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Abstract. In this study, Navier-Stokes equations with fractional derivate are solved according to time variable. 

To solve these equations, hybrid generalized differential transformation and finite difference methods are used 

in various subdomains. The aim of this hybridization is to combine the stability of the difference method and 

simplicity of the differential transformation method in use. It has been observed that the computational intensity 

of complex calculations is reduced and also discontinuity due to initial conditions can be overcome when the 

size increased in the study. The convergence of the time-dependent series solution is ensured by multi-time-

stepping method. This study has shown that the hybridization method is effective, reliable and easy to apply for 

solving such type of equations. 
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Keywords: Hybrid Differential Transform/Finite Difference Method, Time-Fractional Navier-Stokes 
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Zaman Değişkeninde Kesirli Türev İçeren Navier-Stokes Denklemlerinin 

Sayısal Çözümü 

Özet. Bu çalışmada zaman değişkenine göre kesirli türev içeren Navier-Stokes denklemleri çözülmüştür. 

Denklemlerin çözümünde genelleştirilmiş diferansiyel dönüşüm ve sonlu fark metotları beraber farklı alt 

aralıklara bölünerek çok adımlı olarak kullanılmıştır. Bu melezleme ile sonlu fark metodunun kararlılık özelliği 

ve diferansiyel dönüşüm metodunun uygulama kolaylığı özelliklerinin birleştirilmesi amaçlanmıştır. Ele alınan 

örneklerde karmaşık hesaplamaların getirdiği işlem yükünün azaldığı ve çok boyutlu problemlerde ise başlangıç 

koşulu nedeniyle oluşan süreksizliğin aşılabildiği görülmüştür. Zamana bağlı seri çözümünün yakınsaklığı ise 

çok zaman adımlı metot kullanılarak sağlanmıştır. Yapılan çalışma melezleme metodunun bu tür denklemlerin 

çözümünde etkili, güvenilir ve uygulanması kolay olduğunu göstermiştir. 

Anahtar Kelimeler: Diferansiyel Dönüşüm/Sonlu Fark Metodu, Kesirli Navier-Stokes Denklemleri, Sayısal 

Çözüm. 

 

1. INTRODUCTION 

In recent years, the problems which contain fractional order derivatives have been modeled in many areas 

of science such as fluid mechanics, chemistry, control theory, psychology [1]. The first research on 

approximations of fractional differential equations was made by Padovan [2]. After that the fractional 

differential equations has become popular among scientist, additionally Adomian Decomposition Method 

[3-9], Variational Iteration Method [7-10], Homotopy Perturbation Method [11-12], Fractional Difference 
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Method [13], Fractional Adams-Bashforth-Moulton Method [14] and Generalized Differential Transform 

Method [15] have been used to get numeric and analytic solutions. Using most of these methods, the 

fractional differential equation has turned into recurrence relation or system of equations. The others have 

used to obtain a convergent series solution. Most of the flow motion problems, Newtonian or non-

Newtonian flow problems in a tube and also many problems in science bring out the fractional derivative 

in their differential equations. Navier-Stokes equation which has   order time derivation 0 1    was 

solved by El Shahed and Salem by using Laplace transform, Fourier sine transform and finite Hankel 

transforms [16]. Momani and Odibat, in 2006, used Adomian Decompositon method to get solutions for 

time-fractional Navier-Stokes equations [4]. 

The time-fractional Navier-Stokes equation and continuity equation can be written as 

  21
P v

t





 
        

 
,              (1) 

. 0.                  (2) 

Here t  is the time,   is the velocity vector, P  is the pressure, v  is the kinematic viscosity and   is the 

density. 

Definition1.1. Suppose that n is the smallest integer greater than   and 0  . Caputo derivative is 

defined by  
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   

  
  




               (3) 

[17]. 

2. COUPLING DIFFERENTIAL TRANSFORM AND FINITE DIFFERENCE METHOD 

Differential transform method (DTM) and Finite difference method (FDM) are two of well-known 

methods to solve differential equations. FDM is used to solve differential equations for decades since its 

results satisfy consistency and stability conditions with high accuracy. DTM is a kind of newly method 

when compared to FDM. DTM establishes a series form solution of differential equation that is based on 

Taylor series method. Zhou [18] is the first who mentioned about DTM to get solutions of differential 

equations. The DTM is reduced both ordinary and partial differential equation to recurrence relation in 

order to calculate necessary derivatives symbolically. Consequently, DTM provides truncated series form 

solution or convergent solution for differential equation considered [19-21]. Generalized differential 

transform method (GDTM) is the method to get solution of fractional differential equations based on 

DTM [21-29]. On the other hand, it is difficult to use DTM or GDTM for solving high dimensional 

problems especially which contain discontinuity on initial or boundary conditions. To keep away from 

this difficulty, we integrate GDTM and FDM. In [30-33], hybrid DTM and FDM was used to obtain 

solutions in different problems such as the transient thermal stress problem, Burger equations, dynamic 

response problem and heat conduction problem. 
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Definition 2.1. Assume that  ,x t  depends on two variables and also  ,x t  is denoted as separable 

into variables, i.e.      ,x t p x q t  . Then,  ,x t  can be represented as 

       
0 0 0

, .i j k

k

i j k

x t P i x Q j t x t
  

  

                              (4) 

Here,  k x  symbolizes the differential transform of  ,x t .  

Definition 2.2. Let the function  ,x t  is continuous and differentiable with respect to time and space 

variables. Then the differential transform of fractional time derivative of  ,x t  is defined as 

 
 

 
0

1
, , 0 1

1

k

k k
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x x t for
k t


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 
      

    
 .                                        (5) 

Definition 2.3. The inverse of differential transform is defined by 

   
0

, k

k

k

x t x t


 



   .                                                                         (6) 

The combination of equation (5) and (6) permits us to have 

 
 

 
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1
, ,
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k
k

k
k t

x t x t t
k t
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 
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    
 .              (7) 

In this study, the hybrid GDTM/FDM process is explained with the time-fractional nonlinear partial 

differential equation: 

          , , , ,L x t R x t N x t q x t                                                       (8) 

with initial condition 

   ,0x p x                                                                           (9) 

where , 0 1L
t






   


,   is the order of fractional derivative in the Caputo definition. R and N  are 

linear and nonlinear terms with partial derivatives, respectively. Also  ,q x t  is a nonhomogeneous 

function in the equation. We apply firstly GDTM to discretize of fractional order derivative and secondly 

FDM to discretize of spatial variable. The region in x direction is split into subdomains which has equal 

width h . Grid points are denoted by , 0,1,2, ,ix ih i M  . 

After discretization, this equation reduces to following iteration formula 
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.                              (10) 
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From the initial condition it follows that 

   0 .ii P x                                                                            (11) 

Here,  kQ i  is the transformed function of  ,q x t . 
1R  and 

1N  are the operators in FDM. 

In the current study we use hybrid method of GDTM and FDM to solve the time-fractional Navier-Stokes 

equation. The Navier-Stokes equations represent the flow motion in the cavity and in cylindrical 

coordinate and these equations can be given by 

2

2

1P
v

t z r r r

     
    

    
 ,                                                            (12) 

   ,0r f r  .                                                                             (13) 

When time derivative term is written as fractional derivative model, the governing equation of motion 

(12) has the form 

2

2

1
, 0 1p v

t r r r
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     
      
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 ,                                             (14) 

where 
P

p
z


 


. 

After taking the differential transform of time derivative term in equation (14), the time evolutionary 

equation is transformed to an elliptic equation.  

After using GDTM and FDM, the following recurrence relation is achieved; 

  
 

       2
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1 1 1

1
k k k
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  



     
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.                    (15) 

Here D and 
2D  are the finite difference operators for first and second order derivatives, respectively. 

is the Kronecker Delta function. Therefore, system of algebraic equation evaluated from different values 

of i  is constructed and this diagonally dominant system is solved by the Gauss-Seidel method which is 

convergent since coefficient matrix remains nonsingular. 

From the initial condition, we have 

   0 .i f i r                                                                                   (16) 

To provide the approximate solution of  ,ix t , the differential transform coefficients   k i
  values 

calculated from equation (15) with substituting the initial condition (16) into (15). Consequently, we have 

approximate series solution of order m  

   
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,
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i k
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x t i t
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
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Equation (17) is a truncated series solution getting from applying of hybrid DTM and FDM to time 

fractional Navier-Stokes equation. It is important to show that this truncated series solution is convergent 

solution. To gain convergent solution three key parameters are used in the solution procedure. They are 

the mesh size used in FDM, the time step used in DTM and the order of truncated series. Using small 

meshes and time steps, simulation results can be developed. But, too many meshes and time steps may 

cause a divergence in approximation with big rounding error. Also the order of power series ( m ) can be 

outnumbered to avoid divergence. If these three parameters are compatible with each other, consistency 

will be satisfied from Lax equivalence theorem as proved by Jang [24]. When the selection of the values 

of parameters are satisfied the following condition  

 

1
1m

k

t
i


 

     

, 

the error of the solution procedure will not be exceed the tolerance value . 

In this study, the total length is divided into 30 or 32 meshes; the time step is selected as 0.0005 or 0.001 

and 10 terms are used in power series. 

3. APPLICATIONS 

The nondimensional form of the time fractional Navier-Stokes equation for unsteady viscous fluid flow 

in three dimensions is
2p v

t


   


. It can be rewritten in variables of cylindrical polar coordinates 

 , ,r z by 

2 2 2

2 2 2 2

1 1
p v

t r r r r z
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     

     
.                                                  (18) 

For simplicity   is supposed to be independent on z , equation (18) reduces to 

2 2

2 2 2

1 1
p v

t r r r r

      
    

    
                                                           (19) 

in two dimensional form. 

When the fractional time derivative is used instead of time derivative term, the general equation (19) is 

written in the following form: 

2 2

2 2 2

1 1
, 0 1.p v

t r r r r





       
       

    
                                    (20) 

Example 3. 1. 

Consider two dimensional problem in cylindrical coordinate with circular symmetry domain. In this case, 

we have  

2

2
0

 



 and equation (20) simplifies to next equation for Newtonian fluid 
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2

2

1
p v

t r r r




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   

   
.              (21) 

We can take 1v  . Then, equation (21) reduces to 

2

2

1
, 0 1p

t r r r





    
     

  
               (22) 

and the initial condition has the form 

  2,0 1r r   .                                                                 (23) 

To discretize equation (22) with the initial condition (23) we use hybrid method. Firstly, we apply GDTM 

with respect to the time variable. Secondly, we use FDM for the spatial variables. 

Substituting the generalized differential transformation in equation (21),we have 

  
 

   
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1 1 1
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.                           (24) 

Then we apply FDM to derivatives according to variable r , 
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                 (25) 

where r  is the mesh size in  direction r  and  r i r  . For 0k  , we get the value of  0 i
  from 

the discretization of initial condition (23) as 

   
22

0 1i i r    .                                                                 (26) 

Substituting 0k   in equation (25), gives that 

   
 

1

1
4

1
i p  

 
.                                                          (27) 

For 1k  ,  2 0i  . Substituting this value in equation (25) subsequently, 

 

 
3

4

0

0

i

i





 

                                                                          (28) 

Consequently the solution is defined by 



 

  

906 Çilingir Süngü, Demir / Cumhuriyet Sci. J., Vol.39-4 (2018) 900-911 

       

 
 

0 1

0
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1
1 4

1
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r t i t i i t
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
    



      

   
 


                                      (29) 

which is the same solution given by [4]. Figure 1a and 1b show the simulation results for the time 

fractional equation (22) with the initial condition (23) when 1p  ; 1   and 0.5  , respectively. 

 

Figure 1. The surfaces show the solution  ,r t  for equation (23) when 1p  : (a) 1  ; (b) 0.5  . 

 

Example 3. 2. 

Suppose that the function   is a solution of the equation 

2

2

2
, 0 1r

t r r r





    
   

  
 ,                                                                (30) 

and satisfies the initial condition 

21 r when t 0, 0 r 1     ,                                                          (31) 

and the boundary conditions 

0 0, 0; 0 1, 0at r t at r t
r


      


.                                          (32) 

For non-zero values of r  there is no difficulty in expressing each derivative in terms of standard finite 

difference approximation, but at 0r   we have singularity in the right side of equation (30). This can be 

dealt with by replacing the polar-coordinate form of 
2  by its Cartesian equivalent [34]. As known 
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clearly, two dimensional problem in Cylindrical coordinates possesses circular symmetry, then 
2

2

2

1

r r r

 


 
  

 
.            

Let 0
r





 at 0r   then,  

1

r r




 assumes the indeterminate form 0 0  at this point if the problem is 

symmetrical with respect to the origin. Therefore as a result by Maclaurin’s expansion of  r , so 

2

20 0

1
lim lim
r rr r r 
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

 
 at 0r  . Hence the equation 

2

2

2

r r r

  


 
 at 0r  can be replaced by 

 

2

2
3

t r
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

 
.                 (33)  

After discretization we have the main equation, initial and boundary conditions as follows: 
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    for 0r   ,                            (34) 
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       for 0r  ,                          (35) 

   
22

0 1i i r     ,                                                                            (36) 

  0k M  .                                                                            (37) 

After evaluating these equations, simulation results are easily obtained by using the inverse transformation 

rule in GDTM. Numerical solutions for this problem with various   values are shown in Figure 2. 

 

Figure 2. The surfaces show the solution  ,r t  for equation (31): (a) 1  ; (b) 0.5  . 
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Comparison of present solutions and finite difference solutions [34] is shown in Table 1 for this 

problem for 1  . As can be seen from the Table 1, it is clear that the present work gives good 

approximation as well as FDM. 

Table1. Comparison of numerical results with finite difference solution at 0.01t   for 0.001t  . 

x  [34] Present Error 

0 0.94 0.94 0 

0.1 0.93 0.93 1010
 

0.2 0.9 0.9 92.5 10  

0.3 0.85 0.85 86.44 10  

0.4 0.780001 0.78 0.000001 

0.5 0.690013 0.69 0.000013 

    

 

Example 3. 3. 

The function   is a solution of the equation 

2 2

2 2 2

1 1
, 0 1r

t r r r r





      
    

   
 ,            (38) 

at every point  , ,P r t  of the open bounded domain 0 1r  , 0t   and satisfies the initial condition 

1
sin

2
r

 
   

 
, 0 1, 0r t    and the boundary condition 

r


 


 at 1, 0r t   , where  , ,r t  

are the cylindrical polar coordinates of P . 

By using GDTM in time direction and central FDM in spatial directions, the transformed form of equation 

(38) and initial condition are as follows: 

  
 

 
     

 

 

   

 

 

     

 

1 2

2 22

1 1 1, 2 , 1,
,

1

1, 1,2

2

, 1 2 , , 11

k k k

k

k k

k k k

k i j i j i j
i j

k r

i j i j

i r r

i j i j i j

i r

  





 

  

         
 

   

    
     

      
  

   

         (39) 

     0

1
, sin

2
i j i r j  

    
 

.                                               (40) 

At 0r   the right hand side of equation (38) appears to contain singularities. To overcome this 

complication, a circle of radius r  is constructed at the origin. Let 
0  be the value of  at the origin and 

*  be the mean value of   round the circle. 

Rotation of the axes through a small angle clearly leads to 
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 

 
* 02

2

4
.

r

 
  


                                                               (41) 

Here, 

2

*

0

2
sin

2 2

r r
d


   

    
  
 .                                                                     (42) 

Then, we get 

  
 

 
   

1 2

1 1 4 2 8
0, 0

1
k

k r
j

k rr





     
    

      
.                           (43) 

The transformed form of boundary conditions are defined by 

 
 

    

 
 

  
     

 

 

 

     

   

1

2

2 22

1 8
0, ,

1 1

1 2 2 , 2 1,
,

1 1

, , 1 2 , , 1

k

k k

k

k k k k

k
j

rk

k r M j M j
M j

k r

M j M j M j M j

M r M r





 



   

  
 

    

         
  

    

       
  

   

  .         (44) 

Using equations (39), (40) and (44) differential transform coefficients are evaluated up to certain number 

of terms and then using the inverse transformation rule  , ,i jr t   is evaluated as follows: 

   
10

0

, , , k

i j k

k

r t i j t 



    .                                                       (45) 

Following figure shows the graphs of the solution of equation (38) for various   values.  

 

Figure 3. The surfaces show the solution  , ,r t   for equation (38): (a) 1  ; (b) 0.5  . 
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4. CONCLUSION 

In this study a new GDTM/FDM are studied for the solution of a time-fractional Navier-Stokes equation 

in a tube for three different cases. In the first case; we found the same solution with ADM in series form. 

In the second case; we obtained singularity in the equation and we overcame this difficulty by using hybrid 

method. Then, we compared our results with FDM.  In the third case; we solved two-dimensional 

fractional differential equations. We had convergent solution easily because the recurrence relation of 

hybrid method did not contain any complexity rather than GDTM in the higher dimension. Therefore, 

results showed that the hybrid approach is more convenient than GDTM for computational purpose 

because of reducing the execution time and memory requirements for large scale computations. Numerical 

calculations illustrate the effectiveness and the performance of this method. Also, the surfaces of the 

solution of equations (22), (30) and (38) are showed by graphically for different values of Beta and they 

are compatible with literature for 1  . 
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