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1. INTRODUCTION 

 

We study continuous dependence of solutions on the coefficients µ and ϰ. Continuous dependence of 

solutions is a type of structural stability. This type of stability reflect us the effect of small changes in 

coefficients of equations on the solutions.  Some of the results on this subject for linear and nonlinear 

partial differential equations  can be reached (see e.g. [1,2-4,5]). 

Our main aim here to study the structural stability for the following system of equations in Ω = (0, L1) ×
(0, L2) × (0,1) 

𝜕𝑢

𝜕𝑡
 −𝜈𝛥𝑢 − 𝜇𝛥𝑢𝑡 + (𝑢. 𝛻)𝑢 + 𝛻𝑝′ = 𝑒3𝜃                 in Ω × (0, 𝜏) (1) 

𝜕𝜃

𝜕𝑡
  −𝜅𝛥𝜃 − 𝜘𝛥𝜃𝑡 + (𝑢. 𝛻)𝜃 − 𝑢3 = 0                         in Ω × (0, 𝜏) (2) 

∇. u = 0                                                                                in Ω (3) 

where 𝜏 > 0, e3 is the third component of the canonical basis of  ℝ3,  𝑢3 is the third component of 𝑢. 
𝑢(𝒙, 𝑡)  the velocity of the fluid in the box Ω ,  𝑝′ = 𝑝′(𝒙, t) is  modified pressure given by 𝑝′ = 𝑝 −

(𝑥3 +  
𝑥3

2

2
)   here 𝑝 is pressure of the fluid, 𝜃(𝒙, t) is the scaled fluctuation which is given by 𝜃 = 𝑇 −

(
𝑇0

𝑇0−𝑇1
− 𝑥3) here 𝑇 = 𝑇(𝒙, t)  is the temperature of the fluid inside the box Ω, 𝑇0 and 𝑇1 are the 

temperature of the fluid at the bottom and the top respectively.   ν, μ, κ and ϰ are positive constants and 

𝒙 = (𝑥1, 𝑥2, 𝑥3). Now we state boundary and initial conditions for (1)-(3) in the following 

 

𝑢 =  0, 𝜃 = 0  at  x3 = 0,  x3 = 1, (4) 

𝑝, 𝑢, 𝜃, 
∂u

∂xi
,

∂𝜃

∂xi
   (𝑖 = 1,2) are periodic in the xi directions which means that  

𝜑(𝒙, 𝑡) = 𝜑(𝒙 + 𝐿𝑖𝑒𝑖 , 𝑡)   𝑖 = 1,2   ∀𝑥 ∈ ℝ3, ∀𝑡 > 0 for a generic function φ, (5) 
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𝑢(𝒙, 0) = 𝑢0(𝒙), 𝜃(𝒙, 0) = 𝜃0(𝒙). (6) 

 

The Bénard problem in the absence of the use of regularization terms has been previously studied by 

many authors [6-11].  In [7] the existence  of global attractor with a finite fractal dimension  are proved in 

2D  and some partial results are given in 3D. In [9] the authors was studied asymptotic behaviour of the 

weak solutions of this system in 3D. They reported lack of the uniqueness of the Cauchy problem and the 

continuity of the weak solutions. In [10] we add some Voight regularizing terms to this system and gave 

the existence-uniqueness and continuity results on the weak solution for the system in 3D. The idea to add 

these terms to our system comes from Kelvin Voight system  (Navier Stokes Voight system). It was given 

by Oskolkov in [12]. Global regularity for Navier-Stokes Voight system was studied by Kalantarov, 

Levant and Titi in [13-15]. 

 

This outline of the paper is arranged as follows. In section 2 we give some preliminaries and the 

functional setting of the Bénard problem. In section 3 we prove that solutions of the Bénard problem with 

some regularizing terms continuously depend on parameters 𝜇, and 𝜘. 
 

2. PRELIMINARIES 

 

In this section some preliminaries and notations usually used them in the mathematical study of 

hydrodynamics models. Further discussion on this topic, we refer [16,17,18-20]. 

Let Lp(Ω) and Hk(Ω) = 𝑊𝑘,2(Ω)  be denote the usual Lebesque space and Sobolev space respectively 

1 ≤ 𝑝 ≤ ∞, 𝑘 ∈ ℝ and we define the following spaces.  

 

𝑉 ≔ {𝑢 ∈ (𝐶∞(𝛺))
3

, 𝑢 = 0 at x3 = 1, x3 = 0, 𝑢,
𝜕𝑢

𝜕𝑥𝑖
are periodic in 𝑥𝑖  direction i = 1,2  

             ∇. u = 0 in Ω }  

𝑉̃: = {𝜃 ∈ 𝐶∞(𝛺), 𝜃 = 0 at x3 = 1, x3 = 0, 𝜃 ,
𝜕𝜃

𝜕𝑥𝑖
are periodic in 𝑥𝑖 direction i = 1,2  } 

 𝑯𝟏 ≔ the closure of  𝑉 in (𝐿2(𝛺))
3

, 

𝑽𝟏 := the closure of  𝑉 in (𝐻1(𝛺))
3

, 

𝑯𝟐 = the closure of  𝑉̃ in 𝐿2(𝛺), 

𝑽𝟐 = the closure of  𝑉̃ in  𝐻1(𝛺). 

The inner product on  𝑯𝟏 and 𝑯𝟐 are given by 

(𝑢, 𝑣) =  ∑ ∫ 𝑢𝑖𝑣𝑖  𝛺
𝑑𝑥𝑑𝑦𝑑𝑧3

𝑖=1     , (𝜃, 𝜗) =  ∑ ∫ 𝜃𝑖𝜗𝑖  𝛺
𝑑𝑥𝑑𝑦𝑑𝑧3

𝑖=1  

respectively, the associated norms are 

‖𝑢‖𝑯𝟏
= (𝑢, 𝑢)

1

2  and ‖𝜃‖𝑯𝟐
= (𝜃, 𝜃)

1

2  . 

We also define the inner product on 𝑽𝟏 and 𝑽𝟐 by  

((𝑢, 𝑣)) =  ∑ ∫ 𝜕𝑗𝑢𝑖𝜕𝑗𝑣𝑖  𝛺
𝑑𝑥𝑑𝑦𝑑𝑧,   3

𝑖,𝑗=1   ((𝜃, 𝜗)) =  ∑ ∫ 𝜕𝑗𝜃𝑖𝜕𝑗𝜗𝑖  𝛺
𝑑𝑥𝑑𝑦𝑑𝑧3

𝑖=1  

respectively, the associated norms are  

‖𝑢‖𝑽𝟏
= ((𝑢, 𝑢))

1

2  , ‖𝜃‖𝑽𝟐
= ((𝜃, 𝜃))

1

2 .   

Let 𝐴𝑖 = −∆ be  linears operators from 𝐷(𝐴𝑖) into 𝑯𝒊 respectively for 𝑖 = 1,2  defined by 

 (𝐴𝑖𝑢, 𝑣) = ((𝑢, 𝑣))    ∀𝑢, 𝑣 ∈ 𝐷(𝐴𝑖). 

𝐴𝑖  are adjoint and positive defined with compact inverse where  

𝐷(𝐴1) = (𝐻2(𝛺))3 ∩ 𝑽𝟏,  𝐷(𝐴2) = 𝐻2(𝛺) ∩ 𝑽𝟐. 

We define the bilinear form  𝑢, 𝑣 ∈  𝑽𝟏,  𝑦 ∈ 𝑽𝟐  
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𝑩𝟏(𝑢, 𝑣) = 𝑷𝟏((𝑢. ∇)𝑣), 𝑩𝟐(𝑢, 𝜃) = 𝑷𝟐((𝑢. ∇)𝜃), 

here 

𝑷𝟏: (𝐿2(𝛺))3 → 𝑯𝟏,  𝑷𝟐: 𝐿2(𝛺) → 𝑯𝟐 

are the projections. It is easy to check that these bilinear operators have the following algebraic properties 

(see e.g. [19-20]). 

〈𝑩𝟏(𝑢, 𝑣), 𝑤〉𝑉1
′ = −〈𝑩𝟏(𝑢, 𝑤), 𝑣〉𝑉1

′ (7) 

〈𝑩𝟐(𝑢, 𝑦), 𝑧〉𝑉2
′ = −〈𝑩𝟐(𝑢, 𝑧), 𝑦〉𝑉2

′ (8) 

〈𝑩𝟏(𝑢, 𝑣), 𝑣〉𝑉1
′ = 0,  〈𝑩𝟐(𝑢, 𝑦), 𝑦〉𝑉2

′ = 0.  (9) 

Using the bilinear form 𝑩𝒊 and the linear operator 𝑨𝒊  (𝑖 = 1,2), we rewrite the system (1)-(3)  
𝑑𝑢

𝑑𝑡
+ 𝜈𝐴1𝑢 + 𝜇𝐴1𝑢𝑡+𝑩𝟏(𝑢, 𝑢) = 𝑃1(𝑒3𝜃) (10) 

𝑑𝜃

𝑑𝑡
+ 𝜅𝐴2𝜃 + 𝜘𝐴2𝜃𝑡+𝑩𝟐(𝑢, 𝜃) = 𝑃2(𝑢3) (11) 

u(𝒙, 0) = u0(𝒙), θ(𝒙, 0) = θ0(𝒙). (12) 

We recall the following 3D interpolation and Sobolev inequalities [21] 

‖𝜑‖𝐿3 ≤ 𝑐 ‖𝜑‖
𝐿2

1
2⁄

‖𝜑‖
𝐻1

1
2⁄
 (13) 

‖𝜑‖𝐿6 ≤ 𝑐‖𝜑‖
𝐻1

1
2⁄
 (14) 

for every 𝜑 ∈ 𝐻1(𝛺). 

The Poincaré inequality 

‖𝜑‖2 ≤ 𝜆1
−1‖∇𝜑‖2   (15) 

for all 𝜑 ∈ 𝑉. 

We recall the  existence uniqueness and continuity results of the weak solutions which are given in the 

following theorems [10]. 

 

Theorem 2.1  [10] Let (𝑢0, 𝜃0) ∈ 𝑉 = 𝑉1 × 𝑉2  and 𝜏 >  0. The problem (1)-(6) has at least one weak 

solution  (𝑢, 𝜃)  satisfying: 

 𝑢 ∈ 𝐿2(0, 𝜏, 𝑉1) ∩ 𝐿∞(0, 𝜏, 𝑉1),   

𝜃 ∈ 𝐿2(0, 𝜏, 𝑉2) ∩ 𝐿∞(0, 𝜏, 𝑉2) for any 𝜏 > 0.   

 

Theorem 2.2 [10]  Let 𝑢0 ∈ 𝐻2 ∩ 𝑉1,  𝜃0 ∈ 𝐻2 ∩ 𝑉2,   𝜏 >  0. The solution 𝑢 and 𝜃 of the problem (1)-(6) 

is in 𝐶([0, 𝜏]; 𝑉1) ∩  𝐶([0, 𝜏]; 𝑉2). Furtermore we have    

 

‖𝑢𝑡‖2 + 𝜇‖𝛻𝑢𝑡‖2 + ‖𝜃𝑡‖2 + 𝜘‖𝛻𝜃𝑡‖2 ≤ 𝑐. (16) 

 

where the constant c is the generic constant depending on the initial datas and the  paremeters of (1)-(6).   

 

3. CONTINUOUS DEPENDENCE ON THE COEFFICIENT OF THE VOIGHT     

REGULARIZATION TERMS 

 

In this section we have studied continuous dependence of the solutions of (1)-(6) on the parameters  μ and 

ϰ. The standard energy methods are employed for the proof. Now we will give the following main 

theorem. 
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Theorem 3.1 Let (𝑢1,𝜃1), (𝑢2,𝜃2)  be weak solutions of (1)-(6) corresponding to the coefficients of 

Voight regularization terms 𝜇1, 𝜘1 and 𝜇2,  𝜘2 respectively. Then for any 𝑡 > 0 we have  

‖𝑢‖2 + ‖𝜃‖2 → 0       as   𝜇1 → 𝜇2,  𝜘1 → 𝜘2 

and 

‖∇𝑢‖2 + ‖∇𝜃‖2 → 0  as    𝜇1 → 𝜇2,  𝜘1 → 𝜘2 

 

where  𝑢 = 𝑢1−𝑢2  𝜃 = 𝜃1 − 𝜃2.   

 

Proof.    To prove continuous dependence on μ and ϰ,  let (u₁,θ₁) and (u₂,θ₂) are the solutions of the 

following boundary initial-value problems for different μ₁, ϰ1 and 𝜇2, ϰ2. 

 

𝑑𝑢1

𝑑𝑡
+ 𝜈𝐴1𝑢1 + 𝜇1𝐴1𝑢1𝑡+𝑩𝟏(𝑢1, 𝑢1) = 𝑃1(𝑒3𝜃1) 

𝑑𝜃1

𝑑𝑡
+ 𝜅𝐴2𝜃1 + 𝜘1𝐴2𝜃1𝑡+𝑩𝟐(𝑢1, 𝜃1) = 𝑃2(𝑢13) 

 𝑢1(𝒙, 0) = u0(𝒙), 𝜃1(𝒙, 0) = θ0(𝒙), 

  

𝑑𝑢2

𝑑𝑡
+ 𝜈𝐴1𝑢2 + 𝜇2𝐴1𝑢2𝑡+𝑩𝟏(𝑢2, 𝑢2) = 𝑃1(𝑒3𝜃2) 

𝑑𝜃2

𝑑𝑡
+ 𝜅𝐴2𝜃2 + 𝜘2𝐴2𝜃2𝑡+𝑩𝟐(𝑢2, 𝜃2) = 𝑃2(𝑢23) 

𝑢2(𝒙, 0) = u0(𝒙), 𝜃2(𝒙, 0) = θ0(𝒙). 

Since 𝑩𝒊  (𝑖 = 1,2) are bilinear, we will write  

𝑩𝟏(𝑢1, 𝑢1) − 𝑩𝟏(𝑢2, 𝑢2) = 𝑩𝟏(𝑢, 𝑢1) + 𝑩𝟏(𝑢2, 𝑢), 

𝑩𝟐(𝑢1, 𝜃1) − 𝑩𝟐(𝑢2, 𝜃2) =
𝟏

𝟐
{ 𝑩𝟐(𝑢, 𝜃1) + 𝑩𝟐(𝑢, 𝜃2)+𝑩𝟐(𝑢1, 𝜃)+𝑩𝟐(𝑢2, 𝜃)}. 

Now we determine the difference variables u=u₁-u₂,  θ=θ₁-θ₂,  𝜇 = 𝜇1 − 𝜇2 and  𝜘 = 𝜘₁- 𝜘₂  then (u,θ) 

satisfy 

 

𝑑𝑢

𝑑𝑡
+ 𝜈𝐴1𝑢 + 𝜇𝐴1𝑢1𝑡+𝜇2𝐴1𝑢𝑡 + 𝑩𝟏(𝑢, 𝑢1) + 𝑩𝟏(𝑢2, 𝑢) = 𝑃1(𝑒3𝜃) 

𝑑𝜃

𝑑𝑡
+ 𝜅𝐴2𝜃 + 𝜘𝐴2𝜃1𝑡 + 𝜘2𝐴2𝜃𝑡+

𝟏

𝟐
{ 𝑩𝟐(𝑢, 𝜃1) + 𝑩𝟐(𝑢, 𝜃2)+𝑩𝟐(𝑢1, 𝜃)+𝑩𝟐(𝑢2, 𝜃)}  = 𝑃2(𝑢3) 

𝑢(𝒙, 0) = 0, 𝜃(𝒙, 0) = 0. 

 

We take the inner product of the last two  equations with u and θ respectively and using the (9) we can 

write 

 

𝑑

𝑑𝑡
(‖𝑢‖2 + 𝜇2‖∇𝑢‖2) + 2𝜈‖∇𝑢‖2 ≤ 2|(𝜇𝐴1𝑢1𝑡, 𝑢)| + 2|〈𝑩𝟏(𝑢, 𝑢1), 𝑢〉| + 2(𝑃1(𝑒3𝜃), 𝑢)  

 

𝑑

𝑑𝑡
(‖𝜃‖2 + 𝜘2‖∇𝜃‖2) + 2𝜅 ‖∇𝜃‖2 ≤ 2|(𝜘𝐴2𝜃1𝑡, 𝜃)| + |〈𝑩𝟐(𝑢, 𝜃1), 𝜃〉| + |〈𝑩𝟐(𝑢, 𝜃2), 𝜃〉| 

+2(𝑃2𝑢3, 𝜃) 
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We can estimate the terms on the right side of the last two  inequalities. To do these we use Hölder, 

Cauchy-Schwarz, Young and Poincaré inequalities. And then we substitute these estimates to the 

equations and add them together we obtain 

 

𝑑

𝑑𝑡
(‖𝑢‖2 + 𝜇2‖∇𝑢‖2 + ‖𝜃‖2 + 𝜘2‖∇𝜃‖2) + ‖𝑢‖2(𝜈𝜆1 − 𝜀3 − 𝜀7) + ‖𝜃‖2 (𝜅𝜆1 −

1

𝜀3
−

1

𝜀7
)

+ ‖∇𝑢‖2 (𝜈 − 𝜀1 − 𝜀2 −
𝑐2

2√𝜆1 

‖∇𝜃1‖2

𝜀5
+

𝑐2

2√𝜆1 

‖∇𝜃2‖2

2𝜀6
+

𝑐2

√𝜆1 

‖∇𝑢1‖2

𝜀2
)

+ ‖∇𝜃‖2 (𝜅 − 𝜀4 −
𝜀5

2
−

𝜀6

2
) ≤

𝜇2

𝜀1
‖∇𝑢1𝑡

‖
2

+
𝜘2

𝜀4
‖∇𝜃1𝑡

‖
2
 

 

where 𝑐 is the generic constant. Since (u₁, θ₁),  (u₂, θ₂) are the weak solutions of the problem, let 

 

𝑆𝑢𝑝 (
0≤𝑡≤𝜏

‖𝛻𝑢‖2) ≤ 𝑑1, 𝑆𝑢𝑝 (
0≤𝑡≤𝜏

‖∇𝜃‖2) ≤ 𝑑2,   𝑑 = max{𝑑1, 𝑑2}, 

 

for positive constants d₁ and d₂. 

 

For  𝜅 > 1, 𝜅𝜆1 
2𝜈 ≥ 4, 𝜈 − 1 −  

4𝑐2𝑑

√𝜆1 
≥ 0, and for appropriate values of ε's we have 

 

 
𝑑

𝑑𝑡
(‖𝑢‖2 + 𝜇2‖∇𝑢‖2 + ‖𝜃‖2 + 𝜘2‖∇𝜃‖2) +  

                   𝑎(‖𝑢‖2 + 𝜇2‖∇𝑢‖2 + ‖𝜃‖2 + 𝜘2‖∇𝜃‖2) ≤ 2𝜇2‖∇𝑢1𝑡
‖

2
+ 2𝜘2‖∇𝜃1𝑡

‖
2
 (17) 

 

where 

𝑎 = min(
𝜈𝜆1 

2
,
 𝜅𝜆1 

2𝜈 − 4

𝜈𝜆1 
,

1 

𝜇2
(𝜈 − 1 −

4𝑐2𝑑 

√𝜆1 

) ,
1

𝜘2
(𝜅 − 1)). 

From the Theorem 2.2  we acquire the continuity result  for the weak solution (u₁,θ₁)  therefore using  

(16)  we write  

 

𝑆𝑢𝑝 (
0≤𝑡≤𝜏

‖∇𝑢1𝑡
‖

2
) ≤

𝑐

𝜇1
, 𝑆𝑢𝑝 (

0≤𝑡≤𝜏
‖∇𝜃1𝑡

‖
2

) ≤
𝑐

𝜘1 
. (18) 

 

Using (18) right side of  (17) we get 

 

 
𝑑

𝑑𝑡
(‖𝑢‖2 + 𝜇2‖∇𝑢‖2 + ‖𝜃‖2 + 𝜘2‖∇𝜃‖2) + 

𝑎(‖𝑢‖2 + 𝜇2‖∇𝑢‖2 + ‖𝜃‖2 + 𝜘2‖∇𝜃‖2) 

 ≤  2(
𝑐

𝜇1
+

𝑐

𝜘1
)[(𝜇1 − 𝜇2)2 + (𝜘1 − 𝜘2)2]. 

 

Hence, using the Gronwall's lemma we achieve  

 

‖𝑢‖2 + 𝜇2‖∇𝑢‖2 + ‖𝜃‖2 + 𝜘2‖∇𝜃‖2 ≤ 

       2(
𝑐

𝜇1
+

𝑐

𝜘1
)(1 − 𝑒−𝑎𝑡)[(𝜇1 − 𝜇2)2 + (𝜘1 − 𝜘2)2]. (19) 
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From (19) we obtain 

‖𝑢‖2 + ‖𝜃‖2 ≤ 2(
𝑐

𝜇1
+

𝑐

𝜘1
)(1 − 𝑒−𝑎𝑡)[(𝜇1 − 𝜇2)2 + (𝜘1 − 𝜘2)2] 

‖∇𝑢‖2+‖∇𝜃‖2 ≤ 2(
1

𝜇2
+

1

𝜘2
)(

𝑐

𝜇1
+

𝑐

𝜘1
)(1 − 𝑒−𝑎𝑡)[(𝜇1 − 𝜇2)2 + (𝜘1 − 𝜘2)2]. 

 

Hence the statement of the theorem holds. Provided that  𝜇1, 𝜇2 and   𝜘₁, 𝜘2 are not too small we arrive at 

the continuous dependence of the solution on the parameters. 
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