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Abstract: In this study, we show that the elliptic biquaternion algebra is algebraically isomorphic to the 2× 2 total elliptic matrix
algebra and so, we get a faithful 2× 2 elliptic matrix representation of an elliptic biquaternion. Also, we investigate the similarity
and the Moore-Penrose inverses of elliptic biquaternions by means of these matrix representations. Moreover, we establish uni-
versal similarity factorization equality (USFE) over the elliptic biquaternion algebra which reveals a deeper relationship between
an elliptic biquaternion and its elliptic matrix representation. This equality and these representations can serve as useful tools for
discussing many problems concerned with the elliptic biquaternions, especially for solving various elliptic biquaternion equations.
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1 Introduction

Sir W. R. Hamilton introduced the set of quaternions in 1843 [1], that was one of the his best contribution made to mathematical science. The
set of quaternions can be represented as

H = {q = q0 + q1i+ q2j+ q3k : q0, q1, q2, q3 ∈ R}

where the quaternion bases 1, i, j and k satisfy the multiplication laws

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

W.R. Hamilton introduced complex quaternion algebra ten years later from discovery of quaternions, in 1853 [2]. The set of complex
quaternions is defined by

HC = {Q = Q0 +Q1i+Q2j+Q3k : Q0, Q1, Q2, Q3 ∈ C}

where 1, i, j and k are exactly the same in quaternions. There can be found some studies related to quaternions in [3–10].
A fundamental fact (see e.g., [3–6]) is that complex quaternion algebra is isomorphic to the 2× 2 total complex matrix algebra M2 (C) by

means of the isomorphism

ψ : HC →M2 (C) , ψ (ao + a1i+ a2j+ a3k) =

[
ao + a1i −a2 − a3i
a2 − a3i ao − a1i

]
.

Based on this isomorphism, any complex quaternion x ∈ HC has a faithful complex matrix representation ψ (x) ∈M2 (C).
USFE over an algebra can serve as a precious material for investigating various problems concerned with this algebra and their applications.

There can be found some studies which include USFE over various algebras in [11–15].
Recently, we have introduced the set of elliptic biquaternions and presented various studies related to elliptic biquaternions. We refer the

readers to [16–20].
This article is organized as follows. In section 2, we recall the fundamental concepts of elliptic matrices and review the elliptic biquaternions

and their matrices to disambiguate the ensuing sections. In section 3, 2× 2 elliptic matrix representations of elliptic biquaternions are intro-
duced. In section 4, the similarity of elliptic biquaternions is investigated and USFE for elliptic biquaternions is established. In section 5, the
Moore-Penrose inverses of elliptic biquaternions are discussed with the aid of their aforementioned matrix representations.

Throughout this paper, the following notations are used. C, Cp, HCp, Mm×n (C), Mm×n (Cp) and Mm×n (HCp) denote the complex
number field, the elliptic number field, the elliptic biquaternion algebra, the set of all m× n complex matrices, the set of all m× n elliptic
matrices and the set of all m× n elliptic biquaternion matrices, respectively. For convenience, the set of all square matrices on Cp is denoted
by Mn (Cp).
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2 Preliminaries

In this section, we recall some necessary properties of elliptic matrices. Also, we give some notions about elliptic biquaternions and their
matrices. For more details see [16, 20, 21].

In the set of elliptic matrices Mm×n (Cp) including m× n matrices with elliptic number entries, the scalar multiplication is defined as

λA = λ
[
aij
]
=
[
λaij

]
∈Mm×n (Cp)

where λ ∈ Cp and A =
[
aij
]
∈Mm×n (Cp). Also, the ordinary matrix addition and multiplication are defined in this set. Let an elliptic

matrix A =
[
aij
]
∈Mm×n (Cp) be given. In that case, the complex conjugate of A is defined as A =

[
a∗ij
]
∈Mm×n (Cp) where a∗ij is the

usual complex conjugation of aij ∈ Cp. Also, the conjugate transpose of A is defined as A∗ =
(
A
)T ∈Mn×m (Cp).

On the other hand, the square elliptic matrices A and B with the same dimension over Cp are said to be similar, if there exists an invertible
elliptic matrix P satisfying P−1AP = B, [21].

The set of elliptic biquaternions is represented as

HCp = {Q = A0 +A1i+A2j+A3k : A0, A1, A2, A3 ∈ Cp}

where i, j and k are the quaternionic units which satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The operations of addition, multiplication and scalar multiplication are given as

Q+R = (A0 +B0) + (A1 +B1) i + (A2 +B2) j + (A3 +B3) k

QR = [(A0B0)− (A1B1)− (A2B2)− (A3B3)]

+ [(A0B1) + (A1B0) + (A2B3)− (A3B2)] i

+ [(A0B2)− (A1B3) + (A2B0) + (A3B1)] j

+ [(A0B3) + (A1B2)− (A2B1) + (A3B0)] k

λQ = (λA0) + (λA1) i+ (λA2) j+ (λA3)k

where λ ∈ Cp and Q = A0 +A1i+A2j+A3k, R = B0 +B1i+B2j+B3k ∈ HCp. Also, the following equations

Q∗ = A0
∗ +A1

∗i+A2
∗j+A3

∗k

Q = A0 −A1i−A2j−A3k

Q† =
(
Q
)∗

= A0
∗ −A1

∗i−A2
∗j−A3

∗k

state the complex conjugate, quaternion conjugate and Hermitian conjugate of Q, respectively. Here the stars given as superscript on
A0, A1, A2 and A3 indicate the usual complex conjugation. If Q† = Q, Q is said to be Hermitian, [16].

As can be seen easily, the meanings of the symbols; star and dagger given as superscript and over bar vary according to terms which they
are applied to. We need to warn the readers about these cases for the rest of the paper.

Another thing that can be of importance is the inner product of two elliptic biquaternions. The inner product of Q and R is defined in the
following way:

〈Q,R〉 = 1

2

(
QR+RQ

)
=

1

2

(
QR+RQ

)
= A0B0 +A1B1 +A2B2 +A3B3.

On the other hand, the semi-norm of Q is expressed as follows:

NQ = 〈Q,Q〉 = A0
2 +A1

2 +A2
2 +A3

2 = QQ = QQ ∈ Cp.

When NQ 6= 0, Q has a multiplicative inverse such that Q−1 = Q/NQ, [16].
The set of all m× n type matrices with elliptic biquaternion entries is denoted by Mm×n (HCp). The ordinary matrix addition and

multiplication are defined in this matrix set. Also, the scalar multiplication is expressed as in the following:

QA = Q
[
aij
]
=
[
Qaij

]
∈Mm×n (HCp)

where Q ∈ HCp and A =
[
aij
]
∈Mm×n (HCp). For A =

[
aij
]
∈Mm×n (HCp), the Hermitian conjugate of A is defined as A† =[

aji
†
]
∈Mn×m (HCp) where aji† is the Hermitian conjugate of aji ∈ HCp, [20].
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3 Elliptic Matrix Representations of Elliptic Biquaternions

In this section, we get 2× 2 elliptic matrix representations of elliptic biquaternions and give some properties which are satisfied by these
representations and elliptic biquaternions.

Let us consider the matrix set M2 (Cp) which can be represented as

M2 (Cp) =

{[
x y
z t

]
: x, y, z, t ∈ Cp

}
.

In the following lemma, we show that this matrix set can be represented as in a somewhat different form which are used to define the required
isomorphism.

Result 1. The set of 2× 2 elliptic matrices can be represented as

M2 (Cp) =


X0 + 1√

|p|
IX1 −X2 − 1√

|p|
IX3

X2 − 1√
|p|
IX3 X0 − 1√

|p|
IX1

 : Xi = xi + Ixi
′ ∈ Cp, 0 ≤ i ≤ 3

 . (1)

Proof: Let A =

[
z1 + Iz1

# z2 + Iz2
#

z3 + Iz3
# z4 + Iz4

#

]
be an arbitrary 2× 2 elliptic matrix where z1, z1#, z2, z2#, z3, z3#, z4 and z4# are real

numbers. Then, we can write

A =


(
x0 −

√
|p|x1′

)
+ I

(
x0
′ + x1√

|p|

) (
−x2 +

√
|p|x3′

)
+ I

(
−x2′ − x3√

|p|

)
(
x2 +

√
|p|x3′

)
+ I

(
x2
′ − x3√

|p|

) (
x0 +

√
|p|x1′

)
+ I

(
x0
′ − x1√

|p|

)
 (2)

such that

x0 =
z1 + z4

2
, x0

′ =
z1

# + z4
#

2
, x1 =

√
|p|
(
z1

# − z4#
)

2
, x1

′ =
z4 − z1
2
√
|p|
∈ R

x2 =
z3 − z2

2
, x2

′ =
z3

# − z2#

2
, x3 = −

√
|p|
(
z2

# + z3
#
)

2
, x3

′ =
z2 + z3

2
√
|p|
∈ R.

It can be easily seen that the arbitrary 2× 2 elliptic matrix in (2) is equal to the matrixX0 + 1√
|p|
IX1 −X2 − 1√

|p|
IX3

X2 − 1√
|p|
IX3 X0 − 1√

|p|
IX1


where Xi = xi + Ixi

′ ∈ Cp, 0 ≤ i ≤ 3.
Conversely, it is clear that the matrix given in (1) is a 2× 2 elliptic matrix. �

Let us take into account the function

σ : HCp → M2 (Cp)

Q = A0 +A1i+A2j+A3k→ σ (Q) =

A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1

 .
The function σ comprises the properties

σ (Q+R) = σ (Q) + σ (R) , σ (QR) = σ (Q)σ (R)

where Q and R are any elliptic biquaternions. Also it is bijection. So, σ is a linear isomorphism.

Corollary 1. For an arbitrary 2× 2 elliptic matrix A, Q ∈ HCp satisfying the equality σ (Q) = A is existence and uniqueness.

Proof: The proof is obvious from the linear isomorphism σ and Lemma 1. �

Definition 1. Let Q = A0 +A1i+A2j+A3k ∈ HCp be an arbitrary elliptic biquaternion where A0, A1, A2, A3 ∈ Cp, in that case the
elliptic matrix

σ (Q) =

A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1


which corresponds to Q is called 2× 2 elliptic matrix representation of Q.
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Next two theorems include some properties which are satisfied by elliptic biquaternions and their 2× 2 elliptic matrix representations.

Theorem 1. Let Q = A0 +A1i+A2j+A3k , R = B0 +B1i+B2j+B3k ∈ HCp and λ ∈ Cp be given. In this case

1. det (σ (Q)) = NQ = A0
2 +A1

2 +A2
2 +A3

2,

2. Q is invertible if and only if σ (Q) is invertible, then σ
(
Q−1

)
= (σ (Q))−1 and Q−1 = 1

4E2(σ (Q))−1E2
†,

3. Q = R⇔ σ (Q) = σ (R) ,
4. σ (Q+R) = σ (Q) + σ (R) , σ (QR) = σ (Q)σ (R) , σ (λQ) = σ (Qλ) = λσ (Q) , σ (1) = I2 ,
5. Q = 1

4E2σ (Q)E2
†,

where E2 =
[
1− 1√

|p|
Ii j+ 1√

|p|
Ik
]
∈M1×2 (HCp).

Proof: The proof of 3 and 4 are obvious due to the aforementioned linear isomorphism σ. On the other hand, the proof of 5 can be completed
by direct calculation. Now, we will prove 1 and 2.

1. We know that σ (Q) =

A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1

. Then we obtain

det (σ (Q)) = A0
2 −A1

2 I
2

|p| +A2
2 −A3

2 I
2

|p|

= A0
2 −A1

2 p

(−p) +A2
2 −A3

2 p

(−p)

= A0
2 +A1

2 +A2
2 +A3

2.

2. For an elliptic biquaternionQ, we know thatQ is invertible if and only ifNQ 6= 0. Therefore, by means of the first property in this theorem,
we can write

Qis invertible⇔ NQ 6= 0⇔ det (σ (Q)) 6= 0⇔ σ (Q) is invertible.

Suppose that Q and σ (Q) are invertible. In this case, from the inverse property, the equality

QQ−1 = Q−1Q = 1

is satisfied. Then, by means of the third and fourth properties in this theorem, the equalities

σ (Q)σ
(
Q−1

)
= σ

(
QQ−1

)
= σ (1) = I2

and

σ
(
Q−1

)
σ (Q) = σ

(
Q−1Q

)
= σ (1) = I2

are obtained. It means that (σ (Q))−1 = σ
(
Q−1

)
. Therefore, by considering the fifth property in this theorem, we obtain Q−1 =

1
4E2(σ (Q))−1E2

†. �

Theorem 2. Let Q = A0 +A1i+A2j+A3k ∈ HCp be given. In this case

1. σ
(
Q
)
=

[
0 1
−1 0

]
(σ (Q))T

[
0 −1
1 0

]
where Q is the quaternion conjugate of Q,

2. σ (Q∗) =

[
0 1
−1 0

]
σ (Q)

[
0 −1
1 0

]
where Q∗ is the complex conjugate of Q,

3. σ
(
Q†
)
=
(
σ (Q)

)T
= (σ (Q))∗ where Q† is the Hermitian conjugate of Q.

Proof: 2 and 3 can be easily shown, Now, we will prove 1.
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1. For Q = A0 +A1i+A2j+A3k, we can write Q = A0 −A1i−A2j−A3k. In this case, we get

σ
(
Q
)
=

 A0 − 1√
|p|
IA1 A2 + 1√

|p|
IA3

−A2 + 1√
|p|
IA3 A0 + 1√

|p|
IA1

 .
On the other hand, it is clear that

(σ (Q))T =

 A0 + 1√
|p|
IA1 A2 − 1√

|p|
IA3

−A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1

 .
Then, by directly multiplying we obtain

[
0 1
−1 0

]
(σ (Q))T

[
0 −1
1 0

]
=

 A0 − 1√
|p|
IA1 A2 + 1√

|p|
IA3

−A2 + 1√
|p|
IA3 A0 + 1√

|p|
IA1

 = σ
(
Q
)
.

�

4 Similarity of Elliptic Biquaternions and USFE for Elliptic Biquaternions

In this section, we investigate the similarity of elliptic biquaternions with the aid of their elliptic matrix representations and establish universal
similarity factorization equality for elliptic biquaternions.

4.1 Similarity of elliptic biquaternions

One of the natural questions concerned with elliptic biquaternions is the similarity of two elliptic biquaternions. By analogy with the classic
quaternion case, the next definition is given.

Definition 2. For Q,R ∈ HCp, if there exists an invertible elliptic biquaternion X such that X−1QX = R, Q and R are called similar
elliptic biquaternions. This case is denoted by Q ∼ R.

By considering Definition 2, a simple result, which characterizes the similarity of two elliptic biquaternions, can be given as follows.

Theorem 3. Let Q,R ∈ HCp be given. In this case,

Q ∼ R⇔ σ (Q) ∼ σ (R) . (3)

Proof: Q ∼ R if and only if there is an invertible elliptic biquaternion X such that X−1QX = R. Then, we have

Q ∼ R⇔ σ
(
X−1QX

)
= σ (R)

⇔ σ
(
X−1

)
σ (Q)σ (X) = σ (R)

⇔ (σ (X))−1σ (Q)σ (X) = σ (R)

⇔ σ (Q) ∼ σ (R)

from Theorem 1 (2), (3) and (4). �

As a consequence of Theorem 3, we can give the following theorem.

Theorem 4. Let Q = A0 +A1i+A2j+A3k ∈ HCp be given where Q /∈ Cp.

1. If A1
2 +A2

2 +A3
2 6= 0, in that case Q ∼ A0 + γ (Q) i where γ (Q) is an elliptic number satisfying the equality γ2 (Q) = A1

2 +
A2

2 +A3
2.

2. If A1
2 +A2

2 +A3
2 = 0, in that case Q ∼ A0 − 1

2 j+
1

2
√
|p|
Ik.
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Proof: For a given elliptic biquaternion Q = A0 +A1i+A2j+A3k ∈ HCp, we have its 2× 2 elliptic matrix representation σ (Q). We can
calculate its characteristic polynomial as follows:

|λI2 − σ (Q)| =

∣∣∣∣∣∣∣∣∣
λ−A0 −

I√
|p|
A1 A2 +

I√
|p|
A3

−A2 +
I√
|p|
A3 λ−A0 +

I√
|p|
A1

∣∣∣∣∣∣∣∣∣ = (λ−A0)
2 +A1

2 +A2
2 +A3

2.

For A1
2 +A2

2 +A3
2 6= 0, we can get the roots of the above characteristic polynomial as λ1,2 = A0 ± 1√

|p|
Iγ (Q). Thus, we

immediately have

σ (Q) ∼

A0 + 1√
|p|
Iγ (Q) 0

0 A0 − 1√
|p|
Iγ (Q)

 = σ (A0 + γ (Q) i) . (4)

For A1
2 +A2

2 +A3
2 = 0, we can get the roots of the characteristic polynomial of σ (Q) as λ1,2 = A0. Then, considering the Jordan

canonical form of σ (Q), we can write the following

σ (Q) ∼
[
A0 1
0 A0

]
= σ

(
A0 −

1

2
j+

1

2
√
|p|
Ik

)
. (5)

If we apply Theorem 3 to (4) and (5), we can easily prove the first part and second part of this theorem, respectively. �

4.2 USFE for elliptic biquaternions

There is a deeper relationship between an elliptic biquaternion Q and its elliptic matrix representation σ (Q) which appears with USFE over
the elliptic biquaternion algebra.

In [11], Tian presents a general result on the universal similarity factorization of elements over any algebra as follows:
Let A be an algebra over an arbitrary field F and Mn(A) be the matrix algebra which includes all n× n matrices with elements in A. Also,
let
{
τij
}

be the basis of A that satisfies the following rules

τi jτs t =

{
τi t j = s

0 j 6= s
, i, j, s, t = 1, ..., n. (6)

In this case, any Q =
n∑

i,j=1
ai jτi j ∈ A

(
ai j ∈ F

)
satisfies the following USFE

P


Q

Q
. . .

Q

P−1 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

 (7)

where P has the following independent form

P = P−1 =


τ11 τ21 · · · τn1
τ12 τ22 · · · τn2

...
...

...
...

τ1n τ2n · · · τnn

 . (8)

By basing on the general result indicated above, we establish USFE for elliptic biquaternions as follows.

Theorem 5. LetQ = A0 +A1i+A2j+A3k ∈ HCp be given. In this case, the elliptic biquaternion matrix
[
Q 0
0 Q

]
satisfies the following

USFE

P

[
Q 0
0 Q

]
P−1 =

A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1

 = σ (Q) ∈M2 (Cp) (9)

where P is in the following independent form:

P = P−1 =
1

2

 1− 1√
|p|
Ii j+ 1√

|p|
Ik

−j+ 1√
|p|
Ik 1 + 1√

|p|
Ii

 ∈M2 (HCp) . (10)
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Proof: Let Q = A0 +A1i+A2j+A3k ∈ HCp be an arbitrary elliptic biquaternion and let us consider the elliptic biquaternions

τ11 =
1

2
− I

2
√
|p|

i, τ12 = −1

2
j+

I

2
√
|p|

k, τ21 =
1

2
j+

I

2
√
|p|

k, τ22 =
1

2
+

I

2
√
|p|

i. (11)

It is clear that the system {τ11, τ12, τ21, τ22} is a base of elliptic biquaternion algebra from the equalities

〈τst , τpq〉 =


1 , ( s = p) ∧ (t = q) , s, t, p, q = 1, 2

0 , (s 6= p) ∨ (t 6= q) , s, t, p, q = 1, 2

and

Q =

(
A0 +

A1I√
|p|

)
τ11 +

(
−A2 −

A3I√
|p|

)
τ12 +

(
A2 −

A3I√
|p|

)
τ21 +

(
A0 −

A1I√
|p|

)
τ22.

For the case n = 2, it is easy to verify that these new bases in (11) satisfy the multiplication rules in (6). Then, if we consider the last equality
above and (11) in (7) and in (8) by keeping the case n = 2 in mind, we get (9) and (10). �

If Lemma 1 is considered, by means of USFE for elliptic biquaternions, it can be said that every 2× 2 elliptic matrix is uniformly similar to
the diagonal matrix diag (Q,Q) where Q is the elliptic biquaternion which corresponds to this 2× 2 elliptic matrix.

5 Moore-Penrose Inverses of Elliptic Biquaternions

In this section, we define the Moore-Penrose inverse of any elliptic matrix and show that it always exists uniquely. Afterwards, we give the
similar definition for elliptic biquaternions as well. Then, the existence and uniqueness of the Moore Penrose inverse for an elliptic biquaternion
Q are determined by the matrix σ (Q) ∈M2 (Cp).

Definition 3. Let an arbitrary elliptic matrix A ∈Mm×n (Cp) be given. If the equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA (12)

have a common solution X ∈Mn×m (Cp), in this case this solution is called Moore-Penrose inverse of A. It is showed with X = A+.

Theorem 6. Let A ∈Mm×n (Cp) be given. In this case the Moore-Penrose inverse of A is existence and uniqueness.

Proof: We define a function between the space of m× n elliptic matrices and the space of m× n complex matrices as follows:

δ :Mm×n (Cp)→Mm×n (C) a11 + Ib11 . . . a1n + Ib1n
...

. . .
...

am1 + Ibm1 · · · amn + Ibmn

→

a11 + i

(
b11
√
|p|
)

. . . a1n + i
(
b1n
√
|p|
)

...
. . .

...
am1 + i

(
bm1

√
|p|
)
· · · amn + i

(
bmn

√
|p|
)
 .

As can be seen easily, the function δ is bijection and so we can write

A = B ⇔ δ (A) = δ (B) (13)

for A, B ∈Mm×n (Cp). Also, it comprises the following properties

δ (A+B) = δ (A) + δ (B) , δ (AB) = δ (A) δ (B) (14)

and

δ
(
A∗
)
= (δ (A))∗ (15)

whereA∗ is the conjugate transpose ofA ∈Mm×n (Cp) and (δ (A))∗ is the conjugate transpose of δ (A) ∈Mm×n (C) . From (13) and (14),
it is clear that δ is an isomorphism.

Thanks to (13), (14) and (15), the elliptic matrix equation system (12) is equivalent to the following complex matrix equation system:

δ (A) δ (X) δ (A) = δ (A) , δ (X) δ (A) δ (X) = δ (X) ,

(δ (A) δ (X))∗ = δ (A) δ (X) , (δ (X) δ (A))∗ = δ (X) δ (A) .
(16)

According to the complex matrix theory (see [22] for more details) the four equations

δ (A)Y δ (A) = δ (A) , Y δ (A)Y = Y, (δ (A)Y )∗ = δ (A)Y, (Y δ (A))∗ = Y δ (A)

have a unique common solution Y = (δ (A))+ which is called the Moore-Penrose inverse of δ (A). Thus, if we take into account the system
(16) we can immediately obtain δ (X) = (δ (A))+. From the definition of isomorphism δ, it is clear that the matrix X ∈Mm×n (Cp) which
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satisfies δ (X) = (δ (A))+ is existence and uniqueness. In this case, with the aid of the equalities (13), (14) and (15), we conclude that the
elliptic matrix X , which is indicated above, is the unique solution of the elliptic matrix equation system (12). �

Definition 4. Let an elliptic biquaternion Q ∈ HCp be given. If the equations

QXQ = Q, XQX = X, (QX)† = QX, (XQ)† = XQ (17)

have a common solution X ∈ HCp, in this case this solution is called Moore-Penrose inverse of Q. It is showed with X = Q+.

Theorem 7. LetQ ∈ HCp. In that case, its Moore-Penrose inverseQ+ is existence and uniqueness. AlsoQ+ satisfies the following equalities

σ
(
Q+
)
= (σ (Q))+, Q+ =

1

4
E2(σ (Q))+E2

†

where E2 =
[
1− 1√

|p|
Ii j+ 1√

|p|
Ik
]
∈M1×2 (HCp).

Proof: If we consider Theorem 1 (3), (4) and Theorem 2 (3), we can easily see that the elliptic biquaternion equation system (17) is equivalent
to the following elliptic matrix equation system:

σ (Q)σ (X)σ (Q) = σ (Q) , σ (X)σ (Q)σ (X) = σ (X) ,

(σ (Q)σ (X)) ∗ = σ (Q)σ (X) , (σ (X)σ (Q)) ∗ = σ (X)σ (Q) .
(18)

According to Definition 3 and Theorem 6, the four equations

σ (Q)Y σ (Q) = σ (Q) , Y σ (Q)Y = Y,

(σ (Q)Y ) ∗ = σ (Q)Y, (Y σ (Q)) ∗ = Y σ (Q)

have a unique common solution Y = (σ (Q))+ ∈M2 (Cp) which is called the Moore-Penrose inverse of σ (Q). Thus, if we take into account
the system (18) we can write σ (X) = (σ (Q))+. From Corollary 1, we know that the elliptic biquaternionX ∈ HCp which satisfies σ (X) =
(σ (Q))+ is existence and uniqueness. In this case, with the aid of Theorem 1 (3), (4) and Theorem 2 (3), we conclude that the elliptic
biquaternion X , which is indicated above, is the unique solution of the system (17). According to Definition 4, we denote this X by X = Q+.
Thus, it is clear that σ

(
Q+) = (σ (Q))+. From this last equality and Theorem 1 (5), Q+ = 1

4E2(σ (Q))+E2
† can be easily obtained. �
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