariant submanifold if φ(TpM)
⊆ TpM, ∀p ∈ M. Further, M is said to be anti-invariant submanifold if φ(TpM) ⊆ T⊥p M, ∀p ∈ M. Similarly, it can be
easily seen that a submanifold M of an almost contact metric manifolds M̃ is said to be invariant(anti-invariant), if N
(or T ) are identically zero in (2.8). Now we give definition of contact CR-submanifold which is a generalization of
invariant and anti-invariant submanifolds.

Definition 3.1. A submanifold M of a Kenmotsu manifold. M̃ is called contact CR-submanifold if there exists on M
a differentiable invariant distribution D whose orthogonal complementary D⊥ is anti-invariant, i.e.,

i) T M = D ⊕ D⊥, ξ ∈ Γ(D)
ii) φDp = Dp

iii) φD⊥p ⊆ T⊥p M, for each p ∈ M [13].
A contact CR-submanifold is called anti-invariant(or, totally real) if Dp = 0 and invariant(or, holomorphic) if

D⊥p = 0, respectively, for any p ∈ M. It is called proper contact CR-submanifold if neither Dp = 0 nor D⊥p = 0.

Anti-invariant and invariant submanifolds are the special case of contact CR-submanifolds.
If we denote dimensions of the distributions D and D⊥ by m1 and m2, respectively. Then M is called anti-invariant

(resp. invariant) if m1 = 0 (resp. m2 = 0).

Let us denote the orthogonal projections on D and D⊥ by P1 : Γ(T M) → D and P2 : Γ(T M) → D⊥ respectively.
Then we have

X = P1X + P2X + η(X)ξ
for any X ∈ Γ(T M), where P1X ∈ Γ(D) and P2X ∈ Γ(D⊥). From (2.8) and (2.9), we have

and
φX = T X + NX = φP1X + φP2X = T P1X + NP1X + T P2X + NP2X

it is clear that
NP1 = 0 and T P2 = 0,

N = NP2 and T = T P1.

Proposition 3.2. Let M be an isometrically immersed submanifold of a Kenmotsu manifold M̃. Then the invariant
distribution D has an almost contact metric structure (T, ξ, η, g) and so dım(Dp) =odd for each p∈ M [5].
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We denote the orthogonal subbundle φD⊥ in T⊥M by υ, then we have direct sum

T⊥M = φD⊥ ⊕ ν and φD⊥ ⊥ ν.

Here we note that ν is an invariant subbundle with respect to φ and so dim(ν)=even.
Also,

t(T⊥M) = D⊥ and n(T⊥M) ⊂ ν.

Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then for any X,Y ∈ Γ(D⊥) and U ∈ Γ(T M), also
by using (2.3), (2.4) and (2.6), we have

g(ANXY − ANY X,U) = g(σ(Y,U),NX) − g(σ(X,U),NY)

= g(∇̃UY, φX) − g(∇̃U X, φY)
= g(φ∇̄U X,Y) − g(φ∇̄UY, X)
= −g(ANXU,Y) + g(ANYU, X)
= g(ANY X − ANXY,U).

It follows that
ANXY = ANY X. (3.1)

Proposition 3.3. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then, we have

∇⊥XφY − ∇⊥YφX ∈ φ(D⊥)

for any X,Y ∈ Γ(D⊥).

Proof. For any X,Y ∈ Γ(D⊥),V ∈ Γ(ν). Then (2.3), Gauss and Weingarten formulas, we have

g(∇⊥YφX − ∇⊥XφY,V) = g(AφXY + ∇̃YφX − AφY X − ∇̃XφY,V)

= g(∇̃YφX − ∇̃XφY,V)

= g((∇̃Yφ)X + φ∇̃Y X − (∇̃Xφ)Y − φ∇̃XY,V)

= g(g(φY, X)ξ − η(X)φY + φ∇̃Y X − g(φX,Y)ξ + η(Y)φX − φ∇̃XY,V)

= g(φ∇̃Y X − φ∇̃XY,V) = g(∇̃XY − ∇̃Y X, φV)
= g(σ(X,Y) − σ(Y, X), φV) = 0.

Thus the proof is complete. �

Theorem 3.4. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then the tensor n is parallel if and only
if the shape operator AV of M satisfies the condition

AV tY = AY tV, (3.2)

for all Y,V ∈ Γ(T⊥M).

Proof. For all Y,V ∈ Γ(T⊥M), and for all X ∈ Γ(T M). By using (2.6), (2.10) and (2.17), we have

g((∇Xn)V,Y) = −g(σ(tV, X),Y) − g(NAV X,Y)
= −g(AY tV, X) + g(AV X, tY)
= g(AV tY − AY tV, X).

The proof is complete. �

Theorem 3.5. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then the anti-invariant distribution
D⊥ is completely integrable and its maximal integral submanifold is an anti-invariant submanifold of M̃.
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Proof. For any Z,W ∈ Γ(D⊥) and X ∈ Γ(D), By using (2.2) and (2.3), we have

g([Z,W] , X) = g(∇̃ZW, X) − g(∇̃WZ, X)

= g(∇̃W X,Z) − g(∇̃Z X,W)

= g(φ∇̃W X, φZ) − g(φ∇̃Z X, φW)

= g(∇̃WφX − (∇̃Wφ)X, φZ) − g(∇̃ZφX − (∇̃Zφ)X, φW)

= g(∇̃WφX − g(φW, X)ξ + η(X)φW, φZ) − g(∇̃ZφX − g(φZ, X)ξ + η(X)φZ, φW).

Here, By using (2.4), (2.6) and (3.1), we obtain

g([Z,W] , X) = g(∇̃WφX, φZ) − g(∇̃ZφX, φW)
= g(σ(φX,W), φZ) − g(σ(φX,Z), φW)
= g(AφZW − AφZW, φX) = 0.

Thus [Z,W] ∈ Γ(D⊥) for any Z,W ∈ Γ(D⊥), that is, D⊥ is integrable. Thus the proof is complete. �

Definition 3.6. A contact CR-submanifold M of Kenmotsu manifold M̃ is said to be D-geodesic (resp. D⊥-geodesic)
if σ(X,Y) = 0 for X,Y ∈ Γ(D) (resp. σ(Z,W) = 0 for Z,W ∈ Γ(D⊥)). If σ(X,Z) = 0, the M is called mixed geodesic
submanifold, for any X ∈ Γ(D) and Z ∈ Γ(D⊥).

Theorem 3.7. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then the anti-invariant distribution D⊥

is totally geodesic in M if and only if σ(Z, X) ∈ Γ(ν) for any Z ∈ Γ(D⊥) and X ∈ Γ(D).

Proof. For any Z,Y ∈ Γ(D⊥) and X ∈ Γ(D), we have

g(∇ZY, φX) = −g(∇̃ZφX,Y)

= −g((∇̃Zφ)X + φ∇̃Z X,Y)

= −g(g(φZ, X)ξ − η(X)φZ + φ∇̃Z X,Y)

= g(∇̃Z X, φY) = g(σ(Z, X), φY).

Thus ∇ZY ∈ Γ(D⊥) if and only if σ(Z, X) ∈ Γ(ν). �

Theorem 3.8. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then the invariant distribution D is
totally geodesic in M if and only if σ(Z,Y) ∈ Γ(ν) for any Z,Y ∈ Γ(D).

Proof. For any Z,Y ∈ Γ(D) and X ∈ Γ(D⊥), we have

g(∇ZφY, X) = g((∇̃Zφ)Y + φ∇̃ZY, X)

= g(g(φZ,Y)ξ − η(Y)φZ + φ∇̃ZY, X)

= −g(∇̃ZY, φX) = −g(σ(Z,Y), φX),

thus ∇ZY ∈ Γ(D) if and only if σ(Z,Y) ∈ Γ(ν). This completes of the prof. �

Theorem 3.9. Let M be a proper contact CR-submanifold of a Kenmotsu manifold M̃. If N is parallel on D, then either
M is a D−geodesic submanifold or σ(X,Y) is an eigenvector of n2 with eigenvalue −1, for any X,Y∈ Γ(D).

Proof. If N is parallel, then from (2.15), we have

nσ(X,Y) − σ(X,TY) − η(Y)NX = nσ(X,Y) − σ(X,TY) = 0. (3.3)

for any X,Y ∈ Γ(D).
On the other hand, since D is a invariant distribution and Tξ = 0, we have

nσ(X,−Y + η(Y)ξ) = σ(X,T (−Y + η(Y)ξ)) (3.4)

that is,

nσ(X,Y − η(Y)ξ) = σ(X,TY).
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Now, applying n to (3.5), we obtain

n2σ(X,Y − η(Y)ξ) = nσ(X,TY). (3.5)

By interchanging of Y and TY in (3.3) , we have

nσ(X,TY) = σ(X,T 2Y). (3.6)

Hence, by using (3.5) and (3.6), we obtain

n2σ(X,Y − η(Y)ξ) = nσ(X,TY) = σ(X,T 2Y) = −σ(X,Y − η(Y)ξ + tNY) = −σ(X,Y − η(Y)ξ).

This implies that either σ vanishes on D or σ is an eigenvector of n2 with eigenvalue −1. �

Example 3.10. From now on, (R9, φ, ξ, η, g) will denote the manifold R9 with its usual an almost contact metric
structure given by

η =
1
2

(dz −
4∑

i=1

yidxi), ξ = 2
∂

∂z

g = η ⊗ η +
1
4

4∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi)

φ(
4∑

i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

4∑
i=1

(Yi
∂

∂xi
− Xi

∂

∂yi
),

where (xi, yi, z), i = 1, 2, 3, 4 are the cartesian coordinates.
Now, let M be a submanifold of R9 defined by the following equation

χ(w, u, s, v, z) = 2(w, 0, u, 0, s, 0, 0, v, z).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors

e1 = 2(
∂

∂x1
+ yi

∂

∂z
), e2 = 2

∂

∂y1
, e3 = 2(

∂

∂x3
+ y3

∂

∂z
), e4 = 2

∂

∂y4
, e5 = 2

∂

∂z
= ξ.

For the almost contact structure φ of R9. We obtain,

φe1 = −e2, φe2 = e1, φe3 = −2
∂

∂y3
, φe4 = 2

∂

∂x4
, φe5 = 2

∂

∂z
= 0.

By direct calculations, we can infer D = span {e1, e2, e5} is invariant distribution. Since g(φe4, e j) = 0, j = 1, 2, 3, 5
and g(φe3, Ei) = 0, i = 1, 2, 4, 5, φe3,φe4∈ T⊥M, D⊥ = span{e3, e4} is an anti-invariant distribution. Thus M is a
5-dimensional proper contact CR-submanifold of R9 with it’s usual almost contact metric structure [10].
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