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Abstract. Inspiring from the consequence of constructing conformal Killing-Yano forms out of Killing-Yano 

forms and closed conformal Killing-Yano forms, this work includes a method for building up twistors from 

Killing spinors which can be analogously interpreted as the quantum electrodynamical pair annihilation process 

in background gravitational fields. The former consequence is easily verified if one introduces a new defining 

differential equation for (possibly inhomogeneous) Killing-Yano forms which is free from auxiliary vector 

fields, as is done in this text. From this point of view a neat relation between the symmetry operators of massive 

and massless Dirac equation is also introduced. Some other physical interpretations are also included. 

Keywords: Clifford Algebras and Spinors, Twistors, Killing-Yano forms, Killing spinors. 

Twistörler ve Killing Spinörleri Arasındaki Bir Ilişki Üzerine 

Özet. Killing-Yano formları ve kapalı konformal Killing-Yano formlarından, konformal Killing-Yano formları 

oluşturabilme sonucundan esinlenmek suretiyle, bu çalışma Killing spinörlerinden twistörler inşa etmek için bir 

yöntem içermektedir ki bu benzeşik olarak arka-zemin kütle-çekimsel alanlarda kuantum elektrodinamiksel çift 

yokoluşu olarak yorumlanabilmektedir. Eğer bu makalede yapıldığı gibi (homojen olmaması muhtemel) 

Killing-Yano formları için yardımcı vektör alanlarından muhaf yeni tanımlayıcı bir diferensiyel denklem 

tanıtılırsa ilk sonuç kolyaca doğrulanabilir. Bu bakış açısıyla kütleli ve kütlesiz Dirac denkleminin simetri 

işlemcileri arasında muntazam bir ilişki tanıtılabilmektedir. Bazı diğer fiziksel yorumlar da içerilmektedir. 

Anahtar Kelimeler: Clifford cebirleri ve spinörler, Twistörler, Killing-Yano formları, Killing spinörleri. 

 

1. INTRODUCTION 

Killing spinors are fruitful objects that give rise to 

many differential equations that appear in 

mathematical physics. Up to now bosonic 

equations were constructed from the real bilinear 

covariants of Killing spinors which include Duffin-

Kemmer-Petiau and Maxwell-like equations in 

gravitational fields [1], but relation to possible 

fermionic field equations were absent. Connectedly 

the construction of twistors from Killing spinors is 

to be seen by us as a first step in this direction, that 

may be tied [2] to the generation of higher spin 

fields by known methods such as spin 

raising/lowering of non-gravitational fields in 

curved spacetimes [3-5]. We show that, in analogy 

with the quantum electrodynamical pair 

annihilation process, Killing spinors correspond to 

the electron-positron pair and twistors correspond 

to the pure radiation field. The mathematics 

literature include the classification of pseudo-

Riemannian manifolds admitting twistors [6,7] and 

the classification of pseudo-Riemannian manifolds 

admitting Killing spinors [8]; so our method will 

form a bridge between these classifications. 

We prefer to use coordinate-free differential 

geometry for the sake of notational elegance and 

brevity and also for clarity in direct geometrical or 

physical interpretations. The usage of 

componentwise tensor calculus is more common in 

physics community; closing this gap could only be 
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possible by transforming one language to the other. 

We tried to do this translation at least for a set of 

equations that we feel important and any reader can 

use this example as a dictionary in between; this is 

done in Appendix C. Pre-metric notions are 

handled through the usage of Cartan calculus on 

manifolds [9, 10], the participation of a metric 

tensor field into the set of spacetime structures [37] 

forces us to use the full power of Clifford bundle 

formulation of physics and geometry. This latter 

choice is precious for admitting a local equivalence 

between spinor fields and the sections of minimal 

left ideal bundle of the Clifford bundle. A good 

account of this tradition can be found in [11, 12]. 

Throughout the text we assume a Riemannian 

spacetime [38] i.e. a smooth manifold endowed 

with an indefinite metric 𝑔 and its Levi-Civita 

connection ∇. The organisation of the paper is as 

follows. In section II an explicit method for 

constructing conformal Killing-Yano (CKY) forms 

from Killing-Yano (KY) forms and closed 

conformal Killing-Yano (CCKY) forms is given; 

before that a new form for the definitive equation 

for KY forms is built up. Then the first order 

symmetry operators for massive and massless 

Dirac equations are reconsidered and are related in 

an elegant way in the view of the above setup. An 

intuitional question, which leads to the core of this 

paper, is asked at the end of section II. The positive 

answer of this main question is given in terms of a 

proposition and its proof. The analysis is bifurcated 

into fermionic and bosonic sectors both of which 

contain geometric identities that are derived in the 

corresponding subsections; the fermionic sector is 

detailed by considerations on charge conjugation, 

time reversal, helicity and their relation to Killing 

reversal due to the preceding main physical 

interpretation. After the conclusion of our paper at 

section IV, two appendices are given at the end. 

Appendix A is based on the calculation of the 

adjoints of the symmetry operators associated to 

KY and CCKY forms and ends up with a comment 

on symmetry algebra. Appendix B contains the 

derivation of the coordinate expressions of our 

primitive set of equations which is important for 

the understanding of general reader who are used 

to the notation of tensor components. 

2. BUILDING UP CONFORMAL KILLING-

YANO FORMS 

A. A Different Perspective for Defining Killing-

Yano Forms 

The important roles played by KY forms and CKY 

forms are various. They define the hidden 

symmetries of the ambient spacetime generalising 

to higher degree forms the ones induced by Killing 

and Conformal Killing vector fields, and they 

respectively can be used for setting up first order 

symmetry operators for massive and massless 

Dirac equations in curved spacetimes [14, 15]. 

These symmetry operators reduce to the Lie 

derivative on spinor fields for the lowest possible 

degree, so if carefully worked out they may define 

Lie multi-flows of spinor fields in a classical 

spacetime. Achieving this shall also extend the 

concept of Lie multi-flows to form fields and multi-

vector fields. As a consequence, the analysis of 

higher rank infinitesimal symmetries will heavily 

simplify [16, 17]. On the other side, via Noether's 

theorem, they induce conserved quantities 

associated to geodesics of (point) particles [18] and 

more generally to world-immersions of p-branes 

[19-21]; where there is much work to do for the 

later case [22]. Also the definition of some charges 

for higher dimensional black holes rely on the 

existence of these symmetry generating totally 

anti-symmetric tensor fields [23]. 

Now we want to redefine KY forms from a 

different perspective that is more general. The 

usual definition of a KY-form of degree p is the 

solution of 

∇𝑋𝜔 =
1

𝑝+1
i𝑋d𝜔.         (1) 

Exterior derivative 𝑑 and co-derivative d† ≔

∗−1 d ∗ 𝜂 can be given by the Riemannian relations 

d = 𝑒𝑎 ∧ ∇𝑋𝑎
, d† = −𝑖𝑋𝑎∇𝑋𝑎

 andi𝑋 is the internal 

contraction with respect to the vector field 𝑋. If 𝑇 

is a mixed tensor field of covariant degree r and 

contravariant degree s, its covariant differential ∇T 

which has one contravariant degree more than 𝑇 is 

defined as 
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(∇T)(X, Y1, … , Y𝑟 , 𝛽1, … , 𝛽𝑠) = (∇𝑋𝑇)( Y1, … , Y𝑟 , 𝛽1, … , 𝛽𝑠)                      (2) 

in terms of vector fields X, Y𝑖 and co-vector fields 𝛽𝑗. Also remembering the identity 

      (i𝑋𝜙)( Y1, … , Y𝑝−1) = 𝑝𝜙(𝑋, Y1, … , Y𝑝−1)                      (3) 

for any p-form 𝜙, we can define KY-forms in a different manner. If we write (1) as 

(∇𝑋𝜔)(Y1, … , Y𝑝) = (
i𝑋d𝜔

𝑝 + 1
) (Y1, … , Y𝑝) 

then by using (2) and (3) for the left and right hand sides respectively we obtain 

(∇𝜔)(𝑋, Y1, … , Y𝑝) = (d𝜔)(𝑋, Y1, … , Y𝑝)           (4) 

which is valid for any X, Y𝑖 ∈ Γ𝑇𝑀. As a result the new defining equation for a KY form is 

(∇ − d)𝜔 = 0                                                (5) 

and is not necessarily homogeneous. An integrability condition equivalent to Poincaré's lemma is ∇2𝜔 =

0. Remembering the defnition of the alternating idempotent map; i.e. 

𝐴𝑙𝑡:
 
Γ𝑇𝑟(𝑀)

𝐺

⟶
↣

 Γ𝑇Λ𝑟(𝑀)
𝐴𝑙𝑡(𝐺)

 

such that 

𝐴𝑙𝑡(𝐺)(Y1, … , Y𝑟) =
1

𝑟!
∑ 𝑠𝑖𝑔𝑛(𝜎) 𝐺(Y𝜎(1), … , Y𝜎(𝑟))

𝜎∈𝑆(𝑟)

 

it is possible to write (5) as 

((1 − 𝐴𝑙𝑡)∇)𝜔 = 0. 

B. Adding Closed Conformal Killing-Yano forms to Killing-Yano forms 

In this section our main objects will be CKY forms and we will give a trivial method for their construction. 

CKY form equation is 

∇𝑋𝜌 =
1

𝑝+1
i𝑋d𝜌 −

1

𝑛−𝑝+1
�̃� ∧ d†𝜌                    (6) 

where an inhomogeneous generalisation was given in [1], �̃� is the 𝑔-dual of the vector field 𝑋. We want 

to emphasize the duality between the space of Killing-Yano forms and the space of CCKY forms, that is 

if �̂� is a CCKY p-form then its Hodge dual ∗ �̂� is a KY (n - p)-form and vice-versa. Although the usual 

definition of a CCKY p-form �̂� is given by 

∇𝑋�̂� = −
1

𝑛−𝑝+1
�̃� ∧ d†�̂�                                                   (7) 

it is trivial from (6) that this equation can also be written as 

(∇† − d†)�̂� = 0                                                      (8) 
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where ∇†=∗−1 ∇ ∗ 𝜂 . 𝜂 is the main automorphism of the tensor algebra. In a Riemannian spacetime, the 

𝜌 in (6) satisfies (7)/(1) if it is closed/co-closed; so it is trivial that if 𝜔 is a KY p-form and �̂� is a CCKY 

p-form then we can built up a CKY p-form simply as 

𝜌 = 𝜔 + �̂�. 

Proof: Covariant derivative of 𝜌 with respect to a vector field 𝑋 is 

∇𝑋𝜌 = ∇𝑋𝜔 + ∇𝑋�̂�, 

using (1) for the first term and (9) for the second term at the right hand side gives 

∇𝑋𝜌 =
1

𝑝 + 1
i𝑋d𝜔 −

1

𝑛 − 𝑝 + 1
�̃� ∧ d†�̂� 

Adding �̂� to 𝜔 and 𝜔 to �̂� changes nothing at the right hand side, that is because 𝜔 is co-closed and �̂� is 

closed 

∇𝑋𝜌 =
1

𝑝 + 1
i𝑋d(𝜔 + �̂�) −

1

𝑛 − 𝑝 + 1
�̃� ∧ d†(�̂� + 𝜔) 

and the result (8) holds.  

It is also possible to construct inhomogeneous self dual or anti-self dual CKY forms from a KY form or 

equivalently from a CCKY form. The sign is determined only by the degree of the unit Yano form [39] 

because of the action of Hodge square on homogeneous forms; that is 

                      ∗∗ 𝛼 = (−1)𝑝(𝑛−𝑝)
𝑑𝑒𝑡𝐠

|𝑑𝑒𝑡𝐠|
𝛼  ;       𝛼 ∈ ΓΛ𝑝(𝑀)         

here 𝐠 is the chart matrix of the metric tensor 𝑔. If 𝛼 ∈ {𝜔, �̂�} is a unit Yano form and if ∗∗ 𝛼 = 𝛼 then 

𝛼 +∗ 𝛼 is a self dual inhomogeneous CKY form; but if ∗∗ 𝛼 = −𝛼 then 𝑖𝛼 +∗ 𝛼 is an anti-self dual 

inhomogeneous CKY form. 

Here a physical interpretation is inevitable according to the results of [1]; there the generalised Dirac 

currents (real homogeneous bilinears) of Killing spinors were satisfying a kind of higher degree Maxwell 

equations, so superposing the field associated to the co-existent Killing reversed spinors with the former 

field, a null higher-degree electromagnetic field for homogeneous CKY forms could be obtained. Passing 

to the inhomogeneous domain by linearity will turn out this null higher-degree electromagnetic field into 

a self dual or an anti-self dual one. The definition of 𝑖 = √−1 is ambiguous here but since it exists at least 

if the Hodge map defines a complex structure on ΓΛ𝑝(𝑀) which is always possible for some 𝑝 [24]. 

C. Symmetry considerations 

As mentioned before, KY forms were used for the generation of first order symmetries of the massive 

Dirac equation 𝐷𝜓 = 𝑚𝜓  

𝐿(𝜔) = 𝜔𝑎∇𝑋𝑎
+

𝑝

2(𝑝+1)
d𝜔                                                          (9) 

namely 𝐷𝐿(𝜔)𝜓 = 𝐿(𝜔)𝐷𝜓 = 𝑚𝐿(𝜔)𝜓 ; 𝜔𝑎 ≔ 𝑖𝑋𝑎𝜔 and Clifford product is shown by the juxtaposition 

of the factors, but we put a dot when left Clifford acting on spinor fields. CKY forms corresponds similarly 

to massless Dirac equation 𝐷𝜓 = 0 as 
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    𝐿(𝜌) = 𝜌𝑎∇𝑋𝑎
+

𝑝

2(𝑝+1)
d𝜌 −

𝑛−𝑝

2(𝑛−𝑝+1)
d†𝜌                                           (10) 

i.e. 𝐷𝐿(𝜔)𝜓 = 0. Since 𝐿(𝜌) = 𝐿(𝜔+�̂�) = 𝐿(𝜔) + 𝐿(�̂�) then we can deduce that the first order operator 

generated by a CCKY form �̂� İs 

𝐿(�̂�) = �̂�𝑎∇𝑋𝑎
−

𝑛−𝑝

2(𝑛−𝑝+1)
d†�̂�.                                                      (11) 

The question here is, which equation admits this as its first order symmetry operator? We do not know 

the answer to this question; but we should note that this operator does not reduce to the usual Lie derivative 

on spinor fields for degree one case, as opposed to 𝐿(𝜔). The defnition of 𝐿(𝜌) for massless Dirac equation 

necessitates the existence of an operator 𝑅 [40] such that 

𝐷𝐿(𝜌)=RD                                                                 (12) 

i.e. 𝐿(𝜌), 𝑅-commutes with 𝐷. Although 𝜌, 𝜔 and �̂� are all homogeneous and of the same degree for our 

purposes, for general considerations they are taken as inhomogeneous forms which can be separated to 

their Clifford even and Clifford odd parts if needed. So, if Φ is one of the above Yano forms that is 

inhomogeneous, its even and odd parts respectively Φ𝑜𝑑𝑑 = ∑ Φ𝑝𝑝 𝑜𝑑𝑑  and Φ𝑒𝑣𝑒𝑛 = ∑ Φ𝑝𝑝 𝑒𝑣𝑒𝑛  where 

Φ𝑝 is the degree p part of Φ obtained by applying 

the p-form projector ℘𝑝 on Φ [41]. For these general inhomogeneous investigations, the condition (14) 

transforms into 

[𝐷, 𝐿(𝜌)]𝐺𝐶𝐶=RD                                                                   (13) 

[. , . ]𝐺𝐶𝐶 is the Graded Clifford Commutator and the symmetry condition may be termed as graded R-

commuting. Note that the odd and even parts of the first order symmetry operators satisfy 

𝐿′(Φ)
𝑜𝑑𝑑 = 𝐿′(Φ even) , 𝐿′(Φ)

𝑒𝑣𝑒𝑛 = 𝐿′(Φ odd)  ;   𝐿′ ∈ {𝐿, �̂�}. 

A known result: In any dimensions with arbitrary signature and curvature the below results hold [14, 15, 

25].  

- The first order symmetry operator of an odd KY form Clifford commutes with the Dirac operator: 

𝐿(𝜔 𝑜𝑑𝑑)𝐷 = 𝐷𝐿(𝜔 𝑜𝑑𝑑).  

 

- The first order symmetry operator of an even CCKY form Clifford commutes with the Dirac operator: 

�̂�(�̂� 𝑒𝑣𝑒𝑛)𝐷 = 𝐷�̂�(�̂� 𝑒𝑣𝑒𝑛). 

 

- The first order operator of an even KY form Clifford anti-commutes with the Dirac 

operator: 𝐿(𝜔 𝑒𝑣𝑒𝑛)𝐷 = −𝐷𝐿(𝜔 𝑒𝑣𝑒𝑛). 

 

- The first order operator of an odd CCKY form Clifford anti-commutes with the Dirac operator: 

�̂�(�̂� 𝑜𝑑𝑑)𝐷 = −𝐷�̂�(�̂� 𝑜𝑑𝑑). 
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This result will be important for our homogeneous analysis, especially when the analog relations in the 

spinor sector will be derived. Here in the anti-commuting cases the first order operators are no more 

symmetry operators, but they in some sense have a physical meaning. In this case, if 𝜓  is a solution of 

the massive Dirac equation then 𝐿𝜓  will be a solution of the Dirac equation with negative mass 

representing a hypothetical spinning particle. We will comment on this issue at Section III, but as every 

one knows that the quantum vacuum is full of these particles as part of pairs with energies of different 

signs permitted by the Heisenberg's quantum uncertainity principle. 

D. Physical Interpretation and the Main Question 

In a recent work [1] we worked out some properties of bilinears generated by twistors and Killing spinors. 

The Killing spinor case, accompanied by a data set, was more sophisticated and rich. All possible 

outcomes obtainable from the Killing spinor bilinears were determined by the restrictive reality conditions 

imposed on them for physical reasons. As a reward we uncovered both kinematical and dynamical 

equations satisfied by the corresponding generalized Dirac currents of Killing spinor. The primitive set of 

generating equations were seen to be 

∇𝑋𝑎
(𝜓�̅�)𝑝 = 2𝜆𝑒𝑎 ∧ (𝜓�̅�)𝑝−1                                                    (14) 

∇𝑋𝑎
(𝜓�̅�)𝑝∗

= 2𝜆i𝑋𝑎
(𝜓�̅�)𝑝∗+1                                                      (15) 

giving rise to the principal set 

d(𝜓�̅�)𝑝 = 0   ,     d†(𝜓�̅�)𝑝 = −2𝜆(𝑛 − 𝑝 + 1)(𝜓�̅�)𝑝−1                            (16) 

                 d(𝜓�̅�)𝑝∗
= 2𝜆(𝑝∗ + 1)(𝜓�̅�)𝑝∗+1  ,   d†(𝜓�̅�)𝑝∗

= 0.                                (17) 

Here 𝑝∗ means that it has a different parity than p, i.e. 𝑝∗ + 𝑝 is always odd. These equations imply that 

the homogeneous realified parts of Killing spinor bilinears represent Duffin-Kemmer-Petiau (DKP) fields 

or Maxwell-like fields on the dynamical side, where on the kinematical side when the degree p part of the 

bilinear satisfies KY equation the degree 𝑝∗ part satisfies CCKY equation and vice-versa. The kinematical 

results could then be applied by using the machinery of the previous subsection. Namely for a Killing 

spinor 𝜓, we know that for some p, (𝜓�̅�)𝑝 is a KY form which requires that (𝜓�̅�)𝑝∗
 is a CCKY form 

then we also know that , (𝜓�̅�)𝑝 + (𝜓�̅�)𝑝∗
 is a CKY form which is generally associated to a twistor 

spinor's bilinear. Now the remarkable question arises! 

The main question: By using the generalized currents of Killing spinors one can deduce directly the 

generalized currents of twistors. Is there a way for generating twistors from Killing spinors? 

Before passing to the next section in search for the answer, we want to repeat a previous interpretation of 

the equations (14) and (15). With a slight change of understanding, the primitive equations could be 

reinterpreted as follows: The propagation of a brane in spacetime is triggered by the creation of a brane 

with one lower dimension and because of the unstable motion of the higher dimensional brane it is 

annihilated and this gives rise to the propagation of the lower dimensional (stable) brane. Of course in the 

context of General Relativity this process should be observed in a locally inertial frame {𝑋𝑎} co-moving 

with the stable brane to which it is adapted in a such way that 𝑔(𝑋0, 𝑋0) +  ∑ 𝑔(𝑋𝑖 , 𝑋𝑖) < 0𝑖=1,2,3  and this 

corresponds to the physical (semi-classical) motion of this system (for details see the insight in [1]). Some 

classical references for the details of the motion of extendons in General Relativity are [26-30]. The 

selection of the local frame is important for the preservation of local causality which temporally orders 

the equations in the primitive set in accordance with the above scenario; otherwise the mathematical 
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simultaneity of the equations will be deceptive. The temporal parameter should be taken as the local 

proper time measured by the locally inertial (time-like) observer instead of the local coordinate time. If 

one remembers that 𝑒𝑎 ∧ is equal to   i𝑋𝑎

† ≔∗−1 i𝑋𝑎
∗ 𝜂  (see App. A of [1]), the primitive set could be 

rewritten as 

 i𝑋𝑎

†(𝜓�̅�)𝑝−1 = (2𝜆)−1∇𝑋𝑎
(𝜓�̅�)𝑝 

i𝑋𝑎
(𝜓�̅�)𝑝∗+1 = (2𝜆)−1∇𝑋𝑎

(𝜓�̅�)𝑝∗
 

and these contain more physical intuition. Our scenario could also be thought as equivalent to Dirac's [31] 

where he models the electron as an extended elementary particle and the muon corresponds to the first 

excited state of the electron; a similar and more accurate construction may be found in [32]. From this 

point of view, our model may be seen as a gas of one level (p - 2)-branes (i.e. the (p-2; p-1)-brane couple), 

if n is the dimension of spacetime then p ranges from 2, 4,…,n + 2 in odd dimensions and from 2, 4,…,n 

in even dimensions. This set up requires one level branes because i𝑋𝑎
 and  i𝑋𝑎

† are both nilpotent of index 

two. 

3. BUILDING UP TWISTORS FROM KILLING SPINORS 

A. The Fermionic Sector 

The answer to the main question is positive. If 𝜓 is a Killing spinor 

∇𝑋𝜓 = 𝜆�̃�. 𝜓                                                          (18) 

then we define the Killing reversal 𝜓𝜍 of  by 

∇𝑋𝜓𝜍 = −𝜆�̃�. 𝜓𝜍                                                                  (19) 

that was defined in [22] technically, but is being known and used for example in [33]. The generation of 

twistors from Killing spinors is given by the following proposition. 

 

Proposition: To every Killing spinor pair 𝜓, 𝜓𝜍 there corresponds a twistor pair  Ψ+, Ψ− such 

that 

Ψ± = 𝜓 ± 𝜓𝜍 

where 𝜓𝜍 is the Killing reversal of 𝜓; and trivially the Killing reversals of the induced twistors are Ψ±𝜍
=

±Ψ±. 

Proof: 

∇𝑋𝑎
Ψ± = ∇𝑋𝑎

(𝜓 ± 𝜓𝜍) = ∇𝑋𝑎
𝜓 ± ∇𝑋𝑎

𝜓𝜍 = 𝜆𝑒𝑎. 𝜓 ∓ 𝜆𝑒𝑎. 𝜓𝜍 = 𝜆𝑒𝑎. Ψ∓ , 

and if we Clifford contract both hand sides from left with ea and use the identity 𝑒𝑎𝑒𝑎 =  𝑛 then we obtain 

𝐷Ψ± = 𝑛𝜆Ψ∓ 

and if we put the last identity into the last equality of the first relation we reach the desired result 

∇𝑋𝑎
Ψ± =

1

𝑛
𝑒𝑎. 𝐷Ψ± 

namely the twistor equation. 
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Physical Interpretation: 

The process 𝜓 + 𝜓𝜍 → Ψ+ + Ψ−  mimics the well known quantum electrodynamical pair annihilation 

process 𝑒 + 𝑒+ →  γ + γ in many ways. From sections II.C and II.D we know that Killing spinors are 

related to the massive sector and the twistors are related to the massless sector; so just as the mutual 

annihilation of an electron and a positron results in a pure electromagnetic field the mutual annihilation 

of a Killing spinor and its Killing reversal results in a pure radiation field the kind of which should be 

determined by further considerations. This can partially be achieved by the comparison of the properties 

of the Killing reversal map with that of charge conjugation (mainly) for the complex case. Another 

possibly related interpretation could be that the {𝜓, 𝜓𝜍} pair is extracted from the quantum vacuum by the 

intense gravitational field of a black hole around the horizon which conceptually resembles 

the gravitationally sourced thermal radiation of a collapsed body into a black hole, namely the Hawking 

radiation. So in our model, the outward radiation of a Killing spinor field shall be termed the Hawking-

Killing radiation of a black hole. Whereas the evaporation is due to the inward motion of the negative 

energy reversed Killing spinor field. Also, the tie with Wigner's time reversal may also be checked locally 

because of the relation between charge conjugation and time reversal; this at a first investigation requires 

the usage of locally Minkowskian nature of spacetime. Since the resultant photons have different 

helicities, the produced twistors also should have different helicity states for the consistency of our analog 

model. 

Charge Conjugation Versus Killing reversal: 

The similarities and differences between charge conjugation and Killing reversal is given in Table 1. Since 

the charge conjugation in some sense carries the properties of electromagnetic interactions then by 

comparison the interaction to which Killing reversal belongs to could be worked out. The behaviour of 

charge conjugation depends on the dimension 

 

Table 1. Properties of charge conjugation and Killing reversal maps. 

Charge Conjugation Killing Reversal 

(𝜓𝑐)𝑐 = ±𝜓 

(∇𝑋𝜓)𝑐 = ∇𝑋𝜓𝑐 

(£𝐾𝜓)𝑐 ≠ £𝐾𝜓𝑐 

(𝜓𝜍)𝜍 = 𝜓 

(∇𝑋𝜓)𝜍 ≠ ∇𝑋𝜓𝜍 

(£𝐾𝜓)𝜍 = £𝐾𝜓𝜍 

 

and signature but Killing reversal is independent from them; also while acting on real spinors charge 

conjugation maps a spinor 𝜓 to ±𝜓 on the other hand Killing reversal maps both real and complex spinors 

in the same manner. Charge conjugation and Killing reversal both preserve the spin degrees of freedom, 

charge conjugation changes the sign of the electric charge whereas the Killing reversal changes the sign 

of the inertial mass or more generally energy. This could be seen if one Clifford contracts the Killing 

spinor equation from the left : 𝑒𝑎. ∇𝑋𝑎
𝜓 = 𝜆𝑒𝑎𝑒𝑎. 𝜓  i.e. 

𝐷𝜓 = 𝜆𝑛𝜓                                                                   (20) 

and as a result identifies 𝑛𝜆 with the inertial mass 𝑚. From this point of view the Killing reversal map 

may be associated to pure gravitational interactions. Here £𝐾 is the spinorial Lie derivative with respect 

to a Killing vector field and it sends a Killing spinor to a Killing spinor so it commutes with the Killing 

reversal map. Similarly the first order operator with respect to a odd KY form 𝐿(𝜔) is a symmetry operator 

for Killing spinor equation hence 
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should commute with the Killing reversal i.e. (𝐿(𝜔)𝜓)𝜍 = 𝐿(𝜔)𝜓𝜍. Exact coincidences between these 

operations could be possible when a gravitational problem is reducible to an electromagnetic one in curved 

spacetime quantum field theories [34]. 

Comment on the Relation to Wigner Time Reversal: 

Discrete orientation-changing finite diffeomorphisms could be worked out locally in a general curved 

spacetime, so then the only guide will be the local validity of special relativity at a first approximation. 

But if one intends to analyze the higher order effects of the diffeomorphism flow in a curved spacetime 

generated by the Wigner time reversal operation, which is closely related to charge conjugation in a flat 

spacetime, the past-future asymmetry of the gravitational field would avoid a well-defined analysis. 

Furthermore, the requirement of global hyperbolicity on spacetime could pose a well-behaved "time" 

analysis and then its relation to other operations such as charge conjugation and Killing reversal shall be 

determined. In a at spacetime, covariances of Dirac equation (possibly coupled to a Maxwell field) under 

the above mentioned finite isometric diffeomorphisms are formed by labelling theclater by a parallel 

element 𝑠 of the smooth sections of Clifford group bundle ⋃ Γ𝑚(𝑀, 𝜂)𝑚∈𝑀  whereΓ𝑚(𝑀, 𝜂) is the Clifford 

group at the point 𝑚 ∈ 𝑀. In the presence of a preferred inner product for spinor fields, the Clifford group 

bundle should be restricted to the invariance group bundle of the spinor product [11]. 

Helicity Considerations: 

The analogy made before makes one to anticipate that the resultant twistor _elds should correspond to 

different helicity states. If we define Ψ ≔ Ψ+ + Ψ− and if we restrict ourselves to even dimensional 

Lorentzian spacetimes for physical reasons then we can represent the Killing reversal operation by the 

left action of the volume form 𝑧 ≔∗ 1 on a Killing spinor or on a twistor induced from a Killing spinor. 

If 𝑧2 = 1 the helicity operators are 
1

2
(1 ± 𝑧) and if 𝑧2 = −1 then the operators in this case are

1

2
(1 ± 𝑖𝑧); 

note that in even dimensions Clifford algebras are central simple and 𝑧 Clifford anti-commutes with odd 

forms. When 𝑧2 = −1 the center is algebraically isomorphic to ℂ and hence the helicity operators are 

well defined. Lets see that  𝜓𝜍 = 𝑧. 𝜓 under our assumptions: If ∇𝑋𝜓 = 𝜆�̃�. 𝜓 

then ∇𝑋(𝑧. 𝜓) = 𝑧. ∇𝑋𝜓 = 𝜆𝑧�̃�. 𝜓 = −𝜆�̃�𝑧. 𝜓, so it is legitimate to identify both. Let us take 𝑧2 = 1  then 

1

2
(1 ± 𝑧)Ψ = (1 ± 𝑧)𝜓 = (𝜓 ± 𝑧. 𝜓) = (𝜓 ± 𝜓𝜍) = Ψ± 

which ends the proof. It is interesting to note here that when the (order reversing) main anti-automorphism 

𝜉 of the Clifford algebra corresponds to the adjoint involution of the spinor inner product then the Hodge 

dual of a spinor is well de_ned and it maps a spinor that is an element of a Minimal Left Ideal to a dual 

spinor i.e. an element of the associated Minimal Right Ideal. This follows from the well known identity 

for Clifford forms namely the 

Clifford-Kahler-Hodge duality ; ∗ Φ = Φ𝜉𝑧 so 

∇𝑋 ∗ 𝜓 =∗ ∇𝑋𝜓 = 𝜆 ∗ (�̃�. 𝜓) = 𝜆(�̃�. 𝜓)𝜉 . 𝑧 = 𝜆�̅�. �̃�𝜉𝑧 = 𝜆�̅�.∗ �̃� 

that means ∗ 𝜓  is the associated dual spinor sharing the same Killing number with 𝜓. 

Geometric Identities: The action of the Hessian  ∇2(𝑋𝑎, 𝑋𝑏) = ∇𝑋𝑎
∇𝑋𝑏

− ∇∇𝑋𝑎𝑋𝑏
 on a Killing spinor 𝜓 is 

∇2(𝑋𝑎 , 𝑋𝑏)𝜓 = 𝜆2𝑒𝑏𝑎. 𝜓 



 

 

963 Açık / Cumhuriyet Sci. J., Vol.39-4 (2018) 954-969 

and 

𝐑(𝑋𝑎, 𝑋𝑏)𝜓 = 𝜆2(𝑒𝑏𝑎 − 𝑒𝑎𝑏). 𝜓 = 2𝜆2(𝑒𝑏 ∧ 𝑒𝑎). 𝜓 

or it can be rewritten as 𝐑(𝑋𝑎 , 𝑋𝑏)𝜓 = 2𝜆2𝑒𝑏𝑎. 𝜓 when 𝑎 ≠ 𝑏 . The trace of the Hessian is defined by 

∇2≔ ∇2(𝑋𝑎, 𝑋𝑎) so ∇2𝜓 = 𝑛𝜆2𝜓, hence since by Schrödinger-Weitzenböck-Bochner-Lichnerowicz 

formula for spinors, the square of the Dirac operatör is 

D2𝜓 = ∇2𝜓 −
1

2
𝜓. 𝐑(𝑋𝑎, 𝑋𝑏)𝑒𝑏𝑎                                                  (21) 

         = ∇2𝜓 −
1

2
𝜓. 𝑅𝒂𝒃𝑒𝑏𝑎 = ∇2𝜓 −

1

4
ℛ𝜓. 

 

Finally from the geometric constraint ℛ = −4𝜆2𝑛(𝑛 − 1) for the existence of Killing spinors we have 

D2𝜓 = 𝜆2𝑛2𝜓                                                                      (22) 

A trivial result which could be directly obtained from (20). 

B. The bosonic sector 

The inhomogeneous Clifford forms constructed from the induced twistors decompose into the bilinears 

of the generator Killing spinors as 

Ψ±Ψ±̅̅ ̅̅ = 𝜓�̅� + 𝜓𝜍𝜓𝜍̅̅̅̅ ± 𝜓𝜍�̅� ± 𝜓𝜓𝜍̅̅̅̅  

and the primitive set of equations corresponding to each of them, and their principal sets together with 

their determining Clifford algebraic operators are 

 

I                                                               ∇𝑋𝑎
(𝜓�̅�)𝑝 = 2𝜆𝑒𝑎 ∧ (𝜓�̅�)𝑝−1        {�̂� 𝑝

±}                               (23) 

         ∇𝑋𝑎
(𝜓�̅�)𝑝∗

= 2𝜆i𝑋𝑎
(𝜓�̅�)𝑝∗+1              

 

  d(𝜓�̅�)𝑝 = 0   ,     d†(𝜓�̅�)𝑝 = −2𝜆(𝑛 − 𝑝 + 1)(𝜓�̅�)𝑝−1                               (24) 

d(𝜓�̅�)𝑝∗
= 2𝜆(𝑝∗ + 1)(𝜓�̅�)𝑝∗+1  ,   d†(𝜓�̅�)𝑝∗

= 0     

-------------------------------------------------------------------------------------------------------------------------- 

II                                            ∇𝑋𝑎
(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝 = −2𝜆𝑒𝑎 ∧ (𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝−1            {− �̂� 𝑝

±}                               (25) 

∇𝑋𝑎
(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝∗

= −2𝜆i𝑋𝑎
(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝∗+1                        

 

d(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝 = 0   ,     d†(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝 = 2𝜆(𝑛 − 𝑝 + 1)(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝−1                            (26) 
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d(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝∗
= −2𝜆(𝑝∗ + 1)(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝∗+1  ,   d†(𝜓𝜍𝜓𝜍̅̅̅̅ )𝑝∗

= 0     

-------------------------------------------------------------------------------------------------------------------------- 

 

III                                                ∇𝑋𝑎
(𝜓𝜍�̅�)𝑝 = 2𝜆i𝑋𝑎

(𝜓𝜍�̅�)𝑝+1                     { �̂� 𝑝
∓}                               (27) 

              ∇𝑋𝑎
(𝜓𝜍�̅�)𝑝∗

= 2𝜆𝑒𝑎 ∧ (𝜓𝜍�̅�)𝑝∗−1 ;                        

 

d(𝜓𝜍�̅�)𝑝 = 2𝜆(𝑝 + 1)(𝜓𝜍�̅�)𝑝+1      , d†(𝜓𝜍�̅�)𝑝 = 0                               (28) 

d(𝜓𝜍�̅�)𝑝∗
= 0             , d†(𝜓𝜍�̅�)𝑝∗

= −2𝜆 (𝑛 − 𝑝∗ + 1)(𝜓𝜍�̅�)𝑝∗−1 

-------------------------------------------------------------------------------------------------------------------------- 

IV                                                      ∇𝑋𝑎
(𝜓𝜓𝜍̅̅̅̅ )𝑝 = −2𝜆i𝑋𝑎

(𝜓𝜓𝜍̅̅̅̅ )𝑝+1           {−�̂� 𝑝
∓}                            (29) 

              ∇𝑋𝑎
(𝜓𝜓𝜍̅̅̅̅ )𝑝∗

= −2𝜆𝑒𝑎 ∧ (𝜓𝜓𝜍̅̅̅̅ )𝑝∗−1 ;     

 

d(𝜓𝜓𝜍̅̅̅̅ )𝑝 = −2𝜆(𝑝 + 1)(𝜓𝜓𝜍̅̅̅̅ )𝑝+1      , d†(𝜓𝜓𝜍̅̅̅̅ )𝑝 = 0                                          (30) 

d(𝜓𝜓𝜍̅̅̅̅ )𝑝∗
= 0             , d†(𝜓𝜓𝜍̅̅̅̅ )𝑝∗

= 2𝜆 (𝑛 − 𝑝∗ + 1)(𝜓𝜓𝜍̅̅̅̅ )𝑝∗−1 

here �̂� (𝑝)
± = (𝜆1 ± (−1)𝑝𝜆𝑗𝑐𝒥) with 𝒥 the adjoint involution of the spinor inner product and 𝑗𝑐 the 

induced involution on the real algebra of complex numbers. The first set pairs I and II do have the same 

Yano type and the last set pairs III and IV either, but first and last have different types. In fact the twistor 

bilinears satisfy CKY equation [1], but an alternative proof follows from calculating their covariant 

derivatives and using the Yano properties of the Killing spinor bilinears. Another thing is that, if one tries 

to obtain the primitive or principal sets associated to twistor bilinears from those of Killing spinor 

bilinears, then he/she should remember that while the former ones are free from the reality conditions the 

latter ones are not. 

Geometric Identities: 

(a) From (14) the Hessian of (𝜓�̅�)𝑝 is found to be 

∇2(𝑋𝑎, 𝑋𝑏)(𝜓�̅�)𝑝 = 4𝜆2𝑒𝑏 ∧ i𝑋𝑎
(𝜓�̅�)𝑝 = 4𝜆2i𝑋𝑏

† i𝑋𝑎
(𝜓�̅�)𝑝                              (31) 

and necessarily 

      𝐑(𝑋𝑎, 𝑋𝑏)(𝜓�̅�)𝑝 = −4𝜆2(i𝑋𝑎

† i𝑋𝑏
− i𝑋𝑏

† i𝑋𝑎
)(𝜓�̅�)𝑝                                      (32) 

This together with 

∇2(𝜓�̅�)𝑝 = 4𝜆2𝑝(𝜓�̅�)𝑝 

Gives 
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                       (d − 𝑑†)
2

(𝜓�̅�)𝑝 = ∇2(𝜓�̅�)𝑝 −
1

2
𝐑(𝑋𝑎, 𝑋𝑏)(𝜓�̅�)𝑝 𝑒𝑎𝑏                                      (33) 

                                                      = 4𝜆2𝑝(𝜓�̅�)𝑝 + 2𝜆2((i𝑋𝑎

† i𝑋𝑏
− i𝑋𝑏

† i𝑋𝑎
)(𝜓�̅�)𝑝)𝑒𝑎𝑏 

                                      = 4𝜆2𝑝(𝑛 − 𝑝 + 1)(𝜓�̅�)𝑝.                                                  

(b) Similar identities for (15) are as follows: 

∇2(𝑋𝑎, 𝑋𝑏)(𝜓�̅�)𝑝∗
= 4𝜆2(𝜂𝑎𝑏 − 𝑒𝑎 ∧ i𝑋𝑏

)(𝜓�̅�)𝑝∗
                                    (34) 

so 

  𝐑(𝑋𝑎, 𝑋𝑏)(𝜓�̅�)𝑝∗
= −4𝜆2(i𝑋𝑎

† i𝑋𝑏
− i𝑋𝑏

† i𝑋𝑎
)(𝜓�̅�)𝑝∗

                          (35) 

Unifying the last one with 

∇2(𝜓�̅�)𝑝∗
= 4𝜆2(𝑛 − 𝑝∗)(𝜓�̅�)𝑝∗

 

leaves us with 

(d − d†)
2

(𝜓�̅�)𝑝∗
= 4𝜆2(𝑝∗ + 1)(𝑛 − 𝑝∗)(𝜓�̅�)𝑝∗

                                    (36) 

As a result (33) and (36) are homogeneous equations in the form of eigenvalue equations of the Laplace-

Beltrami operator, and are coupled in accordance with (16) and (17). Note that when 𝑝∗ = 𝑝 − 1 then the 

coupled fields do have the same mass. 

4.  CONCLUSION 

The aim of our programme is to work out the many details for putting Killing spinors into the main 

elements of mathematical physics. First results were derived in [1], and a road map was given in [22]. 

This latter work contained some open questions, each of which could well be a problem of its own. The 

present work fills one of these important gaps theoretically and promises a companion paper for the 

application of its results; the plan of this second part will be explained below. Before that, we want to 

make a brief report about the new contributions to the literature by this work. 

We first gave a new elegant form for defining KY forms and CCKY forms, that is complementing the 

esthetic inhomogeneous definitive equation for CKY forms which was given before in [1]; so a trivial but 

effective way for building up a CKY form out of a KY form and a CCKY form was at hand. This simple 

consequence made us identify clearly the corresponding first order symmetry operators for massive and 

massless Dirac equations in 

curved spacetimes admitting KY and CCKY forms, removing some ambiguities existent in the literature. 

By the way we showed that one can set up self-dual or anti self-dual massless fields from the resultant 

CKY forms, this result is in accordance with the analogies given in [1]. Some of the above mentioned 

operators anti-commuting with Dirac operator reveal the negative energy massive spinning particles, at 

first sight seen as unphysical or virtual but 

the value of this became apparent later on. Again from previous publications it was known that the 

generalised Dirac currents of Killing spinors were identified with KY and CCKY forms on the kinematical 

side; so we asked the possibility for generating twistors from Killing spinors and reached the positive 

answer by using some original technical details. The most critical physical interpretation was that the 
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generation of a twistor pair by the Killing spinor pair, was identified with the quantum electrodynamical 

pair annihilation process and also eventually to the Hawking radiation of a black hole. The characteristic 

mathematical operation associated to this analogy which is termed the Killing reversal was compared and 

related to the charge conjugation and time-reversal for completeness. Also the investigations in the 

fermionic sector uncovered the relation of Killing number to inertial mass which is dimension dependent; 

this relates the dimensionality of space-time to the concept of inertia in some sense. The analysis of the 

bosonic part added three more types of primitive and principal sets of equations to the preceding ones. A 

thing not to pass without mentioning is the translation of the coordinate-free form of the primitive set of 

equations to the coordinate-wise ones, given in Appendix B. Another idea could be to use the reverse 

procedure for obtaining Killing spinors from twistors in spacetimes admitting the latter ones by the 

method of trial and error roughly. We also emphasized the fact that our technique shall be of use in 

classifying spacetimes admitting twistors or Killing spinors. 

The planed companion work called Part II [35] will be dealing with many topics. These include the stress 

tensors of the specific spinor fields and the stress tensors of their generalised Dirac currents, the 

continuation and improvement of the quantum field theoretical formulation of physical examples given 

in [22] and the present work, selection of a black hole spacetime admitting a Killing spinor for clarifying 

the Hawking-Killing radiation process, fixing the values of the inherent degrees associated to the 

dimensions of the brane immersions including strings and membranes and then reconsidering the 

dynamical equations such as DKP and Maxwell-like equations in this context. Last but not least we hope 

to calculate the Killing spinor existing in the plane-wave spacetime and push the button for using our 

method again. Some results conerning the solutions of massless Dirac and Rarita-Schwinger field in 

plane-wave spacetimes is gathered in a recent work [36]. 

Appendix A: Evaluation of 𝐿(𝜔)
† and �̂�(�̂�)

†
 and a comment on the symmetry algebra 

Recall that from (11), 𝐿(𝜔) = 𝜔𝑎∇𝑋𝑎
+

𝑝

2(𝑝+1)
d𝜔 so from metric compatibility of the connection one can 

write 

(𝐿(𝜔))† = (𝜔𝑎)†∇𝑋𝑎
+

𝑝

2(𝑝 + 1)
(d𝜔)† =∗−1 𝑖𝑋𝑎𝜔 ∗ 𝜂∇𝑋𝑎

+
𝑝

2(𝑝 + 1)
∗−1 d𝜔 ∗ 𝜂 

and also using the identity ∗−1 𝑖𝑋Φ = (∗−1 Φ ∧ �̃�) 

(𝐿(𝜔))
†

= (((∗−1 𝜔) ∧ 𝑒𝑎))∇𝑋𝑎
+

𝑝

2(𝑝 + 1)
d†𝜂 ∗−1 𝜔) ∗ 𝜂 

              = ((𝑒𝑎 ∧ 𝜂 ∗−1 𝜔)∇𝑋𝑎
+

𝑝

2(𝑝 + 1)
d†𝜂 ∗−1 𝜔) ∗ 𝜂. 

Finally after using the identity  ∗−1 𝜔 = (−1)𝑝(𝑛−𝑝)𝜀(𝐠) ∗ 𝜔, so 

(𝐿(𝜔))
†

= (−1)(𝑝+1)(𝑛−𝑝)𝜀(𝐠) ((𝑒𝑎 ∧∗ 𝜔)∇𝑋𝑎
+

𝑝

2(𝑝 + 1)
d† ∗ 𝜔) ∗ 𝜂. 

Let us de_ne �̂̂�(∗𝜔): = (𝑒𝑎 ∧∗ 𝜔)∇𝑋𝑎
+

𝑝

2(𝑝+1)
d† ∗ 𝜔 then 

(𝐿(𝜔))
†

= (−1)(𝑝+1)(𝑛−𝑝)𝜀(𝐠)�̂̂�(∗𝜔) ∗ 𝜂 , 
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here 𝜀(𝐠) =
𝑑𝑒𝑡𝐠

|𝑑𝑒𝑡𝐠|
 where 𝐠 is the chart matrix of the metric tensor. The last relation could also be written 

as 

∗ 𝐿(𝜔) = �̂̂�(∗𝜔) = (𝑒𝑎 ∧∗ 𝜔)∇𝑋𝑎
+

𝑝

2(𝑝+1)
d† ∗ 𝜔 .                                 (A1) 

Another thing to be done for completeness is to calculate ∗ �̂�(�̂�) and with a little algebra it is found that 

∗ �̂�(�̂�) = (−1)(𝑛−𝑝+1) ((𝑒𝑎 ∧∗ �̂�)∇𝑋𝑎
+

𝑛−𝑝

2(𝑛−𝑝+1)
d ∗ �̂�).                  (A2) 

Dimension dependent closure of the symmetry algebra is based on the set of odd KY forms and even 

CCKY forms, then the associated first order 𝐿𝐾𝑌
𝑒𝑣𝑒𝑛 's and 𝐿𝐶𝐶𝐾𝑌

𝑜𝑑𝑑 's form an algebra under Killing-Yano 

brackets [25]. In the last reference a detailed account of symmetry analysis could be found, but there are 

some sign ambiguities arising from minor errors. 

Appendix B: The coordinate expressions of the primitive set of equations 

This appendix is intended to make clear the understanding of the basic equations of our programme, for 

the general reader who is familiar with the more common notation based on local components of tensor 

fields. We only translate the primitive set of equations. Let us define (𝜓�̅�)𝑝 ≔ Ω𝑝 for brevity and work 

in a local chart with coordinate functions 𝑥 = (𝑥𝜇). Since our equations are general covariant we can 

write, for example (16) as: 

∇ 𝜕

𝜕𝑥𝜇
Ω𝑝 = 2𝜆d𝑥𝜇 ∧ Ω𝑝−1 

The local expansions of the form fields are 

Ω𝑝 =
1

𝑝!
(Ω𝑝)𝜎1𝜎2…𝜎𝑝

d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝 

and 

Ω𝑝−1 =
1

(𝑝 − 1)!
(Ω𝑝)𝜎1𝜎2…𝜎𝑝−1

d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝−1  . 

so 

∇ 𝜕

𝜕𝑥𝜇
((Ω𝑝)

𝜎1𝜎2…𝜎𝑝−1
d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝−1)

= 2𝜆𝑝(Ω𝑝−1)𝜎1𝜎2…𝜎𝑝−1
d𝑥𝜇 ∧ d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝 . 

The left hand side is 

∇ 𝜕

𝜕𝑥𝜇
((Ω𝑝)

𝜎1𝜎2…𝜎𝑝
d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝) = (𝜕𝜇(Ω𝑝)

𝜎1𝜎2…𝜎𝑝
) d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝 

                                                                                   +(Ω𝑝)
𝜎1𝜎2…𝜎𝑝

∇ 𝜕

𝜕𝑥𝜇
(d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝)

= (Ω𝑝)
𝜎1𝜎2…𝜎𝑝,𝜇

d𝑥𝜎1 ∧ d𝑥𝜎2 ∧ … ∧ d𝑥𝜎𝑝 
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                        =  −𝜔𝜎𝑖
𝜅(𝜕𝜇)(Ω𝑝)

𝜎1𝜎2…𝜎𝑝
(d𝑥𝜎1 ∧ … ∧ d𝑥𝜎𝑖−1 ∧ d𝑥𝜅   ∧ d𝑥𝜎𝑖+1 … ∧ d𝑥𝜎𝑝) 

= ((Ω𝑝)
𝜎1𝜎2…𝜎𝑝,𝜇

− ∑ Γ𝜇  𝜎𝑖

𝜅

𝑖

(Ω𝑝)
𝜎1…𝜎𝑖−1𝜅𝜎𝑖+1…𝜎𝑝

) d𝑥𝜎1 ∧ … ∧ d𝑥𝜎𝑝 . 

Conventionally written componentwise as  

(Ω𝑝)
𝜎1𝜎2…𝜎𝑝;𝜇

= (Ω𝑝)
𝜎1𝜎2…𝜎𝑝,𝜇

− ∑ Γ𝜇  𝜎𝑖

𝜅

𝑖

(Ω𝑝)
𝜎1…𝜎𝑖−1𝜅𝜎𝑖+1…𝜎𝑝

 

and the right hand side reads  

2𝜆𝑝(Ω𝑝−1)𝜎1𝜎2…𝜎𝑝−1
d𝑥𝜇 ∧ d𝑥𝜎1 ∧ … ∧ d𝑥𝜎𝑝−1 = 2(−1)𝑝−1𝜆𝑝𝑔𝜇𝜎𝑝

(Ω𝑝−1)𝜎1…𝜎𝑝−1
d𝑥𝜎1 ∧ … ∧ d𝑥𝜎𝑝 

and finally   

(Ω𝑝)
𝜎1𝜎2…𝜎𝑝;𝜇

= 2(−1)𝑝−1𝜆𝑝𝑔𝜇𝜎𝑝
(Ω𝑝−1)𝜎1…𝜎𝑝−1

.                              (B1) 

Easily (17) becomes in component notation as  

(Ω𝑝∗
)

𝜎1𝜎2…𝜎𝑝;𝜇
= 2(−1)𝑝∗

𝜆

(𝑝∗+1)
(Ω𝑝∗+1)

𝜎1…𝜎𝑝∗𝜇
.                                (B2) 
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