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Abstract: In this study, using the Materials Calculator software program, the pseudo binary phase 

diagrams (i.e. isoplethal maps) of high chromium white cast irons (~19% in weight) with different 

molybdenum contents were simulated. In order to test the accuracy of the calculated phase diagrams, the 

transformation temperatures read from the diagrams at certain compositions were compared with the 

phase transformation temperatures measured using Differential Scanning Calorimetry (DSC) analysis of 

the samples produced by casting in the same composition followed by slow cooling. With the same 

purpose, low temperature phases read from the phase diagrams were compared with the crystalline phases 

determined by X-Ray Diffraction (XRD) of the casted samples. Simulated diagrams predicted an increase 

in the amount of secondary M23C6 carbides with increasing molybdenum content. The validity of this 

prediction was tested by determining the phase distribution and phase compositions in the casted samples 

by means of metallographic examinations and Scanning Electron Microscopy (SEM) - Energy Dispersive 

Spectroscopy (EDS) analyzes. When the hardness values of the samples were taken into consideration, it 

was seen that the hardness increased from 44.90 to 51.05 HRC with a 1% increase in Mo content and a 

corresponding increase in the amount of secondary carbides without any heat treatments. Results show 

that theoretical predictions and experimental measurements are in accord and estimating phase equilibria 

in multi-component systems is of practical importance. 

 

Keywords: Computational thermodynamics, MatCalc, Alloy design, High chromium white cast iron, 

Secondary carbides 

 

Yüksek Kromlu Beyaz Dökme Demirlerde Faz Dengesinin Benzetimi  

 

Öz: Bu çalışmada Materials Calculator yazılımı kullanılarak, farklı molibden içeriğine sahip yüksek 

kromlu beyaz dökme demirlerin (ağırlıkça ~%19) ikilimsi faz diyagramları (eşdeğer kesit haritaları) 

benzetilmiştir.  Hesaplanan faz diyagramlarının doğruluğunu test etmek amacı ile, diyagramlardan belirli 

kompozisyonlarda okunan dönüşüm sıcaklıkları, aynı kompozisyonlarda döküm sonrası yavaşça 

soğutularak üretilen numunelerin diferansiyel taramalı kalorimetri (İng.: Differential Scanning 

Calorimetry, DSC) analizi ile ölçülen faz dönüşüm sıcaklıkları ile karşılaştırılmıştır. Yine aynı amaçla, 

faz diyagramlarından okunan düşük sıcaklık fazları ve döküm ile üretilen numunelerin içindeki, X-ışını 

kırınım yöntemi (İng.: X-Ray Diffraction, XRD) ile belirlenen, kristalin fazlar karşılaştırılmıştır. 

Benzetilen diyagramlar, artan molibden içeriği ile ikincil M23C6 karbürlerin miktarında bir artış 

öngörmüştür. Bu öngörünün geçerliliği döküm ile üretilen numuneler içerisindeki faz dağılımı ve faz 

kompozisyonlarını metalografik muayene, taramalı elektron mikroskobu (İng.: Scanning Electron 

Microscopy, SEM) – enerji saçınım spektrometresi (İng.: Energy Dispersive Spectroscopy, EDS) 

analizleri ile belirleyerek test edilmiştir. Numunelerin sertlik değerlerine bakıldığında ise, herhangi bir ısıl 
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işlem yapılmaksızın Mo içeriğindeki %1 'lik bir artış ve buna bağlı ikincil karbürlerin miktarındaki artış 

ile sertliğin 44,90'dan 51,05 HRC'ye yükseldiği görülmüştür. Elde edilen sonuçlar deneysel ölçümler ve 

teorik tahminlerin uyumlu olduğunu ve çok bileşenli sistemlerde faz dengesinin tahmin edilebilmesinin 

pratik önemini göstermiştir. 

 

Anahtar Kelimeler: Hesaplamalı termodinamik, MatCalc, Alaşım tasarımı, Yüksek kromlu beyaz 

dökme demir, ikincil karbürler 

 
1. INTRODUCTION 

 

White cast irons are hypoeutectic alloys in which the carbon remains dissolved in the 

carbide phases without decomposing into graphite during solidification. Because of the hard 

carbides, they preferred in high abrasion resistance required applications in mining, milling, 

earth-handling, and manufacturing industries (Su et al., 2006; Çetinkaya, 2003). In order to 

improve further the wear resistance, they usually alloyed with strong carbide forming elements 

(W, Mn, Mo, Cr, etc.). When the amount of alloying element exceeds 4%, they are referred as 

high-alloy white cast iron. 

Chemical and hardness requirements for white cast irons suitable for applications requiring 

high abrasion resistance are specified in ASTM A532 standard (2014). High-alloy white cast 

irons conforming to this standard can be classified in three main classes. These are nickel – 

chromium, chromium – molybdenum and high chromium white cast irons. Nickel – chromium 

white cast irons contain 3.3 – 5 %Ni and 1 – 11 %Cr, chromium – molybdenum cast irons 

contain up to 3 %Mo and 12 – 23 %Cr, and high chromium white cast irons contain 23 – 30% 

Cr in mass percent. However, it is a common practice to name hypoeutectic alloys based on the 

ternary Fe-Cr-C system with compositions between 11 – 30 %Cr and 1.8 – 3.6% C as high 

chromium white cast irons (Jacuinde and Rainforth, 2001; Tabrett et al., 1996; Wiengmoon et 

al., 2005).  

During solidification of high chromium white cast irons, primary austenite dendrites, 

followed by a eutectic mixture of austenite and M7C3 carbides or one of its transformation 

products form (Correa et al., 2011; Filipovic et al., 2011; Tabrett et al., 1996). The high amount 

of chromium in these alloys favor the formation of carbides (type M7C3 in between 9.5 to 15% 

Cr and M23C6 above 30 %Cr) and a pearlitic matrix in the absence of alloying additions (Abdel-

Aziz et al., 2017; Wiengmoon et al., 2011; Zumelzu et al., 2003). Nickel, copper, and 

manganese are commonly added to improve hardenability and inhibit pearlite formation 

(Tabrett et al., 1996). Likewise, molybdenum is added to increase hardenability, but it also leads 

to the formation of other hard carbides apart from the M7C3 (Imuraiet al., 2015). The amount, 

type, size, shape and distribution of these carbides determine abrasion resistance of the material. 

Phase diagrams are primary tools for determining the stable phases and their amounts on 

equilibrium cooling. Experimentally calculated phase diagrams are available only for simple 

binary and triple systems, whereas industrially produced alloys are composed of 10 or more 

components (Harding and Saunders, 1997). Today, various software programs (e.g. FactSage 

(Bale et al., 2009), MatCalc (Kozeschnik and Buchmayr, 2001), Pandat (Cao et al., 2009) and 

Thermo-Calc (Andersson et al., 2002)) are used to obtain thermodynamic calculations for 

multicomponent systems. Although, the features offered by the individual software packages 

differ, some modules, such as for the calculation of binary and ternary phase diagrams, are 

common to all software packages (Kattner, 2016). The MatCalc (The Materials Calculator) 

software program (Kozeschnik and Buchmayr, 2001) provides the ability to make 

thermodynamic as well as thermo-kinetic calculations for multicomponent systems. Its 

thermodynamic engine is based on the CALPHAD (CALculation of PHAse Diagrams) method 

and databases. The CALPHAD method provides the ability to simulate and generate phase 

diagrams to achieve a consistent approach to the determination of thermodynamic properties in 

the absence of experimental data in multi-component systems.  
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In this study, it was aimed to simulate the pseudo binary phase diagrams (i.e. isoplethal 

maps) of high chromium white cast irons (~19 %Cr in weight), containing different amounts of 

molybdenum, using MatCalc in order to assess the effect of molybdenum on the phase 

equilibria of these alloys. The calculated phase diagrams were validated by Differential 

Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) analysis of the casted samples 

produced by casting in the same composition followed by slow cooling. Simulated diagrams 

predicted an increase in the amount of M23C6 carbides with increasing molybdenum content. 

The validity of this prediction was also tested by determining the phase distribution and phase 

compositions in the casted samples by means of metallographic examinations and Scanning 

Electron Microscopy (SEM) - Energy Dispersive Spectroscopy (EDS) analyzes. 

2. EXPERIMENTAL 

 

The pseudo-binary phase diagrams of high chromium white cast iron alloys were 

simulated using MatCalc 6.00.0200 the Materials Calculator software program with database 

mc_fe_2.059.tdb. In order to validate the constructed phase diagrams, y-blocks (Figure 1) with 

two different compositions on the diagram, given in Table 1, were casted. Chemical analysis of 

the samples were performed by Thermo Scientific ARL 3460 optical emission spectrometer. 

Differential scanning calorimetry (DSC) analyses were carried out using the Toledo TGA/DSC 

3+ for detecting the possible phase transformations. The samples with 10 – 40 mg were 

prepared and heated from room temperature to 1400 °C at a rate of 5 °C/min and then cooled to 

room temperature at the same rate. XRD analyses were performed using Rigaku Ultima IV X-

ray diffractometer equipped with a Cu  K-α source (λ = 0.15406 nm). Tests were carried out at 

40 kV, 40 mA, and the Bragg angle (2θ) varied from 10 to 90° with a scan rate of 2°/min.  

For microstructural analysis, white cast iron samples were encapsulated in a round bakelite 

(Metkon-Phenolic resin powder) mount with a diameter of 4 cm. The specimens were 

mechanically grinded with 180 to 1200 grit SiC paper then polished with 1µm diamond 

suspension to mirror finish (Metkon Forcipol 1V Grinder-Polisher). Finally, the samples were 

etched with Nital reagent (2–4 mL nitric acid (HNO3) and 96–98 mL ethanol). After the 

metallographic treatments, specimens were cleaned in an ultrasonic bath using ethanol for 10 

min and then dried. The microstructures of the specimens were investigated by using an optical 

microscope (Nikon ECLIPSE LV150N). Hardness measurements were performed with 

Krautkramer DynaMIC instrument. SEM - EDS analyzes were performed by FEI / Quanta 450 

FEG scanning electron microscope and energy scattering spectrometer. 

 

Table 1. Elemental compositions of the tested alloys determined using optical emission 

spectrometry. 

Sample 

name 

Chemical composition  

(mass %) 

Sum 

(%) 

C Si Mn P S Cr Mo Ni V Al Cu 
 

9640 2.95 0.69 0.65 0.02 0.02 19.14 0.48 0.24 0.06 0.13 0.09 24.51 

9645 2.86 0.67 0.70 0.02 0.02 19.72 1.57 0.23 0.06 0.03 0.10 26.04 
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Figure 1: 

Rectangular blocks (20x4x4 cm; ca. 5 kg) cut from y-blocks (ca. 35 kg) of different 

compositions. 

 

2. RESULTS and DISCUSSION 

 

The calculated pseudo binary phase diagrams for the two alloy systems given in Table 1 is 

presented in Figure 2. From these diagrams, it is found that the eutectic point temperature and 

carbon content are 1281 °C and 3.21% for alloy 9640, respectively, whereas the corresponding 

values for alloy 9645 are 1275 °C and 3.20%. Note that the eutectic transition temperature is 

increased and the content of eutectic carbon is decreased compared to the unalloyed white cast 

iron (1147 °C and 4.3 %C). This alloying affect favors the presence of higher proportion of 

stable chromium carbides (Higuera-Cobos et al., 2015). The primary austenite phase nucleates 

and grows as the alloy 9640 (with 2.95 %C) cools down to 1282 °C as shown in Figure 2a-3a. 

The transformation start temperature read from the phase diagram is 1298 °C (Figure 2a), which 

is very close to the exothermic peak temperature at 1310 °C (Figure 3b, peak # 1). Afterwards, a 

eutectic reaction L → γ + M7C3 occurs at 1282 °C and finishes at 1238 °C which are also close 

to the DSC peaks # 2 and 3. In between 1238 and 802 °C austenite and M7C3 phases coexist. At 

802 °C the eutectoid reaction γ → α + M7C3 occurs and leaves a two phase α + M7C3 structure 

after 778 °C. These eutectoid-transformation-start and finish temperatures are also very close to 

the DSC peaks # 4 and 5 given in Figure 3b. For lower temperatures there still exists a certain 

level of agreement as observed by Li et al. (2009) and Yen et al. (2013). 

 

 
Figure 2: 

Pseudo-binary phase diagram for samples; 

a. 9640 b. 9645 
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Figure 3: 

a. phase boundaries at 2.95 weight % carbon for alloy 9640  b. differential scanning 

calorimetry curve for the same alloy. 

 

 

The presence of low temperature phases, read from the phase diagrams, were checked in the 

samples produced by the casting by the X-ray diffraction analysis given in Figure 4. 

 

 

  
 

Figure 4: 

X-ray diffraction patterns for samples 9640 and 9645. 
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Looking at Figure 4, it appears that ferrite (α-Fe) and austenite (γ-Fe) peaks are evident in both 

samples. The as cast microstructure of high chromium white cast irons usually reported to have 

a metastable austenitic matrix (Bedolla-Jacuinde et al., 2005; Filipovic et al., 2011; Li et al., 

2009; Tabrett et al., 1996). Yet, the presence of ferrite (in lower amounts than austenite) was 

also reported in literature (Higuera-Cobos et al., 2015) as is observed herewith. From MatCalc 

one can also track the chemical compositions of the carbides, which are presented in Table 2. 

From the chemical compositions presented in Table 2, it can be seen that the equilibrium 

composition of the M7C3 phase should be a Cr-rich (Cr, Fe, Mn, Mo)7C3 type carbide phase. 

Accordingly, Figure 4 confirms presence of (Fe, Cr)7C3 type carbides. The M3C2 phase 

according to Table 2 must be Cr3C2 for both alloys. The peak at 2θ = 39.4º, which is the 

strongest peak in the diffraction pattern of these carbides shown in Figure 4, is apparent in both 

samples. Similarly, due to Table 2, the M23C6 phase should be a (Fe, Cr, Mo, Mn)23C6 type 

carbide phase. In Figure 4, the peak at 2θ = 44.4º, which is the strongest peak in the diffraction 

pattern for Cr23C6 phase, coincides with the α - Fe peak, and the peak at 2θ = 74.3º in alloy 9645 

is located close to the peak belonging to this carbide. 

 

Table 2. Phase details: Chemical composition of the carbides in low Mo (9640) and high 

Mo (9645) alloys. 

 

Carbide 
Alloy 

# 

Chemical composition (mol %)   

C Fe Cr Mo Mn V 

M3C2 
9640 40 - 59.81 - - 0.19 

9645 40 - 59.85 - - 0.15 

M7C3 
9640 30 15.18 43.28 1.35 9.94 0.22 

9645 30 14.83 53.51 0.13 1.19 0.34 

M23C6 
9640 20.69 35.48 33.20 9.84 0.62 - 

9645 20.69 38.30 32.61 8.19 0.19 - 

 

Comparing Figures 2a and b suggests that increasing the Mo amount shifts the M23C6/M7C3 

boundaries towards higher carbon concentrations on an isotherm and in this respect, Mo act as a 

M23C6 stabilizer. For example, an isotherm drawn at 900 °C crosses the 

γ+M23C6/γ+M23C6+M7C3 phase boundary at 1.25 %C for alloy 9640, whereas it is 1.6 %C for 

alloy 9645. Similarly, for γ+M23C6+M7C3/γ+M7C3 phase boundary the values are 1.75 and 2.35 

%C respectively for 9640 and 9645. Medvedeva et al. were also predicted tungsten and 

molybdenum additions stabilize the binary M23C6 (M = Cr, Fe, Co, Ni) and ternary (Cr,M)23C6 

(M = Fe, Ni) carbides by using first principles calculations (Medvedeva et al., 2015). This effect 

is best illustrated in Figure 5. The calculated volumetric equilibrium phase fractions show that 

M23C6 starts to form at 770 °C in high Mo (9645) alloy compared to 470 °C in low Mo (9640) 

alloy. The final phase fraction of M23C6 in 9645 is about 10 %, which is almost five times 

higher than 9640.  
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Figure 5: 

Calculated equilibrium phase fractions for samples; 

a. 9640  b. 9645 

 

The microstructure of the alloys were investigated with optical microscopy. Figure 6 shows that 

the 9640 alloy has a coarser structure with discontinuous carbides whereas the 9645 alloy has 

finer structure. The refining mechanism may be attributed to the lower eutectic transformation 

temperature due to higher amount of molybdenum in alloy 9645. The lower the carbide 

formation temperature, the higher the nucleation undercooling (i.e. increased driving force for 

nucleation or increased number of nuclei’s) and the finer the structure. Conversely, the growth 

rate of the eutectic carbide colonies decreases with decreasing eutectic temperature. The 

increase of the nucleation rate and the decrease of the growth rate of the eutectic colonies 

together lead to small carbide spacing (Mampuru et al., 2016; Ogi et al., 1982; Youping et al., 

2012). Furthermore, in higher magnification (Figure 6f) finely distributed secondary carbides 

were identified within the austenitic matrix of alloy 9645. In order to gain information on these 

secondary carbides, alloy 9645 was subjected to SEM - EDS analysis. Results of the EDS point 

analyses on four different points shown in Figure 7 is presented in Table 3. When these 

measurements are examined, it is seen that the primary carbides marked in Figure 7ab are Cr-

rich and the secondary carbides marked in Figure 7cd are in Fe-rich structure. These 

observations are consistent with the chemical compositions of the carbides previously presented 

in Table 2 (Cr-rich M7C3, Fe-rich M23C6). 
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Figure 6: 

Metallographic examination results for sample 9640 at  a. 10x, b.  50x, and c. 100x, and for 

sample 9645 at d. 10x, e. 50x, and  f. 100x magnification where finely distributed M23C6 

secondary carbides are marked within the austenitic matrix and eutectic M7C3 carbide colonies.  

 

Table 3:  Chemical compositions from EDS analysis of alloy 9645 

Point  

Chemical composition 

(weight %) 

Fe Cr Mn Mo 

a 43.72 52.35 1.68 2.25 

b 42.91 53.55 1.51 2.03 

c 76.62 20.27 1.38 1.74 

d 75.68 20.42 2.07 1.86 

 

The basic physical property correlating with wear resistance of white cast irons is hardness 

(Heino et al., 2017). According to Archard's law (Archard, 1953), the material lost by abrasive 

wear is inversely proportional to the hardness, in other words the hardness and abrasion 

resistance are directly proportional. For this reason, measurements were taken to see the effect 

of the increase in the amount of secondary carbides on material hardness. The measured 

hardness values in Rockwell scale are given in Table 4. From this data it is seen that hardness is 
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increased from 44.90 to 51.05 HRC with a ~ 1% increase in Mo content due to the 

microstructural modification presented in Figure 6 without any heat treatments.  

 

 

Figure 7: 

SEM image of the sample 9645 and four points where the point EDS analysis is made: a) and b) 

primary carbides, c) and d) secondary carbides. 

 

Table 4. Measured hardness values in Rockwell scale. 

Sample name C Cr Mo HRC 

9640 2.95 19.14 0.48 44.90 

9645 2.86 19.72 1.57 51.05 

 

3. CONCLUSION 

In this work, which is an example of the use of CALPHAD based computational 

techniques in the design of high chromium white cast iron alloys, binary phase diagrams have 

been simulated for multicomponent alloy systems with different molybdenum content and the 

resulting diagrams have been verified experimentally (by DSC and XRD analysis). Simulated 

pseudo binary phase diagrams predicted an increase in the amount of M23C6 carbides with 

increasing molybdenum content. Metallographic examinations confirm the existence of finely 

distributed secondary M23C6 carbides within the austenitic matrix phase of high molybdenum 

content sample, which results in an increase in the hardness of the sample. SEM - EDS analyzes 

show that these carbide phases are Fe - rich in conformity with theoretical predictions. The 

MatCalc application environment not only provides thermodynamics calculations but also paves 

way to multicomponent, multiphase kinetics calculations. Solid state precipitation kinetics 

during heat treatments are left as a future work. 
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