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Abstract. Multipolarities of gamma rays and spins-parities of nuclear states are usually investigated by the
angular distribution of gamma rays emitted from aligned states formed by nuclear reactions. For different
multipolarities of the transitions, the distribution shows different characteristics. The distribution is obtained
by using angular distribution formula which has literature tabulated coefficients for different spins and
multipolarities. However, these coefficients involve r-fold tensor products and they are highly nonlinear in
nature. Furthermore, as the calculation of these coefficients implicitly involves highly complicated integral
quantities, they are very difficult to handle explicitly for larger r values. In this respect, as we theoretically
proved in a previous paper, universal nonlinear function approximator layered feedforward neural network
(LFNN) can be applied to construct consistent empirical physical formulas (EPFs) for nonlinear physical
phenomena. In this paper, by concentrating on the integer spins of nuclear states and dipole and quadrupole
type multipolarities of the transitions, we consistently estimated the coefficients by constructing suitable
LFNNs. The LFNN-EPFs fitted the literature coefficient data very well. Moreover, magnificent LFNN test set
forecastings over previously unseen data confirmed the consistent LFNN-EPFs for the determination of
coefficients. In this sense, we can conclude that the LFNN consistently infers nonlinear physical laws
governing the angular distribution of gamma rays, which are otherwise difficult to obtain by conventional
coefficient calculation methods.
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Katmanh Beslemeli Sinir Ag1 ile Gama Isin1 A¢isal Dagihm Katsayilar
icin Tutarh Ampirik Fiziksel Formiil Eldesi

Ozet. Gama 1sinlarinin multipolariteleri ve niikleer durumlarin spinleri, genelliklle, niikleer reaksiyonlarla
olusturulan hizalanmig durumlardan yayilan gama iginlarinin agisal dagilimi ile incelenir. Gegislerin farkl
multipolarite degerleri icin, dagilim farkli o6zellikler gostermektedir. Dagitim, farkli spinler ve ¢ok
kutupluluklar igin literatiirdeki tablolanmis katsayilarve agisal dagilim formili kullanilarak elde edilir.
Bununla birlikte, bu katsayilar r katli tensér ¢arpimlari igerir ve yapilart olduk¢a dogrusal olmayan sekildedir.
Dabhasi, bu katsayilarin hesaplanmasi karmasik integraller igerdiginden, daha biiyiik r degerleri i¢in agikca ele
alimmasi ¢ok zordur. Bu baglamda, daha 6nceki bir ¢calismamizla teorik olarak ispatlandigimiz gibi, dogrusal
olmayan fiziksel fenomenler igin, tutarli, ampirik fiziksel formiiller (EPF'ler) olusturmak i¢in, evrensel
dogrusal olmayan bir katmanli beslemeli sinir ag1 (LFNN) kullanilabilir. Bu makalede, niikleer durumlarin
tamsay1 spinlerine ve gegislerin dipol ve kuadrupol multipolaritelerine odaklanarak, uygun LFNN'leri insa
ederek katsayilar1 tutarli bir sekilde tahmin ettik. LENN-EPF'ler, literatiir katsayis1 verisini ¢ok iyi bir sekilde
fitledi. Ayrica, daha once goriilmemis veriler lizerinde yapilan LFNN test seti tahminleri, katsayilarin
belirlenmesi i¢in tutarli LFNN-EPF'leri dogrulamistir. Bu baglamda, LFNNmin, gama isinlarmin agisal
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dagilimini yoneten dogrusal olmayan fiziksel yasalara tutarli bir sekilde uydugu sonucuna varabiliriz. Bu da,
geleneksel katsay1 hesaplama yontemleri ile elde edilmesi zor olan bir sonugtur.

Anahtar Kelimeler: Agisal dagilim, ¢ok kutupluluk, niikleer spin, katmanli iletimli sinir ag1.

1. INTRODUCTION

The angular distribution coefficients are used in
the interpretation of measured gamma ray angular
distributions. In heavy ion reactions excited states
of nuclei are aligned relative to the beam axis. The
gamma rays from these states exhibit
characteristic ~ angular  distributions.  The
distributions depend on the multipolarities of the
radiations emitted and the spins of the nuclear
states. From oriented nuclei, the angular
distribution of emitted gamma ray has no longer
spherical symmetry. The type of the multipolarity
of the transition is investigated by the distribution.
It is possible to have electric and magnetic
transition  mixture, if more than one
multipolarities in the transition are allowed by the
angular momentum and parity section rules. For
instance, it is common as E2 transitions are
enhanced and compete with M1 transitions. The
contributions of the different multipolarities to the
transition are found by the angular distribution
function. In this function the coefficients (Ax)
depend on the nuclear spins of the states, angular
momentum of the gamma rays in the transition
and multipole mixing ratios.

Nevertheless, these coefficients involve r-fold
tensor products and they are highly nonlinear in
nature. Furthermore, as the calculation of these
coefficients implicitly involves highly
complicated integral quantities, they are very
difficult to handle explicitly for larger r values.
In this respect, as we theoretically proved in a
previous paper [1], universal nonlinear function
approximator layered feedforward neural network
(LFNN) can be applied to construct consistent
empirical physical formulas (EPFs) for nonlinear
physical phenomena. Before going further, note
that in recent years, neural network (NN) method
has been used in many fields of nuclear physics
[2-8]. In this paper, by concentrating on the
integer spins of nuclear states and dipole and

quadrupole type multipolarities of the transitions,
we consistently estimated the literature data
coefficients by constructing suitable LFNNs. The
estimation of angular distribution coefficients for
the angular distribution of gamma rays is useful
for the analysis of experimental results. The
LFNN-EPFs fitted the literature coefficient data
very well. Moreover, magnificent LFNN test set
forecastings over previously unseen data
confirmed the consistent LFNN-EPFs for the
determination of coefficients. In this sense, we
can conclude that the LFNN consistently infers
nonlinear physical laws governing the angular
distribution of gamma rays, which are otherwise
difficult to obtain by conventional coefficient
calculation methods.

2. BRIEF THEORY FOR ANGULAR
DISTRIBUTION COEFFICIENTS

Determination of angular distributions of gamma-
rays from nuclear levels is a useful tool for the
assignment of multipolarities of emitted gamma-
rays and related spin and parity of nuclear levels.
This method has been used in the nuclear
spectroscopy for many years [9,10]. The
distribution depends on the multipolarities and the
spin sequences. In the angular distribution
formula, table of coefficients are tabulated for the
analyses of the experimental data in comparison
with the theoretical one [10-12]. The angular
distribution function for the transition from initial
state (/i) to final state (J) is given by Eq.(1)

W) =1+ A,P,(cosO) + A,P,(cosB) (1)
Where A, and P, are angular distribution
coefficients  and Legendre  polynomials,
respectively. The sum in this equation involves
only even values of k (to conserve parity) and
extends to twice the lowest multipolarities in the
transition. The polar angle 6 is measured with
respect to the axis of alignment which, in the case
of heavy ion reaction, is along the direction of an
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incoming beam. For the complete alignment of the
nuclear states, A, coefficients are given in Eq.(2)

AclrLiLla)i) = == [BeUDFeUrLiLa) +
26Bx(J)FiJrL1LoJi) + 8%BJ)FUrLoLoJ)]  (2)

The By, and F;, terms depend on J values, Clebsh-
Gordan and Racah coefficients. The three parts in
the expression correspond to first type (L;L,),
mixed type (L{L,), and second type (L,L,) of
multipolarity in transition. L; and L, are positive
integers or zero. One can use experimental Ay
values and calculated B»F, values in Eq.(2) in
order to extract multipole mixing ratios in the
transitions. Therefore, the estimation of B»F>
values is of the important issue in experimental
nuclear structure studies.

For the partial alignment, the functions given
above are multiplied by the attenuation
coefficients which depend on J and m substates
distributions [11]. For detail information about the
formulation, we refer readers to [10,11].

3. SHORT LFNN FUNDAMENTALS AND
EPF FORMATION BY A LFNN

Both Clebsh-Gordan and Racah coefficients
involve r-fold tensor products, and these
coefficients are very difficult to compute even for
small r values, and such formulas are not even
known for larger values of r. They are highly
nonlinear in nature. Furthermore, as the
calculation of these coefficients implicitly
involves highly complicated integral quantities,
they are very difficult to handle explicitly. To
overcome this obstacle, we built up definitive
LFNN-EPFs to estimate the B»F, functions of
Eq.(2). As usual, the LFNN-EPFs found good
agreements with both the actually trained
literature data and also test data points. More
details about LFNN-EPF formations can be found
in our previous novel comprehensive papers [1,2].
Still, we reproduce the brief details of a LFNN-
EPFs here.

3.1 Artificial neural networks (ANNs) and LFNN-
EPFs in brief

Artificial neural network (ANN) [13] mimics the
brain functionality. It consists of artificial neurons
which have adaptive synaptic weights. By a
proper modification of the weights, ANN finally
learns the information embedded in data. LFNN
is a particular kind of ANN with one input, many
intermediate (hidden) and one output layer device.
All layers are connected to each other by
adaptable weights (Fig. 1). Theoretically
speaking, a single hidden layer LFNN is sufficient
for excellent nonlinear function approximation
[14]. With enough sample train data, the ultimate
aim of the LFNN is to find a set of final weights
to minimize the error metric ||f —gll via a
suitable weight adaptation algorithm. Here, f: RP
— R" is the LFNN transformation function and
g: R? - R” is the function to be approximated by
the LFNN. In this paper, as clearly shown in
Fig.1, p being the number input layer neurons
and r number of output layer neurons (p = 4, r =
1), g:RP - R" s the B,F, function of J values.
By using the final weights after the train stage of
LFNN, the performance of the network is tested
over a previously unseen test data set. If test data
predictions are good enough, the LFNN is
considered to have consistently learned the
functional relationship between input and output
data. Let w* be vector of final weights
(25 adaptable weights in Fig.1), f(w*) can be
taken the desired EPF for the physical data which
has been trained and tested by the LFNN.
Therefore, we say that we have a consistent
LFNN-EPF, consistency simply being the
accurate estimations of previously unseen test set
data by the final LFNN.

Hidden
Layer

Figure 1. The LFNN used with (4, 5, 1) topology. There are
4x5 + 5x1 = 25 adaptable weights.
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3.2 Materials and methods: the details of LFNN
application to EPFs

The literature data to produce LFNN-EPFs, the
gamma angular distribution coefficient B,F, (the
output of the LFNN) versus initial and final spins
of the nuclei (J; and J¢) and first and second type
of multipolarities L, and L, [the input of the
LFNN] belonging to the transitions, was borrowed
from [11]. The neural network software used was
NeuroSolutions VV5.06. The LFNN was the single
hidden layer (with optimally 5 hidden neurons),
four input layer neuron (p = 4) and with varying
hidden layer neuron numbers (h = 5, 7 and 9) and
one output layer neuron (r = 1). Although, in
Fig.1, only 25 adaptable weights are shown,
actually there were 25,33 and 41 adaptable
weights for hidden layer neuron number h values
of 5, 7 and 9, respectively. The activation
functions in Fig.1, were, respectively, hyperbolic
tangent tanh =(e* —e*)/(e* +e™*) for hidden
and linear for output layer. The LFNN weight
adapting algorithm was back-propagation with
Levenberg-Marquardt. For all LFNN processing
cases, the angular distribution coefficients data
were uniformly partitioned into two separate sets
(80% and 20%) to use as LFNN training set for
fitting and test set for prediction, respectively. The
error function measuring the difference between
desired and neural network outputs was the mean
square error (MSE). The best final LFNN
approximation errors for h=5, 7, 9 were
0.01,0.002,0.06 (for train data) and 0.01, 0.04,
0.05 (for test data).

4. RESULTS AND DISCUSSION

Many of the transitions between nuclear states
have mixed character of different multipoles. In
this study, we concentrated on dipole and
quadrupole radiations and integer spin values of
nuclear states only. As already noted both in the
text and also in Fig.1l, we estimated the output
B, F, terms in Eq.(2) for k = 2, with the inputs J;,
Jg» Ly and L, values. Input of initial spin J; was
taken from 1 to 20 in the train set. FromJ; to
final spin Jg, only dipole and quadrupole
transitions have been considered in this study.
Therefore for J; =1, J; was takenonly as 0, 1, 2
and 3 in the calculations. For illustration, the
transition to 0 is pure dipole and the transitions to
1,2 and 3 are dipole-quadrupole mixture. In other
illustration for J; = 2, the J, was taken only as
0,1, 2,3 and 4. The transitions to 0 and 4 are pure
quadrupole and the transitions to 1,2 and 3 are
dipole-quadrupole mixture and so on.

In Figs. 2 and 3, literature data and LFNN output
values for B, F, against the J; values up to 20 were
shown. The minimum absolute value errors for
h=5,7and9 were 3.8x107>, 9.4x107°, and
1.5x107*, respectively. The maximum absolute
errors were 0.91, 0.28 and 0.50. All the error
levels were taken as acceptable for the
estimations. The results are consistent with the
tabulated values [10] . The best estimation result
was obtained with hidden neuron number h = 7.
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Figure 2. Calculated and LFNN B, F, values in train set versus the initial spin values of transitions a) for pure dipole, b) dipole-

quadrupole mixture and c) pure quadrupole transition.

In the test set, initial spin J; input had varying
values from 20 to 26. We again note that only
dipole and quadrupole transitions were estimated
in test set. In Fig. 3, we showed the literature and
neural network output values for B»F, values
versus the Ji values up to 20. The minimum

08

Test Data (L,=1, L=1)

06

04

02

B2F2

00

02

———  Cakcuastes
— = —  LFNNhsS
LENN he?

absolute errors for h=5,7 and 9 were,
respectively, 1.9x10*, 5.3x10* and 2.6x10%,
while the maximums were, respectively,
0.32,0.20 and 0.88. All the error values were
accepted as reasonable estimations. The results are
consistent with the tabulated values [10].

Test Data (L, =1, L,22)

——e—— Cakuates
— —& — LFNNMS
LFNN »a7

(b) L (NN

Test Data (L =2, L,=2)

v
f\;
’ /
/ ‘
’ 1
Wy
. .

——t——  Calkcutated

=t = LFNN S
v LFNN ns7

——a—— LFNN™mS

.
06 (a) — —a— — LFNN %
20 2 24 26
5
0s
o v v y
02
o 00
) )
8 02 b
.
04 . v .
08
08
(c)
10
20 2

24 26

Figure 3. Calculated and LFNN B, F, values in test set versus the initial spin values of transitions a) for pure dipole, b) dipole-

quadrupole mixture and c) pure quadrupole (middle) transition.
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5. CONCLUSION

Gamma ray angular distribution coefficients are
useful to determine the nuclear spins and
multipolarities of transitions between states. These
coefficients are very difficult to compute even for
small r values, and such formulas are not even
known for larger values of r. Moreover, they are
highly nonlinear in nature. To overcome these
obstacles, as a novel approach, in this paper we
used suitable LFFNs with train sets to obtain
consistent LFNN-EPFs with test sets. The results
are in agreement with the literature values. The
major conclusions of this paper are as follows.

1. The LFNN can be safely used to determine
spins of nuclear states and multipolarities of the
gamma ray transitions.

2. The coefficients in the gamma ray angular
distribution function which are not tabulated in
the literature can also be accurately estimated by
the LFNN.

REFERENCES

[1]. Yildiz N., N, Layered feedforward neural
network is relevant to empirical physical
formula construction: a theoretical analysis
and some simulation results. Phys. Lett. A
345-13 (2005) 69-87.

[2]. Yildiz N., and Akkoyun S. Neural network
consistent empirical physical formula
construction for neutron—gamma
discrimination in gamma ray tracking,
Annals of Nuclear Energy 51 (2013) 10-17.

[3]. Akkoyun S., Bayram T., and Turker T.
Estimations of beta-decay energies through
the nuclidic chart by using neural network,
Radiation Physics and Chemistry 96 (2014)
186-189.

[4]. Bass S.A., Bischoff A., Maruhn J.A.,
Stocker H., Greiner W. Neural networks for

[5].

[6].

[71.

[8].

91

[10].

[11].

[12].

[13].

[14].

impact parameter determination. Phys. Rev.
C 53-5(1996) 2358-2363.

Haddad F., Hagel K., Li J., Mdeiwayeh N.,
Natowitz J.B., Wada R., Xiao B., David C.,
Freslier M., Aichelin J. Impact parameter
determination in experimental analysis
using a neural network. Phys. Rev. C 55-3
(1997) 1371-1375.

Medhat M.E. Artificial intelligence
methods applied for quantitative analysis
natural radioactive sources. Ann. Nucl.
Energy 45 (2012) 73-79.

Akkoyun S., Bayram T., Kara S.0O., Sinan
A., An artificial neural network application
on nuclear charge radii. J. Phys. G Nucl.
Part. 40 (2013) 055106.

Costiris N., Mavrommatis E., Gernoth
K.A., Clark J.W., A global model of beta
decay half-lives using neural networks.
arXiv:nucl-th/0701096v1 (2007).

Ferguson A.J. Angular correlation methods
in gamma-ray spectroscopy. North- Holland
Publishing Co., Amsterdam (1965).
Yamazaki T. Tables of coefficients for
angular distribution of gamma rays from
aligned nuclei. Nuclear Data Section A
(1967) 3-1.

Mateosian E. der, and Sunyar A.W. Table
of attenuation coefficients for angular
distribution of gamma rays from partially
aligned nuclei. Atomic Data and Nuclear
Data Tables 13 (1974) 391.

Ferentz M., and Rosenzweig N., Table of F
coefficients. ANL-5324.

Haykin ~S.  Neural networks: A
comprehensive foundation. Prentice-Hall
Inc., Englewood Cliffs, NJ, USA (1999).
Hornik K., Stinchcombe M., White H.
Multilayer feedforward networks are
universal approximator. Neural Networks 2
(1989) 359-366.

933




