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Abstract − The uni-int decision-making method, which selects a set of optimum elements from the
alternatives, was defined by Çağman and Enginoğlu [Soft set theory and uni-int decision making,
European Journal of Operational Research 207 (2010) 848-855] via soft sets and their soft products.
Lately, this method constructed by and-product/or-product has been configured by Enginoğlu and
Memiş [A configuration of some soft decision-making algorithms via fpfs-matrices, Cumhuriyet
Science Journal 39 (4) (2018) In Press] via fuzzy parameterized fuzzy soft matrices (fpfs-matrices),
faithfully to the original, because a more general form is needed for the method in the event that the
parameters or objects have uncertainties. In this study, we configure the method via fpfs-matrices
and andnot-product/ornot-product, faithfully to the original. However, in the case that a large
amount of data is processed, the method still has a disadvantage regarding time and complexity.
To deal with this problem and to be able to use this configured method effectively denoted by
CE10n, we suggest two new algorithms in this paper, i.e. EMA18an and EMA18on, and prove
that CE10n constructed by andnot-product (CE10an) and constructed by ornot-product (CE10on)
are special cases of EMA18an and EMA18on, respectively, if first rows of the fpfs-matrices are
binary. We then compare the running times of these algorithms. The results show that EMA18an
and EMA18on outperform CE10an and CE10on, respectively. Particularly in problems containing
a large amount of parameters, EMA18an and EMA18on offer up to 99.9966% and 99.9964% of time
advantage, respectively. Latterly, we apply EMA18on to a performance-based value assignment to
the methods used in the noise removal, so that we can order them in terms of performance. Finally,
we discuss the need for further research.
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1 Introduction

The concept of soft sets was produced by Molodtsov [1] to deal with uncertainties,
and so far many theoretical and applied studies from algebra to decision-making
problems [2–24] have been conducted on this concept.

Recently, some decision-making algorithms constructed by soft sets [3, 5, 25, 26],
fuzzy soft sets [2,8,27–29], fuzzy parameterized soft sets [9,30], fuzzy parameterized
fuzzy soft sets (fpfs-sets) [7,31], soft matrices [5,32] and fuzzy soft matrices [10,33]
have been configured [34] via fuzzy parameterized fuzzy soft matrices (fpfs-matrices)
[11], faithfully to the original, because a more general form is needed for the method
in the event that the parameters or objects have uncertainties.

One of the configured methods above-mentioned is CE10 [5, 34] constructed by
and-product (CE10a) or constructed by or-product (CE10o). Since the authors point
to a configuration of these methods by using a different product such as andnot-
product and ornot-product, in this study, we configure the uni-int decision-making
method constructed by andnot-product/ornot-product via fpfs-matrices, faithfully
to the original. However, in the case that a large amount of data is processed, this
configured method denoted by CE10n has a disadvantage regarding time and com-
plexity. It can be overcome this problem via simplification of the algorithms but in
the event that first rows of the fpfs-matrices are binary, though there exist simpli-
fied versions of CE10n constructed by andnot-product (CE10an) and constructed by
ornot-product (CE10on), no exist in the other cases. Therefore, in this study, we
aim to develop two algorithms which have the ability of CE10an and CE10on and
are also faster than them.

In Section 2 of the present study, we introduce the concept of fpfs-matrices. In
Section 3, we configure the uni-int decision-making method constructed by andnot-
product/ornot-product via fpfs-matrices. In Section 4, we suggest two new algo-
rithms in this paper, i.e. EMA18an and EMA18on, and prove that CE10an and
CE10on are special cases of EMA18an and EMA18on, respectively, if first rows of
the fpfs-matrices are binary. A part of this section has been presented in [35]. In
Section 5, we compare the running times of these algorithms. In Section 6, we apply
EMA18on to the decision-making problem in image denoising. Finally, we discuss
the need for further research.

2 Preliminary

In this section, we present the definition of fpfs-sets and fpfs-matrices. Throughout
this paper, let E be a parameter set, F (E) be the set of all fuzzy sets over E, and
µ ∈ F (E). Here, µ := {µ(x)x : x ∈ E}.

Definition 2.1. [7, 11] Let U be a universal set, µ ∈ F (E), and α be a function
from µ to F (U). Then the graphic of α, denoted by α, defined by

α := {(µ(x)x, α(µ(x)x)) : x ∈ E}

that is called fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via E over
U (or briefly over U).

In the present paper, the set of all fpfs-sets over U is denoted by FPFSE(U).
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Example 2.2. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then

α = {(1x1, {
0.3u1,

0.7 u3}), (
0.8x2, {

0.2u1,
0.2 u3,

0.9 u5}), (
0.3x3, {

0.5u2,
0.7 u4,

0.2 u5}), (
0x4, {

1u2,
0.9 u4})}

is a fpfs-set over U .

Definition 2.3. [11] Let α ∈ FPFSE(U). Then [aij ] is called the matrix represen-
tation of α (or briefly fpfs-matrix of α) and defined by

[aij] =















a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .
...

...
...

. . .
...

...
am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

...















for i = {0, 1, 2, · · · } and j = {1, 2, · · · }

such that

aij :=

{

µ(xj), i = 0
α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m− 1 and |E| = n then [aij ] has order m× n.

From now on, the set of all fpfs-matrices parameterized via E over U is denoted
by FPFSE[U ].

Example 2.4. Let’s consider the fpfs-set α provided in Example 2.2. Then the
fpfs-matrix of α is as follows:

[aij ] =

















1 0.8 0.3 0
0.3 0.2 0 0
0 0 0.5 1
0.7 0.2 0 0
0 0 0.7 0.9
0 0.9 0.2 0

















Definition 2.5. [11] Let [aij ], [bik] ∈ FPFSE[U ] and [cip] ∈ FPFSE2[U ] such that
p = n(j − 1) + k. For all i and p,

If cip = min{aij , bik}, then [cip] is called and-product of [aij] and [bik] and is denoted
by [aij ]∧[bik].

If cip = max{aij , bik}, then [cip] is called or-product of [aij ] and [bik] and is denoted
by [aij ]∨[bik].

If cip = min{aij , 1− bik}, then [cip] is called andnot-product of [aij ] and [bik] and is
denoted by [aij]∧[bik].

If cip = max{aij , 1 − bik}, then [cip] is called ornot-product of [aij ] and [bik] and is
denoted by [aij]∨[bik].
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3 A Configuration of the uni-int Decision-Making Method

In this section, we configure the uni-int decision-making method [5] constructed by
andnot-product/ornot-product via fpfs-matrices.

Algorithm Steps
Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Find andnot-product/ornot-product fpfs-matrix [cip] of [aij ] and [bik]

Step 3. Find andnot-product/ornot-product fpfs-matrix [dit] of [bik] and [aij ]

Step 4. Obtain [si1] denoted by max -min(cip, dit) defined by

si1 := max{maxjmink(cip),maxkminj(dit)}

such that i ∈ {1, 2, . . . , m−1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0}, I∗a :=
{j | 1− a0j 6= 0}, I∗b := {k | 1− b0k 6= 0}, p = n(j − 1) + k, t = n(k− 1) + j,
and

maxjmink(cip) :=







max
j∈Ia

{

min
k∈I∗

b

c0pcip

}

, Ia 6= ∅ and I∗b 6= ∅

0, otherwise

maxkminj(dit) :=







max
k∈Ib

{

min
j∈I∗a

d0tdit

}

, I∗a 6= ∅ and Ib 6= ∅

0, otherwise

Step 5. Obtain the set {uk | sk1 = max
i

si1}

Preferably, the set {si1ui | ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

4 The Soft Decision-Making Methods: EMA18an and EMA18on

In this section, firstly, we present a fast and simple algorithm denoted by EMA18an
[35].

EMA18an’s Algorithm Steps
Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Obtain [si1] denoted by max -min(aij , bik) defined by

si1 := max{maxjmink(aij, bik),maxkminj(bik, aij)}

such that i ∈ {1, 2, . . . , m − 1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0},
I∗a := {j | 1− a0j 6= 0}, I∗b := {k | 1− b0k 6= 0}, and

maxjmink(aij , bik) :=







min

{

max
j∈Ia

{a0jaij},min
k∈I∗

b

{(1 − b0k)(1− bik)}

}

, Ia 6= ∅ and I∗b 6= ∅

0, otherwise

maxkminj(bik, aij) :=







min

{

max
k∈Ib

{b0kbik},min
j∈I∗a

{(1− a0j)(1− aij)}

}

, I∗a 6= ∅ and Ib 6= ∅

0, otherwise



Journal of New Theory 25 (2018) 84-102 88

Step 3. Obtain the set {uk | sk1 = max
i

si1}

Preferably, the set {si1ui | ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

Secondly, we propose a fast and simple algorithm denoted by EMA18on.

EMA18on’s Algorithm Steps

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Obtain [si1] denoted by max -min(aij , bik) defined by

si1 := max{maxjmink(aij, bik),maxkminj(bik, aij)}

such that i ∈ {1, 2, . . . , m − 1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0},
I∗a := {j | 1− a0j 6= 0}, I∗b := {k | 1− b0k 6= 0}, and

maxjmink(aij , bik) :=







max

{

max
j∈Ia

{a0jaij},min
k∈I∗

b

{(1− b0k)(1 − bik)}

}

, Ia 6= ∅ and I∗b 6= ∅

0, otherwise

maxkminj(bik, aij) :=







max

{

max
k∈Ib

{b0kbik},min
j∈I∗a

{(1 − a0j)(1 − aij)}

}

, I∗a 6= ∅ and Ib 6= ∅

0, otherwise

Step 3. Obtain the set {uk | sk1 = max
i

si1}

Preferably, the set {si1ui | ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

Theorem 4.1. [35] CE10an is a special case of EMA18an provided that first rows
of the fpfs-matrices are binary.

Proof. Suppose that first rows of the fpfs-matrices are binary. The functions si1
provided in CE10an and EMA18an are equal in the event that Ia = ∅ or I∗b = ∅.
Assume that Ia 6= ∅ and I∗b 6= ∅. Since a0j = 1 and b0k = 0, for all j ∈ Ia :=
{a1, a2, ..., as} and k ∈ I∗b := {b1, b2, ..., bt},

maxjmink(cip) = max
j∈Ia

{

min
k∈I∗

b

c0pcip

}

= max
j∈Ia

{

min
k∈I∗

b

{min{a0j , 1 − b0k}.min{aij , 1− bik}}

}

= max
j∈Ia

{

min
k∈I∗

b

{min{aij , 1− bik}}

}

= max {min {min{aia1 , 1− bib1},min{aia1 , 1 − bib2}, . . . ,min{aia1 , 1− bibt}},

min {min{aia2 , 1− bib1},min{aia2 , 1− bib2}, . . . ,min{aia2 , 1− bibt}},

. . . ,min {min{aias , 1− bib1},min{aias , 1− bib2}, . . . ,min{aias , 1− bibt}}}
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= max {min{aia1 ,min{1− bib1 , 1− bib2 , . . . , 1− bibt}},

min{aia2 ,min{1− bib1 , 1− bib2 , . . . , 1− bibt}}, . . . ,

min {aias ,min{1− bib1 , 1− bib2 , . . . , 1− bibt}}}

= min {max{aia1 , aia2 , . . . , aias},min{1− bib1 , 1− bib2 , . . . , 1− bibt}}

= min

{

max
j∈Ia

{aij},min
k∈I∗

b

{1− bik}

}

= min

{

max
j∈Ia

{a0jaij},min
k∈I∗

b

{(1− b0k)(1− bik)}

}

= maxjmink(aij , bik)

In a similar way, maxkminj(dit) = maxkminj(bik, aij). Consequently,

max -min(aij , bik) = max -min(cip, dit)

Theorem 4.2. CE10on is a special case of EMA18on provided that first rows of the
fpfs-matrices are binary.

Proof. The proof is similar to that of Theorem 4.1.

5 Simulation Results

In this section, we compare the running times of CE10an-EMA18an and CE10on-
EMA18on by using MATLAB R2017b and a workstation with I(R) Xeon(R) CPU
E5-1620 v4 @ 3.5 GHz and 64 GB RAM.

We, firstly, present the running times of CE10an and EMA18an in Table 1 and
Fig. 1 for 10 objects and the parameters ranging from 10 to 100. We then give their
running times in Table 2 and Fig. 2 for 10 objects and the parameters ranging from
1000 to 10000, in Table 3 and Fig. 3 for 10 parameters and the objects ranging from
10 to 100, in Table 4 and Fig. 4 for 10 parameters and the objects ranging from 1000
to 10000, in Table 5 and Fig. 5 for the parameters and the objects ranging from 10
to 100, and in Table 6 and Fig. 6 for the parameters and the objects ranging from
100 to 1000. The results show that EMA18an outperforms CE10an in any number
of data under the specified condition.

Table 1. The results for 10 objects and the parameters ranging from 10 to 100

10 20 30 40 50 60 70 80 90 100

CE10an 0.02798 0.01283 0.00623 0.00531 0.01103 0.00829 0.00966 0.01325 0.01637 0.01919

EMA18an 0.01249 0.00714 0.00090 0.00052 0.00244 0.00066 0.00039 0.00035 0.00048 0.00024

Difference 0.0155 0.0057 0.0053 0.0048 0.0086 0.0076 0.0093 0.0129 0.0159 0.0189

Advantage (%) 55.3709 44.3108 85.5050 90.1242 77.8817 92.0866 95.9250 97.3876 97.0461 98.7574
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Fig. 1. The figure for Table 1

Table 2. The results for 10 objects and the parameters ranging from 1000 to 10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10an 1.7420 5.9795 12.4333 21.8006 34.2186 46.9271 66.0375 88.0452 110.2487 143.4280

EMA18an 0.0140 0.0050 0.0024 0.0027 0.0051 0.0053 0.0039 0.0044 0.0048 0.0049

Difference 1.7280 5.9745 12.4310 21.7979 34.2135 46.9218 66.0336 88.0408 110.2439 143.4230

Advantage (%) 99.1965 99.9163 99.9810 99.9875 99.9850 99.9887 99.9940 99.9950 99.9957 99.9966
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Fig. 2. The figure for Table 2

Table 3. The results for 10 parameters and the objects ranging from 10 to 100

10 20 30 40 50 60 70 80 90 100

CE10an 0.0229 0.0087 0.0025 0.0023 0.0066 0.0095 0.0060 0.0060 0.0064 0.0072

EMA18an 0.0094 0.0040 0.0008 0.0009 0.0024 0.0023 0.0011 0.0012 0.0012 0.0018

Difference 0.0136 0.0048 0.0017 0.0015 0.0042 0.0072 0.0048 0.0048 0.0053 0.0054

Advantage (%) 59.1357 54.5995 67.8236 62.7065 63.9276 76.1559 81.2134 80.4675 81.6589 74.9437
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Fig. 3. The figure for Table 3

Table 4. The results for 10 parameters and the objects ranging from 1000 to 10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10an 0.1075 0.2303 0.4306 0.6850 1.0900 1.4666 1.9348 2.5576 3.1432 3.8415

EMA18an 0.0199 0.0250 0.0324 0.0447 0.0594 0.0736 0.0742 0.0993 0.1153 0.1313

Difference 0.0877 0.2053 0.3982 0.6404 1.0306 1.3930 1.8605 2.4583 3.0280 3.7102

Advantage (%) 81.5272 89.1420 92.4812 93.4776 94.5528 94.9825 96.1639 96.1160 96.3331 96.5811
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Fig. 4. The figure for Table 4

Table 5. The results for the parameters and the objects ranging from 10 to 100

10 20 30 40 50 60 70 80 90 100

CE10an 0.0213 0.0109 0.0078 0.0166 0.0378 0.0645 0.0863 0.1156 0.1665 0.2299

EMA18an 0.0093 0.0041 0.0009 0.0009 0.0048 0.0023 0.0011 0.0014 0.0014 0.0014

Difference 0.0121 0.0069 0.0069 0.0157 0.0330 0.0622 0.0851 0.1142 0.1651 0.2285

Advantage (%) 56.4639 62.7094 88.6511 94.5591 87.3928 96.4563 98.6770 98.8164 99.1380 99.3720
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Table 6. The results for the parameters and the objects ranging from 100 to 1000

100 200 300 400 500 600 700 800 900 1000

CE10an 0.2739 3.2532 14.0127 40.1959 93.9178 184.5333 335.5700 568.7381 914.9916 1412.0988

EMA18an 0.0113 0.0069 0.0068 0.0101 0.0162 0.0200 0.0244 0.0587 0.0396 0.0506

Difference 0.2626 3.2463 14.0060 40.1858 93.9015 184.5134 335.5456 568.6794 914.9520 1412.0482

Advantage (%) 95.8871 99.7870 99.9518 99.9748 99.9827 99.9892 99.9927 99.9897 99.9957 99.9964
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Fig. 6. The figure for Table 6

Secondly, we present the running times of CE10on and EMA18on in Table 7 and
Fig. 7 for 10 objects and the parameters ranging from 10 to 100. We then give their
running times in Table 8 and Fig. 8 for 10 objects and the parameters ranging from
1000 to 10000, in Table 9 and Fig. 9 for 10 parameters and the objects ranging from
10 to 100, in Table 10 and Fig. 10 for 10 parameters and the objects ranging from
1000 to 10000, in Table 11 and Fig. 11 for the parameters and the objects ranging
from 10 to 100, and in Table 12 and Fig. 12 for the parameters and the objects
ranging from 100 to 1000. The results show that EMA18on outperforms CE10on in
any number of data under the specified condition.
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Table 7. The results for 10 objects and the parameters ranging from 10 to 100

10 20 30 40 50 60 70 80 90 100

CE10on 0, 0273 0, 0107 0, 0037 0, 0051 0, 0116 0, 0165 0, 0141 0, 0167 0, 0245 0, 0197

EMA18on 0, 0136 0, 0056 0, 0007 0, 0008 0, 0027 0, 0020 0, 0006 0, 0006 0, 0004 0, 0004

Difference 0, 0137 0, 0050 0, 0029 0, 0044 0, 0089 0, 0145 0, 0135 0, 0162 0, 0241 0, 0193

Advantage (%) 50, 1693 47, 3241 80, 2441 85, 2661 76, 7704 88, 1753 95, 9501 96, 4667 98, 3700 98, 0986
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Fig. 7. The figure for Table 7

Table 8. The results for 10 objects and the parameters ranging from 1000 to 10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10on 1, 7399 6, 0070 12, 6272 21, 8605 34, 3464 47, 4500 68, 2726 90, 2301 112, 5468 145, 8467

EMA18on 0, 0111 0, 0061 0, 0024 0, 0028 0, 0053 0, 0052 0, 0040 0, 0042 0, 0051 0, 0053

Difference 1, 7287 6, 0009 12, 6249 21, 8577 34, 3411 47, 4448 68, 2687 90, 2259 112, 5417 145, 8414

Advantage (%) 99, 3597 99, 8982 99, 9812 99, 9872 99, 9845 99, 9890 99, 9942 99, 9954 99, 9954 99, 9964
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Fig. 8. The figure for Table 8

Table 9. The results for 10 parameters and the objects ranging from 10 to 100

10 20 30 40 50 60 70 80 90 100

CE10on 0, 0225 0, 0087 0, 0022 0, 0023 0, 0066 0, 0084 0, 0044 0, 0036 0, 0043 0, 0054

EMA18on 0, 0101 0, 0048 0, 0007 0, 0008 0, 0030 0, 0023 0, 0010 0, 0009 0, 0012 0, 0013

Difference 0, 0124 0, 0039 0, 0014 0, 0015 0, 0036 0, 0062 0, 0034 0, 0027 0, 0031 0, 0041

Advantage (%) 55, 1341 44, 7449 66, 3800 66, 7695 54, 5929 73, 0843 76, 7851 74, 1328 72, 7223 75, 7520
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Fig. 9. The figure for Table 9

Table 10. The results for 10 parameters and the objects ranging from 1000 to
10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10on 0, 1106 0, 2317 0, 4371 0, 6954 1, 0671 1, 5367 1, 9939 2, 5698 3, 2157 4, 0413

EMA18on 0, 0220 0, 0241 0, 0299 0, 0409 0, 0550 0, 0676 0, 0779 0, 0908 0, 1062 0, 1203

Difference 0, 0886 0, 2076 0, 4072 0, 6545 1, 0121 1, 4691 1, 9160 2, 4790 3, 1094 3, 9210

Advantage (%) 80, 1058 89, 5835 93, 1572 94, 1181 94, 8425 95, 5995 96, 0947 96, 4649 96, 6968 97, 0232
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Fig. 10. The figure for Table 10

Table 11. The results for the parameters and the objects ranging from 10 to 100

10 20 30 40 50 60 70 80 90 100

CE10on 0, 0207 0, 0108 0, 0084 0, 0170 0, 0343 0, 0629 0, 0872 0, 1145 0, 1688 0, 2283

EMA18on 0, 0108 0, 0045 0, 0016 0, 0011 0, 0031 0, 0024 0, 0012 0, 0013 0, 0017 0, 0016

Difference 0, 0099 0, 0063 0, 0068 0, 0159 0, 0312 0, 0605 0, 0860 0, 1132 0, 1670 0, 2267

Advantage (%) 47, 7823 58, 1857 81, 1154 93, 7711 90, 8651 96, 1574 98, 6538 98, 8966 98, 9715 99, 3208
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Fig. 11. The figure for Table 11

Table 12. The results for the parameters and the objects ranging from 100 to 1000

100 200 300 400 500 600 700 800 900 1000

CE10on 0, 2714 3, 2456 14, 0665 40, 5834 93, 4571 182, 9835 325, 6018 545, 3415 870, 2537 1329, 9690

EMA18on 0, 0116 0, 0079 0, 0062 0, 0094 0, 0163 0, 0187 0, 0236 0, 0295 0, 0381 0, 0463

Difference 0, 2598 3, 2377 14, 0603 40, 5741 93, 4408 182, 9648 325, 5782 545, 3119 870, 2156 1329, 9228

Advantage (%) 95, 7199 99, 7562 99, 9556 99, 9769 99, 9826 99, 9898 99, 9927 99, 9946 99, 9956 99, 9965
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Fig. 12. The figure for Table 12

6 An Application of EMA18on

Being one of the most important topics in image processing, the noise removal di-
rectly affects the success rate of the procedures such as segmentation and classifica-
tion. For this reason, the determining of the methods which perform better than the
others is worthwhile to study.

In this section, in Table 13, we present the mean results of some well-known salt-
and-pepper noise (SPN) removal methods Decision Based Algorithm (DBA) [36],
Modified Decision Based Unsymmetrical Trimmed Median Filter (MDBUTMF) [37],
Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) [38]), Different Applied
Median Filter (DAMF) [39], and Adaptive Weighted Mean Filter (AWMF) [40] by
using 15 traditional images (Cameraman, Lena, Peppers, Baboon, Plane, Bridge,
Pirate, Elaine, Boat, Lake, Flintstones, Living Room, House, Parrot, and Hill) with
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512× 512 pixels, ranging in noise densities from 10% to 90%, and an image quality
metrics Structural Similarity (SSIM) [41], which is more preferred than the others.
Secondly, in Table 14, we present the mean running times of these algorithms for the
images. Finally, we then apply EMA18on to a performance-based value assignment
to the methods used in the noise removal, so that we can order them in terms of
performance.

Table 13. The mean-SSIM results of the algorithms for the 15 Traditional Images

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 0.9655 0.9211 0.8605 0.7837 0.6915 0.5895 0.4846 0.3864 0.3138

MDBUTMF 0.9428 0.7961 0.8380 0.8391 0.7830 0.6322 0.3228 0.0969 0.0213

NAFSM 0.9753 0.9506 0.9244 0.8968 0.8660 0.8312 0.7888 0.7308 0.6094

DAMF 0.9865 0.9715 0.9538 0.9330 0.9083 0.8788 0.8412 0.7883 0.6975

AWMF 0.9738 0.9639 0.9507 0.9343 0.9133 0.8857 0.8481 0.7943 0.7044

Table 14. The mean running-time results of the algorithms for the 15 Traditional
Images

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 3.7528 3.7727 3.7827 3.7688 3.7734 3.7911 3.7954 3.7824 3.7866

MDBUTMF 2.4964 3.9101 5.5882 6.6506 7.2925 7.7194 7.9863 8.1317 8.1729

NAFSM 1.2528 2.4664 3.6903 4.8807 6.0873 7.3017 8.4870 9.6226 10.7410

DAMF 0.1567 0.3008 0.4478 0.5929 0.7399 0.8903 1.0464 1.2319 1.5205

AWMF 3.9340 3.2274 2.9008 2.7226 2.6228 2.5688 2.5946 2.7314 3.1366

Let’s suppose that the success in low or high-noise density is more important
than in the others. Furthermore, the long running time is a drawback. In that case,
the values in Table 13 can be represented as an fpfs-matrices as follows:

[aij ] :=

























0.9 0.7 0.5 0.3 0.1 0.3 0.5 0.7 0.9

0.9655 0.9211 0.8605 0.7837 0.6915 0.5895 0.4846 0.3864 0.3138

0.9428 0.7961 0.8380 0.8391 0.7830 0.6322 0.3228 0.0969 0.0213

0.9753 0.9506 0.9244 0.8968 0.8660 0.8312 0.7888 0.7308 0.6094

0.9865 0.9715 0.9538 0.9330 0.9083 0.8788 0.8412 0.7883 0.6975

0.9738 0.9639 0.9507 0.9343 0.9133 0.8857 0.8481 0.7943 0.7044

























Similarly, the values given in Table 14 can be represented as an fpfs-matrices
via the function f : [0, 15] → [0, 1] defined by f(x) = 1− x/15, as follows:

[bij ] :=




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


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

0.1 0.3 0.5 0.7 0.9 0.7 0.5 0.3 0.1

0.7498 0.7485 0.7478 0.7487 0.7484 0.7473 0.7470 0.7478 0.7476

0.8336 0.7393 0.6275 0.5566 0.5138 0.4854 0.4676 0.4579 0.4551

0.9165 0.8356 0.7540 0.6746 0.5942 0.5132 0.4342 0.3585 0.2839

0.9896 0.9799 0.9701 0.9605 0.9507 0.9406 0.9302 0.9179 0.8986

0.7377 0.7848 0.8066 0.8185 0.8251 0.8287 0.8270 0.8179 0.7909














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

If we apply EMA18on to the fpfs-matrices [aij ] and [bij ], then the score matrix
and the decision set are as follows:

[si1] = [0.8689 0.8485 0.8778 0.8879 0.8764]T
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and
{0.9786DBA, 0.9556MDBUTMF, 0.9886NAFSM, 1DAMF, 0.9871AWMF}

The scores show that DAMF outperforms the other methods and the order DAMF,
NAFSM, AWMF, DBA, and MDBUTMF is valid.

Let’s suppose that the success in medium-noise density is more important than
in the others. Furthermore, the long running time is a drawback. In that case, the
values in Table 13 can be represented as an fpfs-matrices as follows:

[cij ] :=








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
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









0.1 0.3 0.5 0.7 0.9 0.7 0.5 0.3 0.1

0.9655 0.9211 0.8605 0.7837 0.6915 0.5895 0.4846 0.3864 0.3138

0.9428 0.7961 0.8380 0.8391 0.7830 0.6322 0.3228 0.0969 0.0213

0.9753 0.9506 0.9244 0.8968 0.8660 0.8312 0.7888 0.7308 0.6094

0.9865 0.9715 0.9538 0.9330 0.9083 0.8788 0.8412 0.7883 0.6975

0.9738 0.9639 0.9507 0.9343 0.9133 0.8857 0.8481 0.7943 0.7044


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
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and

[dij ] :=


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0.7498 0.7485 0.7478 0.7487 0.7484 0.7473 0.7470 0.7478 0.7476

0.8336 0.7393 0.6275 0.5566 0.5138 0.4854 0.4676 0.4579 0.4551

0.9165 0.8356 0.7540 0.6746 0.5942 0.5132 0.4342 0.3585 0.2839

0.9896 0.9799 0.9701 0.9605 0.9507 0.9406 0.9302 0.9179 0.8986

0.7377 0.7848 0.8066 0.8185 0.8251 0.8287 0.8270 0.8179 0.7909












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



If we apply EMA18on to the fpfs-matrices [cij] and [dij], then the score matrix
and the decision set are as follows:

[si1] = [0.6748 0.7502 0.8248 0.8906 0.8220]T

and
{0.7577DBA, 0.8424MDBUTMF, 0.9262NAFSM, 1DAMF, 0.9229AWMF}

The scores show that DAMF performs better than the other methods and the order
DAMF, NAFSM, AWMF, MDBUTMF, and DBA is valid.

7 Conclusion

The uni-int decision-making method was defined in 2010 [5]. Afterwards, this method
has been configured [34] via fpfs-matrices [11]. However, the method suffers from
a drawback, i.e. its incapability of processing a large amount of parameters on a
standard computer, e.g. with 2.6 GHz i5 Dual Core CPU and 4GB RAM. For this
reason, simplification of such methods is significant for a wide range of scientific and
industrial processes. In this study, firstly, we have proposed two fast and simple
soft decision-making methods EMA18an and EMA18on. Moreover, we have proved
that these two methods accept CE10 as a special case, under the condition that
the first rows of the fpfs-matrices are binary. It is also possible to investigate the
simplifications of the other products such as andnot-product and ornot-product (see
Definition 2.5).
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We then have compared the running times of these algorithms. In addition to
the results in Section 4, the results in Table 15 and 16 too show that EMA18an
and EMA18on outperform CE10an and CE10on, respectively, in any number of
data under the specified condition. Furthermore, other decision-making methods
constructed by a different decision function such as minimum-maximum (min-max),
max-max, and min-min can also be studied by the similar way.

Table 15. The mean/max advantage and max difference values of EMA18an over
CE10an

Location Objects Parameters Mean Advantage% Max Advantage% Max Difference

Table 1 10 10 − 100 83.4395 98.7574 0.0189

Table 2 10 1000 − 10000 99.9036 99.9966 143.4230

Table 3 10− 100 10 70.2632 81.6589 0.0136

Table 4 1000 − 10000 10 93.1357 96.5811 3.7102

Table 5 10− 100 10 − 100 88.2236 99.3720 0.2285

Table 6 100 − 1000 100 − 1000 99.5547 99.9964 1412.0482

Table 16. The mean/max advantage and max difference values of EMA18on over
CE10on

Location Objects Parameters Mean Advantage% Max Advantage% Max Difference

Table 1 10 10 − 100 81.6835 98.3700 0.0241

Table 2 10 1000 − 10000 99.9181 99.9964 145.8414

Table 3 10− 100 10 66.0098 76.7851 0.0124

Table 4 1000 − 10000 10 93.3686 97.0232 3.9210

Table 5 10− 100 10 − 100 86.3720 99.3208 0.2267

Table 6 100 − 1000 100 − 1000 99.5361 99.9965 1329.9228

Finally, we have applied EMA18on to the determination of the performance of
the known methods. It is clear that EMA18on, which is a fast and simple method,
can be successfully applied to the decision-making problems in various areas such as
machine learning and image enhancement.

Although we have no proof about the accuracy of the results of such methods,
the results are in compliance with our observations. In order to help in checking
the accuracy of the comparison made by a soft decision-making method, we give, in
Fig. 13-16, the Cameraman image with different SPN ratios and show the denoised
images via the above-mentioned filters. It must be noted that these images has
no information of their running times. Whereas, the use of a filter in a software
depends on its running time is short. In other words, the running time of a filter is
so significant that it can not be ignored. As a result, it is understood that fpfs-
matrices are an effective mathematical tool to deal with the situations in which more
than one parameter or objects are used.
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(a) (b) (c) (d)

Fig. 13. (a) Original image “Cameraman” (b) Noisy image with SPN ratio of 10%,
(c) Noisy image with SPN ratio of 50%, and (d) Noisy image with SPN ratio of 90%

(a) DBA (b) MDBUTMF (c) NAFSM (d) DAMF (e) AWMF

Fig. 14. The images having with SPN ratio of 10% before denoising.

(a) DBA (b) MDBUTMF (c) NAFSM (d) DAMF (e) AWMF

Fig. 15. The images having with SPN ratio of 50% before denoising.

(a) DBA (b) MDBUTMF (c) NAFSM (d) DAMF (e) AWMF

Fig. 16. The images having with SPN ratio of 90% before denoising.
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versity, Grant number: FBA-2018-1367.



Journal of New Theory 25 (2018) 84-102 100

References

[1] D. Molodtsov, Soft set theory-first results, Computers and Mathematics with
Applications 37 (1999) 19–31.

[2] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, The Journal of Fuzzy Math-
ematics 9 (3) (2001) 589–602.

[3] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making
problem, Computers and Mathematics with Applications 44 (2002) 1077–1083.

[4] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics
with Applications 45 (2003) 555–562.
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