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Abstract. In this work, we consider an inverse problem for an elliptic equation which is strongly ill-posed in
Hadamard sense. We prove the uniqueness of the solution of the problem by using Carleman estimates.
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Lu = xAu + k(x,"y)u, = xf(x,"y)
Denklemi icin Bir Kuvvetli Kotii Konulmus Problem

Ozet. Bu ¢alismada eliptik denklem icin Hadamard anlaminda kuvvetli kotii konulmus olan bir ters problem
ele alinmistir. Bu problemin ¢6ziimiiniin tekligi Carleman degerlendirmeleri yardimiyla ispatlanmistir.

Anahtar Kelimeler: Eliptik denklem, Ters problem, Carleman degerlendirmesi

1. INTRODUCTION
In this study, a strongly ill-posed inverse problem in Hadamard sense is investigated. In the domain
D={(xy)]x€(,1),y; €(01),i=1.2,..,n},

we consider the equation
Lu = xAu + ku, = xf(x,"y) (1)
and the conditions

ulynzo = uO(x’ ,y); u)’n|yn=0 =U (x' ,y)r (2)

where 'y = (¥2, V3, o) Yn)-

Equation 1 is an elliptic equation which has important applications in potential theory, [6]. Moreover,
recently, inverse and ill-posed problems for differential equations are attracting the interest of many
scientists because of various applications in science and engineering such as tomography and seismology,
[1-5].
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Additional condition for the solution of Cauchy problem (1)-(2) is
uly, =0 = uz(x,'y). @)

Problem 1: We now aim to get the pair (u(x, y), xf (x,"y)) from equation (1) which satisfies
conditions (2)-(3).

Theorem 1. Problem 1 can have only one solution in the space C3(D) x C*(D) with ueC3(D),
fec(D).

Theorem 1 is related with the uniqueness of the solution of problem 1. In general, one can not prove the
existence of solution for this problem. Because, problem (1)-(3) is strongly ill-posed in Hadamard sense.
In order to prove the theorem, the following lemmas are needed.

2. PROOF OF THE MAIN RESULT

Let us suppose that (u®, f®), (u®@, £@) are two solutions for problem (1)-(3) in €3(D) x (D).
Then we have

xAu® + ku,(ci) =xfD(x,"y), 4)

@ ,,@ — 5
uw, uy, =0 Up, Uy, (5)
u(i)|y1=0 =u, i=12. (6)

Forii = u® —u®, f = £@ — £O we can write

xAU+ ki, = xf(x,"y), (7
0y, |, _ =0, (8)
ﬁ|y1=0 =0. (9)

Taking derivative of both sides of equation (7) with respect to y; , we get

XA, + kit , = 0. (10)
In equation (10), if we take w = &, we have

xAw + kw, =0 (1)

and conditions (8) become

wow, | = (12)
Let us first consider the following general problem,
|Ax,yZ| < C(lz| + |Vz]), (13)

z(x,'y,0) = 0,2, (x,/y,0) = 0. (14)
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It is easy to prove that there is only zero solution of problem (11)-(12) in €%(D) if (13)-(14) has only zero
solution in C%(D).

We now attempt to prove that problem (13)-(14) can have zero solution in C2(D) using the Carleman
method.

For the sake of simplicity we have

Vo = UL, X =Uy,Y; =Usyy, L=1,2,3,...,n—1.

Let

Q®) = {u:u1 >0,0<éu; <y —%Z?jzl(ui — u?)z,(S >1,y < 1}
and

P(u) = duy + %Z?jzl(ui - u?)z +ag,ay>0y+ay,=n<1.
If we choose

u® = (ug,ug, ---:u91+1)5D1;D1 = {06, ¥): (%, y1, ., Yn-1)€(0,1)"},
then it is clear that
ao < P(w) < n in the domain (0,u’eQ(u®)) c D and Q(u?).
Let H = exp(AyY "), where A, v are positive parameters.
Lemma 1. For every geC?(D)
—pAQH? = [[Vgl? — T (2022222 + v(v + DY~ 2E + ™ ey, ) 92 H?
+dy(9) (15)

where
di(@) = = B (0pu H? + 9™ vy 0% H?)
Proof. From the definition, we have
—pApH? = —(T1H @, ) e
On the other hand,
~0PuuH? = (0, e®7)  + i eV = 22vepy e Py
and
_2/1V¢'_V_11/’uiH2<P<Pui — _(’h’lpuiw_v_lHZ‘pz)ui _ 2/121/27,03”1!)_21/_21‘12@2

2w+ DY2H>? Y V20?2 + v~V Y, H?*@? i =123,..,n+ 1.
Ui @ UjU; 4
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By the last two equations, (15) is obtained.

Lemma 2.

For

vo = Soon, o = 2(v +2)%(82 +7?)? + 2,
ifv>2+v,,1=> 2, then for any peC?(D) the inequality

YVHI(AQ)?H? = 33v*§Mp V2 H? 2 — 20v|Ve|?H? + d, (9) (16)
is valid, where

dy(pH) = ?:1 dyi(pH),

dy1 (pH) = 42v Y12 [, (0u;, — v, V2 0) (0, — lkuiw‘”‘llli)]uj

~200 214 W, (90, = )]+ 2vE22 SR (T M, 07),,
daz(pH) = 2033 (Y2292 VP2 B2 ),
dp3(pH) = =222V (v + D ZEL (V1Y Yy, 0%)

da4(pH) = 22%v? Znﬂ(lpu PVt 2)

Proof. For the auxiliary function w = He, we have

Puy; = H™ Wy + 2000, 7V, + ™y w — (v + DYy~ 2w

+2VRY T 2w ).

Multiplying both sides of the last expression with H and adding from 1 to (n+1) with respect
to i, we obtain

H?(8¢)? = (T Wag, + 2007V P B Py, wy, + 0™ w B 0,

—)LV(V+ 1)Wll) v— 22n+1lpul +/12 Zw—Zv 2W2n+1¢ )2

The both hand sides of the last equality are multiplied with yV*1, we get

¢V+1H2(A(p)2 lpv+1(AW + Zn+1(ﬂ-2 21/) 2v— leul

— + DYV 2PL + TV T Py W+ 20TV R Yy, wy,)?

Having

a=Aw+ ZE PV YR — v + DY TV T )W,
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b = 2Avyp~V" 1 Zn+1 l»bul Wiy,
and applying the inequality (a + b)? > 2ab to the last expression, it is obvious that
l,l)"“HZ(A(p)Z _ ¢V+1(Aw+2"+1(lz 21/) 2v— Zl/JuL
— W+ DYV EPL + T T Py w + 20TV T B Yy, wy,,)?
> 44y (T Py, wy) [Aw + D2 vy~ (v 12,
— A+ DY TIPZ + Py W] (17)
Now let us consider each term in (17) respectively:

n+1 n+1
1. 4/11/21] 1lpul WuLWu]u] - 411/21 Jj=1 (l/)uiwujwui)u' —4Av Zi,jZI l/)ui Wuquiuj
J

=4y (wuiWuqui)uj -2y (l,l)uiwij)ui + 2w w2,
Additionally, since
w= gH =eM¥ ",
= H(py, — Wy y0),v=2,6>1

then,

42V S W W Wy = 420 X2 [ H (0o = 9™ @) H (9, = ™ 0) |

J

2 2
22 ZE [ 2 (g = 0™ Ng0) |+ 229 S () — v 0)

uj
= dy1 (H) + 2v|V|*H? [V|? + 22%v =22 H2 92| Ve |2
— 2222 ST (H2 g2, ) —242v2(v + 1)@ V"2 H2|Vip|? + 2A2v2p2ep VL H2
> dy (Hp) + 22v|Ve|2H? + 223v3¢~2V=2|Vy|2 @2 H>. (18)

(n+2)n
5(1-n)’

2. From the conditions [Vy| > 6 > 1,n7t <yt we have the inequality is

n

e ZLVZ|V¢|—2 > 1 and

+1 2.,2.0,—2V—2,/,2 — 3,,3 +1 2 ,1,—2V=2,,,2
42w T wa AV w = 200 S (W)
14

+4A3V3(V+1)¢'_2v_3|v¢|4 2 213 3¢ —2V— 2|Vl/)|2W _4_/13 31/) —-2V— 2(2n+1¢uL)W

> dyp (W) + 423V 4= 2|V w2 (Pt = 2 V| 2)
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> dyy (W) + 423v4 64~V 22
= dy, (Hp) + 423vA5*p~2V=2¢%H2, (19)

3.
_4‘AV Z:f]-l;ll l1[Jui WuiAV(V + 1)¢—V—2¢5jw = _2/‘{21/2(1/ + 1) Z:}j:ll (lpuilpsljlrb_v_ZWZ)

+222vE(v + DY V2|V Pw? 4+ 42702 (v + D) (X1 @i )y Ew?

=222v2(v + 2)(v + DYV 3|V |tw?

> dys(w) — 22%v2(v + 2)(v + DY V3|V | tw?

=dy3(Hp) — 22%v2(v + 1) (v + 2)Y V73|V |*p?H?. (20)
4,

42 21 W, Wy APV Ny w = 22702 zygll(wuizp-v-lwz)u_ — 222y v ly?
i

+222v2(v + DY V2 |V | P w?
> dy(w) — 222v2~ V" Iw?
= dpa(Hp) — 22°2v*Y ™V 1 p?H?, (21)
By inequalities (17)-(21), we obtain
YYHH?(A@)? = dy(@H) + 22v|Ve|*H?
+A2V2Q2H? (428%™ =2 = 2(v + D (v + 2P 2|V | Dy VL, (22)
Since
WYVl 20+ DV + 2)Y VYt — 2= 0
for 1 = 1, then (16) results from inequality (22). Thus Lemma 2 is proven.
Lemma 3.
Let the conditions of Lemma 2 be satisfy and let
v>v, =max{vo+n+1,4(n+ 1)+ 8(n+ 1)(6% +n?) + 1}
Then
—2(n+ DAve(Ap)H? + YVt (Ap)?H?
> 23v3yY2V"292H? + 2vn|Ve|2H? + 2(n + 1)Avd, (¢) + d, (). (23)
Proof.
Multiplying equation (15) with 2(n + 1)Av and adding the resulting expression with (16), one gets

—2(n+ DAve(Ap)H? + YVt (Ap)?H?
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> 2Mvn|Ve|2H? + (3A3v*6*yY~2V"2 — 4(n + 1)A3v383y 2V 2 |Wy|?
—2(n+ DA2VE(v + DY V2R i + 2(n + DARVEY TV ) g2 H?
+2(n + DAvd, (¢) + d(9).
Since v > vy, (23) is obtained from the last inequality. This proves Lemma 3.
Proof of Theorem 1.
Considering Lemma 3 and inequality (13), we have
[(n+ 1)22%v222 + 2c2(2% + |Vz|®)|H? + 2¢YY T H?(|z|? + |Vz|?)C?
> ((n+ 1)2A%v2%z2 + (A2)*)H? + YV*T1(Az)*H?
> 2(n+ DAv|z||Az|H? + (Az)?H? V1
> —2(n+ DAv|z||Az|H? + pVT1H?(Az)?
> —223v3Y V22202 + 2Avn|Vz|?H? + 2(n + DAvd, (@) + d, (@)
or
0= H222223v3yY ™22 — [(n + 1)22%v? + 2C?% + 2yV*1(C?]
+H?|Vz|?(2Avn — 2C% YV — 2C2) + 2(n + D Avd, (@) + d,(@). (24)
If we take v > v,, then it is clear that there exists A, such that
23v3Y~2V"2 — [(n + 1)%2%v2 + 2C% + 29V*1C?] > A,
2v —2C%*yYVtt —2¢2 = 2
for A > 2.
In addition, in the domain Q(u®), H > 1. Then in Q(u®) for 2 > A, it is possible to write the
following inequality from (24):
0 > A(z% + |Vz|?) + 4Avd, (zH) + d,(zH). (25)
Integrating (25) over Q(u®) and taking the limit for 1 — oo of the resulting inequality, then

from the definition of the function H and conditions (14) we have
fQ(uO)(Zz +1Vz|*)dQu®) < 0.

That is, in the domain Q(u°), we get z = 0.
Varying the point u° at the boundary of the domain D where {y,, = 0}, one can prove that z = 0
in the set of points which satisfy the condition 0 < y,, < 6.

Similarly, we can prove that z = 0 for the remaining part of D.
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To complete the proof of theorem 1, it is necessary to show that every solution of problem (11)-(12)
satisfies the conditions of problem (13)-(14) at D for points x > 0.

Obviously each solution of (11) satisfies inequality (13) in the domain Q(u°) and for C dependent on the
constant k. A similar case is valid for conditions (12)-(14). That is, the solution w of problem (11)-(12)
satisfies conditions (13)-(14). Then, w = 0 in the domain D. Moreover, & = 0 in D from the equality w =
u,,, and condition (9). On the other hand we see that f = 0 from (7). Thus theorem 1 is proven.
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