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Abstract. In this paper, firstly we obtain some generalized trapezoid and midpoint type inequalities for
functions of bounded variation using two new generalized identities for Riemann-Stieltjes integrals. Then
quadrature formula is also provided.

Keywords: Functions of bounded variation, Ostrowski type inequalities, Riemann-Stieltjes integrals.

Siirh Varyasyonlu Fonksiyonlar icin Yeni Genellesmis Esitsizlikler

Ozet. Bu makalede ilk olarak Riemann-Stieltjes integrallleri icin genellesmis yeni iki esitlik kullanilarak sinirl
varyasyonlu fonksiyonlar i¢in yamuk (trapezoid) ve orta nokta (midpoint) tipli baz1 genellesmis esitsizlikler
elde edilmistir. Daha sonra karesel formiil de saglanmustir.

Anahtar Kelimeler: Sinirli varyasyonlu fonksiyon, Ostrowski tipli esitsizlikler, Riemann-Stieltjes integralleri.

1. INTRODUCTION
the differentiable mappings.

Theorem 1. Let f : [a,b] >R be a differentiable mapping on (a,b) whose derivative
f’: (a,b)— R isbounded on (a,b), i.e. | f’

= sup |f'(t)| < . Then, we have the inequality
te(a,b)

(1.1)

00’

‘f(x)—éjf(t)dt

< 1 (X_aTer)Z 1
< [Z+W}(b—a)”f

forall x e[a,b] .

The constant ¢ is the best possible.

Ostrowski inequality has applications in numerical integration, probability and optimization theory,
stochastic, statistics, information and integral operator theory. During the past few years, many authors
have studied on Ostrowski type inequalities for functions of bounded variation, see for example ([1]-[14],
[16]-[18]). Until now, a large number of research papers and books have been written on Ostrowski
inequalities and their numerous applications.
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Definiton 1. Let P :a=x,<X<..<X =b be any npartition of [a,b] and Ilet
Af (X)) = f(X;,,)— f(X). Then f(x) is said to be of bounded variation if the sum

iw x)

is bounded for all such partitions. Let f be of bounded variation on [a,b], and 3 (P) denotes the sum

> |Af (x,)| corresponding to the partition P of [a,b]. The number
i=1

V,(a,b) —sup{Z(P : PeP(fa,b)}

is called the total variation of f on [a,b] Here P([a,b]) denote the family of partitions of [a,b]
In [12], Dragomir proved the following Ostrowski type inequalities for functions of bounded variation:

Theorem 2. Let f : [a,b]— R be a mapping of bounded variation on [a,b] Then

a+b

jlf(t)dt—(b—a) f(x) X—T}Vf (a,b) (1.2)

a

sE(b—a)+

holds for all x e [a,b] The constant £ is the best possible.
Dragomir gave the following trapezoid inequality and midpoint inequality in [9] and [10], respectively:
Theorem 3. Let f : [a,b]—> R be a mapping of bounded variation on [a,b] Then we have the

inequality

-i f (t)dt

a

‘f(a); f (b) b-a)

< %(b _a)V, (a,b) (L3)

The constant % is the best possible.

Theorem 4. Let f : [a,b]—> R be a mapping of bounded variation on [a,b] Then we have the
inequality

‘(b— a) f (‘”b) jf(t)dt ( —a)V, (a,b). (1.4)

The constant % is the best possible.

We introduce the notation I, : a=x,<X, <..<X,=b for a division of the interval [a,b] with
h, =x,, —X and v(h) =max{h, : i=0,1..,n—1}. Then we have
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b
_ff(t)dtzAT(f,In)JrRT(f,In) (1.5)
where
AT(faln)::Zn: f(Xi)+2f(Xi+l) hi (16)
i=0
and the remainder term satisfies
R (f, 1)< %v(h)vf (a,b). (1.7)
Similarly, we have
b
[ fOdt=A,(f,1,)+R, (1)) (1.8)
where
X Xi + Xig
Ar(f’l”)'_g‘f(—Z jhi (1.9)
and the remainder term satisfies
Ry (f, 1)< %v(h)vf (a,b). (1.10)

In this work, we obtain some new generalized trapezoid and midpoint type integral inequalities for
functions of bounded variation by using the new kernel which is given by Tseng and Hwang in [19]. Then
we give some applications for our results.

2. GENERALIZED TRAPEZOID AND MIDPOINT INEQUALITIES
Throughout this paper, let a<c<d <b in R with a+b=c+d.
Now, we give our main results:

Theorem 5. Let f : [a,b]—> R be a mapping of bounded variation on [a,b] Then, we have the
following generalized inequality
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[roa- {22 -]t el c-alra)e 1o

(2.1)
< max{(c —a), (aTer - cj, (d —~ aij (b—d )}Vf (a,b).
Proof. Consider the kernel P,(x) as follows:
c-x, xelac)
P(x)=422—x, xelc,d)
d-x, xe[d,b]
Integration by parts gives us
b
[ R.O0df (%)
: (2.2)

- T f(t)dt—{(aTer—Cj[f (c)+ f(d)]+(c-a)[f(a)+ f(b)]}-

It is well known that if g, f : [a,b]— R aresuchthat g is continuous on [a,b] and f is of bounded

b
variation on [a,b], then [ g(t)df (t) exists and

[adf (1)

< ts[up;]|g(t)|vf (a,b). (2.3)

On the other hand, by using (2.3), we get

ipl(x)df (x)

< +

j(a;b—xjdf(x) +

c

j'(c— x)df (x)

jb‘(d — x)df (x)
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IN

sup [c — x|V, (a,c)+ sup

xg[a,c] Xe[c, d ]

a%b—xvf(c,d)+ sup]|d — XV, (d,b)

xeld,b

:(c—a)Vf(a,c)+max{(aT+b—cJ, d—a;bj}vf(c,d)+(b—d)vf(d,b)

IA

max {(c - a),(a er b_ cj, (d - aTerj (b-d )}Vf (a,b).

This completes the proof.

Remark 1. If we choose ¢ =a and d =b in Theorem 5, then the inequality (2.1) reduces to the trapezoid
inequality (1.3).

Corollary 1. Under the assumption of Theorem 5, let c=(1-A1)a+Ab and d = Aa+ (1—A)b with
0< A <%, then we have the following inequality

i f (t)dt - {(b - a)(% - ﬂj[f (A-A)a+Ab)+ f(la+(@1- A)b)]

a

+Ab—a)[f(a)+ f(b)]f (2.4)

< (b—a)E+

Q- %va (a,b).

Remark 2. If we choose A =0 in Corollary 1, then the inequality (2.4) reduces to the trapezoid inequality
(1.3).

Corollary 2. If we choose A = % in Corollary 1, we have the inequality

i f (t)dt - bga{ffa’;b} f(aEij+2[f(a)+ f(b)]H

a

<

(b—a)V,(a,b).

Wl

Corollary 3. If we choose A = % in Corollary 1, we have the inequality
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.Tf(t)dt—b;a{f(SaerjJr f(azsbj+ f(a)+ f(b)H

4 4

<>(b-a)Vv,(a,b)

Nl

Corollary 4. Under the assumption of Theorem 5, suppose that f e Cl[a, b] Then we have

Tfamnw(a;b—QLu®+fwﬂ+¢—aﬂf@}kNm%

a

< max{(c—a),(aTm—c),[d —a%bj,(b—d)}”f'ﬂl,

where |||, is the L, -norm defined by

fl

1::TfKDdL

Corollary 5. Under the assumption of Theorem 5, let f : [a, b] — R be a Lipschitzian with the constant
L>0. Then

froa- {252t 1o e-alta) o]

a

< max{(c—a),(aTm—c],(d —aTer],(b—d)}(b—a)L.

Theorem 6. Let f : [a,b] > R be a mapping of bounded variation on [a,b] Then, we have the
following generalized inequality

I f(t)dt—{(d _¢) f(agbj+(c—a)[f(a)+ f(b)]H

a

2.5)
< max {(c ~a), (aTer - cj, (d - aTer) (b-d )}Vf (a,b).

Proof. Integration by parts gives us
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igOQM(@
:EfﬁMt—%d—cﬁ(E%Bj+®—aﬂf®)+f@ﬂ}

where the kernel P,(x) is defined by

a-x, xelac)

c-x, xelc,22)

Pz(x):
d-x, xe[xt,d)

b-x, xeld,b]

Using the inequalities (2.3), we have

}Pz(x)df (x)

a+h
d

j(c X )df (x)| + j d — x)df (x)| +

c a+b
2

ja x)df (x)| +

Tb xdfuﬂ

< sup |a x|V, (a,c)+ sup Jc—xV, (c aTerj
xela, c] x{c,a—}
2

+ sup |d—x|V( 2b dj+im]|b—x|vf(d,b)

{75a]
_(c-a)V, (ac)+(a;b—cjvf(c,a7+bj (d—aTerij(aTm dj +(b-d)V, (d.b)

< max{(c—a), (aT“’_ j (d _aT”’j (b—d)}vf (a.b)

Thus the proof is completed.

Remark 3. If we choose ¢ =a and d = b in Theorem 6, then the inequality (2.5) reduces to the midpoint
inequality (1.4).

Corollary 6. Under the assumption of Theorem 6, let c=(1—A)a+Ab and d = Aa+ (1—A)b with

0< A <1, then we have the following inequality
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b

j f(t)dt — {A(b—a)[f (- A)a+Ab)+ f(la+(L-A)b)]

Remark 4. If we choose A =0 in Corollary 6, then the inequality (2.6) reduces to the midpoint inequality
(1.4).

Corollary 7. If we choose A = % in Corollary 6, we have the inequality

Tf(t)dt_b—a{f(2a+bj+ f(a+2b)+ f(a_ij
4 3 3 3 2

(b—a)V,(a,b).

<

Wk

Corollary 8. If we choose A = in Corollary 6, we have the inequality

Tf(t)dt—b_a{f(3a+bJ+ f(a+3bj+2f(a—+bj}‘
J 4 4 4 2

(b—a)Vv,(a,b)

<

NI

Corollary 9. Under the assumption of Theorem 6, suppose that f e Cl[a, b] Then we have

i - {(@-0) (210 c-allr(e)s f(b)]H

< max{(c—a),(aTm—cj,(d —aij,(b—d)}|

Corollary 10. Under the assumption of Theorem 6, let f : [a,b]—> R be a Lipschitzian with the

f!

1

constant L > 0. Then
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i f (Ot —{(d ~o)f (aT”’j +le-a)f(@)+ f(b)]H

< max{(c—a),(aTm—cj,(d - a;bj,(b—d)}(b—a)L.

3. APPLICATION TO QUADRATURE FORMULA

Now we introduce the intermediate points ¢, and d,, X, <¢ <d, <x,,, (i=01..,n —1) in the
division I, :a=x,<X <..<X =Db. Let h :=x,—x and v(h)=max{h : i=01..n-1}
and define the sum

A (T 15,6,d)
(3.1)
=5 Jlre)+ 0 6 -0 0) 15,0
Then the following theorem holds:
Theorem 7. Let f be asin Theorem 5. Then
b
[ fOdt=A(f,1,,c,d)+R(f,1,,c,d) (3.2)
where A, (f,1,,c;,d,) is defined as above and the remainder term R(f, 1) satisfies
R (F.1,.¢.d)))
(3.3)
X. + X, X. + X.
< ie{cﬁlﬂﬁl}[max{(c =X )v( : 2 = _Cij’(di —-— 2 Hl]’(xm _di)}j|vf (a’b)-
Proof. Applying Theorem 5 with the interval [x,,x;,,] (i =0,1,...,n —1), we have
Xi1 X. + X
R e R ORI |
(3.4)

< max {(ci -X) ( % +2X”l -¢ j (di - %) (%iz —d, )}Vf (%1 X0 )
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forall i e {0,1,...,n —1}. Summing the inequality (3.4) over i from 0 to n —1 and using the generalized
triangle inequality, we have

Re(f,1,,¢.d,)

i=0 2

< a6 (25 ) 0= B0 -0 )

i X + X X: + X 1@

= ie{mﬁfl}_max {(Ci =X )'( I 2 = _Cij'(di - 2 = j’(xm _di)}_ ;Vf (Xi'xi+1)
i X + X: X, + X. l

= ie{m’)(n_l}_max {(CI - Xi )'( [ 2 i+l Ci)l(di _ M 2 i+1 ]’ (Xi+1 _ di )}_Vf (a’ b)

which completes the proof.

Remark 5. If we choose ¢, = x, and d, = X;,, in Theorem 7, then we have (1.5) with (1.6) and (1.7).

i+1
By using Theorem 6 and following similar steps of Theorem 5, we have the following theorem.
Theorem 8. Let f be as in Theorem 6. Then

b

[ fdt=A,(F.1,.¢.d)+Ry (f,1,,c.d) (35)

a

where A, (f,1,,c,,d;) isdefined as

i=0

A, (f, 1 ,c.d)= Zn:{(di —¢) f(xi +2Xi+1j+(ci —x)[F(x)+ f(xm)]}. (3.6)

and the remainder term R,, (f,1,,c;,d,) satisfies

Ry (. 1,,¢,.d))|

Xi + Xi+l _ _ Xi + Xi+1 _ b
< ie{OT%I}{maX {(Ci - X )( > ci),(di > ),(x”l di)HV( f).

a

Remark 6. If we choose ¢, = x, and d, = X;,, in Theorem 8, then we get (1.10) with (1.8) and (1.9).

i+1
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