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Abstract: A spacelike ruled surface in ℍ3 is obtained by moving a spacelike geodesic along a spacelike curve. 

In this paper, we have studied spacelike ruled surfaces in Hyperbolic 3-space ℍ3. We have also investigated 

the concepts striction point, striction curve and dispersion parameter of ruled surfaces in ℍ3. 

Keywords: Spacelike Ruled Surface, Hyperbolic Space 

Hiperbolik Uzayda Uzaysal Regle Yüzeyler 

Özet: Bu makalede, ℍ𝟑 hiperbolik uzayında uzaysal dönel yüzeyler çalışılmıştır. ℍ𝟑 hiperbolik uzayında bir 

uzaysal dönel yüzey bir uzaysal doğrunun bir uzaysal eğri boyunca hareket ettirilmesi ile elde edilir. Bu 

çalışmada, ℍ𝟑 hiperbolik uzayında regle yüzeylerin boğaz noktası, boğaz eğrisi ve dağılma parametresi 

araştırılmıştır. 

Anahtar Kelimeler: Uzaysal Regle Yüzey, Hiperbolik Uzay 

 

1. INTRODUCTION 

In [1], Turgut and Hacısalihoglu studied timelike 

ruled surfaces in Minkowski 3-space ℝ1
3. They 

showed that these type surfaces are obtained by 

moving timelike straight lines along spacelike 

curves.  

In this paper, spacelike ruled surfaces are 

investigated in Hyperbolic 3-space ℍ3. A ruled 

surface is a surface obtained by a geodesic 
sl


 

moving along a curve  . Thus, a ruled surface has 

a parametrization in ℍ3 as  

         , cosh sinhs t t s t Z s   , 

where   is called the base curve and Z  the 

director vector of sl


. If the tangent plane is 

constant along a fixed ruling, then the ruled 

surface is called a developable surface.  

 

 

2. PRELIMINARIES 

Let 
4

1R  be 4-dimensional vector space equipped 

with the scalar product 

1 1 2 2 3 3 4 4,x y x y x y x y x y     . 

Then, 
4

1R  is called Minkowskian or Lorentzian 4-

space.  From now on, the constant angle surface 

will be proposed in Minkowskian ambient space 
4

1R . The Lorentzian norm of 𝑥 ∈ ℝ1
4 is defined to 

be 

1

2,x x y . 

If   0 1 2 3, , ,i i i ix x x x  is the coordinate of  
ix  with 

respect to canonical basis  0 1 2 3, , ,e e e e  of 
4

1R , 

then the lorentzian cross product of 𝑥1, 𝑥2 and 𝑥3 

is defined by the symbolic determinant as 
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0 31 2

1 11 1

0 31 2

1 2 3 2 22 2

0 31 2

3 33 3

0 31 2

e ee e

x xx x
x x x

x xx x

x xx x



   . 

One can easly see that 

 1 2 3 4 1 2 3 4, det , , ,x x x x x x x x   . 

In [3, 4] and [6] Izumiya at all introduced and 

investigated differantial geometry of curves and 

surfaces in ℍ3. The sets 

 4

1 0, , 1, 1x R x x x    ,  

 4

1 , , 1x R x x  and 

 4

1 0, , 0, 0x R x x x    

are called, respectively, Hyperbolic 3-space ℍ3, 

de Sitter space 
3

1S  and future lightcone at the 

origin LC
. We can give the following 

background of context in [2]. 

Let 
4

1:x M R  be an immersion of a surface M

into 
4

1R . We say that 𝑥 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) is 

timelike (resp. spacelike, lightlike) if the induced 

metric on M  via x  is Lorentzian (resp. 

Riemannian, degenerated).  If 〈𝑥, 𝑥〉 = −1 

provided 𝑥0 > 1, then x  is an immersion of ℍ𝟑.   

Since ℍ𝟑 is a Riemannian manifold and regular 

curve    are reparametrized by arclength,  we may 

assume that  s  is a unit speed curve. That is, 

there is a tangent vector     t s s   with 

  1t s  . If    , 1t s t s    , then there is a 

unit vector  
   

   

t s s
n s

t s s





 


 
  

and also        e s s t s n s   , where ⋀ 

denotes the usual vector product. Then we have a 

pseudo orthonormal frame 

        , , ,s t s n s e s  of 
4

1R along  . 

Taking    , 1t s t s    , we have the following 

Frenet-Serre type formulas; 

 

       

         

     

h

h h

h

t s

t s s n s s

n s s t s s e s

e s s n s



 

 



 

  


   

   

 

where  

     h s t s s     

and  

 
        

 
2

det , ' , '' , '''
h

h

s s s s
s

s

   



 

  

. 

Since    , 1t s t s   , it is easily seen that 

  0h s  . 

We can show that   0h s   if and only if there 

exists a lightlike vector c  such that  s c   is a 

geodesic. 

Let 
2U R  be an open subset and 

3:x U H  

be a regular surface. Then,  M x U  is an 

embedding of x . If 

  
     

     
1 2

1 2

x u x u x u
e u

x u x u x u

 


 
,  

then 〈𝑒, 𝑥〉 = 〈𝑒, 𝑥𝑖〉 = 0 and 〈𝑒, 𝑒〉 = 1, where 

i

i

x
x

u





. Thus, de Sitter Gauss image of x  is 

defined by the mapping 

   2 3

1: ,E U R S E u e u   . The lightcone 

Gauss image of x  is also defined by the mapping 

     2: ,L U R LC L u x u e u      . 

Since  0udx  and TpMI  are identify mappings on 

the tangent space TpM , the derivative  0udx  

can be identified with TpM  relate to 

identification of U  and M , that is  

   0 0TpMdL u I dE u   . The linear 

transformation  

  TpMTpMudLS p   :: 0   
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is called the hyperbolic shape operator of 

 uxM   at  0uxp  . Also the transformation 

  TpMTpMudEAp  :: 0  

is called the de Sitter shape operator of  uxM   

at  0uxp  . The eigenvalues of  and pA  are, 

respectively, denoted by ( )iK p
and ( )iK p ,

1,2i  . ( )iK p
 are called the principal 

curvatures of 𝑀 in ℍ3 and 𝑆𝑝
± is called the 

principal curvatures of 𝑀 in ℝ1
4. Since 

p TpM pS I A    ,  and pA   have the same 

eigenvectors and relations 

   pKpK ii  1 . 

Let       1 2,s x u s u s  be a unit speed curve 

on  M x u  with  0sp  . We have the 

hyperbolic curvature vector      sstsk  '  

and the de Sitter normal curvature 

        0 0 1 0 2 0' , , 1nK s t s L u s u s     

of  s  at  0sp  . The de Sitter normal 

curvature depends on the point p  and the unit 

tangent vector of M at p  analogous to the 

Euclidean case. Hyperbolic normal curvature of 

 s  is given by 

    1n nK s K s   . 

The Hyperbolic Gauss curvature  0hK u
 and the 

Hyperbolic mean curvature  0hH u
 at 

 0p x u  are given, respectively, by 

     pKpKSuK ph

  210 det  , 

 
   1 2

0

1

2 2
h p

K p K p
H u TraceS

 

 


  . 

The extrinsic (de Sitter) Gauss curvature  0eK u  

and the de Sitter mean curvature  0dH u   at 

 0p x u  are, respectively, obtained 

   pKpKApKe 21det  , 

 
   1 2

0

1

2 2
d

K p K p
H u TraceAp


  . 

3. SPACELIKE RULED SURFACE IN 

HYPERBOLIC 3-SPACE 

Definition 1 If a geodesic 
sl


moves along a curve 

𝛼 in Hyperbolic 3-space ℍ3 we obtain a ruled 

surface. In this case, geodesic 
sl


 is called the 

director and 𝛼 is called the base curve of the ruled 

surface. 

In ℍ3, we will investigate ruled surfaces with 

spacelike base curves and geodesics.  

 

Figure 1. Base curve and direction geodesics of a surface in 

ℍ𝟑. 

 

Let 𝛼 be a differentiable unit speed curve in ℍ3 

defined by  

3: I H , 

          1 2 3 4, , ,s s s s s      where 

{0} ⊂ 𝐼 ⊂ ℝ. Here 

       , 1, ' , ' , 1s s s s T T       

. 



pS



pS
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We suppose that  

          3

1 1 2 3 4: , , , ,Z I S Z s z s z s z s z s 

,  

   , 1Z s Z s  and 

   , 0,s Z s s I    . 

Let us choose a geodesic in  ℍ𝟑 as 

         3: , cosh sinhs sl R l t t s t Z s    H

where  s is an initial point and  Z s is the 

direction vector of 
sl


. Here Frenet components of 

base curve  s  are  , , , ,h hT N B     . Let 
lT  

be tangent of geodesic 
sl


 at the point  s  and 

assume that 
lT  and T  are linearly independent for 

all s I . If 
sl


is moved along  , then we obtain 

 ,I R   parameterized by 3: I R  H , 

 

       

       

       

       

1 1

2 2

3 3

4 4

cosh sinh ,

cosh sinh ,
,

cosh sinh ,

cosh sinh

t s t s

t s t s
s t

t s t s

t s t s

 

 


 

 

 
 

 
  

 
  

 

We will symbolize the ruled surface 𝜑(𝑠, 𝑡) with 

M . 

Now, we will find an orthonormal base of the 

tangent space  M  along the curve  . 

Let 
         

cosh sinh
l s s Z s

T t T t T


   and 

l
l

l

T
T

T
%  be the unit tangent of 

sl


. In this case, if 

we take  

,l lY T T T T  % %  as a spacelike vector field and 

its unit as 
Y

X
Y

 , then we have  

1X   and , 0, , 1X T T T    .         (3.1) 

Hence,  ,X T  is an orthonormal base of  M  

and we have  

X T                                                         (3.2)  

called the normal of the ruled surface M  in ℍ𝟑, 

that is  

     3 ,p pS X T S  H                 

and 

   4

1 , ,p pR S X T S     . 

We symbolize Levi-Civita connections of 
4

1R  , 

ℍ𝟑 and M , respectively, with D ,  D  and D .  

From Gauss formula, we can write    

,X XD Y D Y X Y    , 

   XA X D I X %  

and 

   , ,X X XD Y D Y A X Y A X D    . 

Taking derivative of the orthonormal frame 

 , ,T X   along the curve  , we obtain  

0

0

0

T

T

T

D T a b T

D X a c X

D b c 

     
     

      
         

                             (3.3) 

where 

, , , , ,T T Ta D T X b D T c D X     . (3.4) 

For the system  , , ,T X   along  , using 

Gauss formula we obtain  

0 1 0 0

1 0

0 0

0 0

T

T

T

T

D

D T a b T

a c XD X

b c
D

 




 
    
     
    
    
           

              (3.5) 

which can be given also as  
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T

T

T

T

D T

D T aX b

D X aT c

D bT cX



 





 

    


  


  

                                      (3.6) 

For the ruled surface M  given by the 

parametrization 
3: ,I R  H  

         , cosh sinhs t t s t X s       (3.7) 

we have   

 
2 2 2, cosh sinh sinh

, 0

, 1

s s

s t

t t

E t a t c t

F

G

 

 

 

    


 


 

   (3.8) 

Since 𝐸𝐺 − 𝐹2 > 0, the ruled surface M  is 

spacelike in ℍ3. Let us denote domain of t  by J

.  
0 0:t I t M   , 

         
0 0 0 0, cosh sinht s t t s t X s     (3.9)  

determines a curve of M , where 0t t  is 

constant. The tangent vector field of this curve is  

       0 0 0cosh sinh sinhA t a t T s c t s    (3.10). 

Since M is spacelike, , 0A A   and 
0t

  is a 

spacelike curve. Also,  

, 0X A  .                                                             (3.11) 

4. DEVELOPABLE RULED SURFACE IN 

HYPERBOLIC 3- SPACE ℍ3  

Definition 2 If the tangent planes of a ruled 

surface in ℍ𝟑 are the same along its main 

geodesics, then this ruled surface is called a 

developable ruled surface.  

Theorem 1 Let M  be a spacelike ruled surface 

in ℍ𝟑. Then, the tangent planes are the same along 

a main geodesic if and only if 0c  .  

Proof Let 𝑀 be a spacelike ruled surface, and 

suppose that the tangent planes are the same along 

one of its main geodesics. We consider the tangent 

vector field  

       0 0 0cosh sinh sinhA t a t T s c t s    

of the curve  
0 0:t I t M    that passed 

through 0t I . Since 
0t

 is parameter curve of 

M , the vector A  is in the tangent plane of the 

surface 𝑀. Thus, 0c  . 

Conversely, assume that 0c  . In this case, since  

   0 0cosh sinhA t a t T s    

and  

     
0 ,

, ,
t s

T M Sp T X Sp T A


  , 

the tangent planes are the same along one of its 

main geodesics. 

Corollary 1 The spacelike ruled surface M in ℍ3 

is developable if and only if 0c  .  

Corollary 2 For a spacelike ruled surface M  in 

ℍ3, we get 

 det , , , Tb T X D T   , 

 det , , , Tc T X D X   (3.12) 

Remark 1 Since stereographic projection is 

conformal mapping, using stereographic 

projection, spacelike ruled surfaces in 

Minkowskian model of ℍ3 is visualized in 

Poincare ball model of ℍ3. 

Example 1 Let us take a ruled surface M  in ℍ3 

given by the parametrization 3: I R  H ,  

         , cosh sinhs t t s t X s   . 

If  

   cosh ,sinh cos,sinh sin ,0s s s s s   

and  

   cosh , 2 cos , 2 sin ,sinhX s s s s s  

are choosen, then  ,s t  is a spacelike ruled 

surface in ℍ3. The base curve   is also spacelike 

and  
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   , 1s s    . 

 

Figure 2. Ruled surface in Hyperbolic 3-space ℍ3. 

 

4.1. Position Vector of a Central Point in 

Hyperbolic 3-Space ℍ3  

Definition 3 Let an undevelopable ruled surface 

be given in ℍ3. If there exists a comman 

perpendicular of two neighbor main geodesics of 

the ruled surface, then the foot of this 

perpendicular on principal geodesic is called the 

striction or central point. 

Definition 4 When the straight line of an 

undevelopable ruled surface in ℍ3 creates the 

ruled surface through the base curve, then the 

geometrical place of the central points of the ruled 

surface is called the striction curve of M .  

 If w  is the distance between the central point and 

the base curve of the undevelopable ruled surface, 

then the position vector  s can be defined by  

         , cosh sinhs w w s w X s   , (4.1) 

where  s  is the position vector of the base 

curve and  X s  is the direction vector of the 

main geodesic. 

The parameter w  can be written as the 

combination of the position vector of the base 

curve and the direction vector of the ruled surface. 

Let first two of three neighbor geodesic of 

spacelike ruled surface be  

       cosh sinhsl t s t X s                           

(4.2) 

and  

       cosh sinhs sl t s s t X s s        , 

(4.3) 

where  X s  and      T s
X s D X s  are the 

direction vectors of these main geodesics, 

respectively. Also let , 'P P and , 'Q Q  be the feet 

on the main geodesics of the common 

perpendicular of the neighbour geodesic. Thus, P

and Q are two different central points. The 

direction of the common perpendicular first two 

main geodesics are linearly dependent to the 

vector  

         T s
s X s X s D X s    

 
.  

Therefore,  

         T s
s X s X s D X s     

 
 

                  T s
s X s D X s                  (4.4) 

The vector PQ
uuur

 coincides with the vector 'PP
uuur

in 

the limiting position, and PQ
uuur

will be the tangent 

vector of the striction curve. Since  

 

     

, 0

, 0
T s

X s PQ

X s D X s PQ

 



 

     ,                   (4.5) 

we obtain  

    , 0
T s

D X s PQ  .                                           (4.6) 

Thus, 

       , 0
T s T s

D X s D s  .                             (4.7) 

On the other hand, since  

             ,
T s T s

D s D s T s s s     , 

we obtain  
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       T s T s
D s D s  .                                        (4.8) 

Consequently,  

       , 0
T s T s

D X s D s   

and then  

2 2

sinh

cosh

w a

w a c



 or 

2 2
arctan

a
w h

a c

 
  

 
  (4.9) 

So, the position vector of the striction curve is  

         2 2
, cosh cosh

a
s w w s w X s

a c
  


 

(4.10) 

Corollary 3 The distance between the central 

point of the undevelopable ruled surface and the 

base curve is constant. 

Proof  Since  

  , 0X s PQ  ,  

we obtain  

     , 0
T s

X s D s  and 

       T s T s
D s D s  .  

Thus, cosh 0
dw

w
ds

 and 0
dw

ds
 . So, w  is 

constant.  

Theorem 2 Striction curve of a spacelike ruled 

surface in ℍ𝟑, which is undevelopable,  is 

independent of choosing the base curve.  

Proof Let us denote two spacelike ruled surfaces 

in 
3H  by  

         , cosh sinht v v t v X t    

         , cosh sinht v v t v X t    

where  and   are two different base curves of 

the spacelike ruled surface. Then, the striction 

curves of the spacelike ruled surfaces are  

         

         

2 2

2 2

cosh cosh

cosh cosh

a
t v t v X t

a c

a
t v t v X t

a c

 

 

 


 


 

If we subtract  t from  t and use (4.1), we 

obtain  

    0t t    

That completes the proof. 

Theorem 3 Let M be an undevelopable spacelike 

ruled surface. Then, the point  0,s v  is a 

striction point on the straight line, passing through 

the point  s , if and only if 
TD X is a normal 

vector of the tangent plane on the point  0,s v . 

Proof Suppose that 
TD X is a normal vector of the 

tangent plane on the point  0,s v . Since tangent 

vector field of the curve  
0 0:v I v M    is  

       0 0 0cosh sinh sinhA v b v T s c v s  

 

then  

    , 0
T s

D X s A  . 

Thus, we obtain  

2 2

0 0 0cosh sinh sinh 0a v a v c v     

and  

0

2 2

0

sinh

cosh

v a

v a c



. 

Therefore,  0,s v is a central point of M . 

Conversely, suppose that  0,s v is a central 

point with geodesic, passing through the points 

 s . Thus,  

, 0TD X X  , 
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  2

0 0 0, cosh sinh sinhTD X A a v a v c v   

. 

Since  0,s v  is a central point, then we get  

  2

0 0 0cosh sinh sinha v a v c v   =0. 

Hence, we obtain  

,TD X A  0. 

So, 
TD X  is a normal vector of the tangent plane 

at the point  0,s v .  

Remark 1 Let
TD X  be a normal vector of the 

tangent plane on the striction point. Since  

        2 2, 0
T s T s

D X s D X s a c   ,  

TD X is a spacelike normal vector field. 

Theorem 4 Let M be an undevelopable spacelike 

ruled surface. Then, the striction curve  

         2 2
cosh cosh

a
s w s w X s

a c
  


 

is spacelike. 

Proof We need to show that the tangent vector 

field of the striction curve   is spacelike. It is 

clear that  

       
2

2

2 2
, cosh 0

T s T s

c
D s D s w

a c
   


 

where 

 

   

           2 2
cosh cosh

T s

T s T s

D s

a
w D s w D X s

a c







 


  

Since        , 0
T s T s

D s D s   ,   s  is a 

spacelike curve. 

 

4.2. Dispersion Parameter of Ruled Surface in 

Hyperbolic 3-Space ℍ𝟑 

Let the base curve of a spacelike ruled surface M  

be the striction curve. Then, the distance from the 

striction point to the base curve is  

2 2
arctan 0

a
w h

a c

 
  

 
. 

Hence, we have  

0a   

and since  

       T s
D X s aT s c s   , 

the vector field 
   T s

D X s  and the normal of 

surface  s  are linearly independent. Therefore, 

there exists R for the equality 

     T s
s D X s  .  

On the other hand, since  

     T s
s D X s   

and  

       cosh sinht s t X s    , 

we have  

         coshs t s X s T s      . 

Therefore, we have  

           cosh
T s

D X s t s X s T s      . 

If we take scalar product with 
   T s

D X s of both 

sides of the above equality, then we have  

 
          

       

det , , ,
cosh

,

T s

T s T s

s X s T s D X s
t

D X s D X s


 

, 

where   is called the dispertion parameter of the 

spacelike ruled surface in ℍ𝟑.   
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Since the vector field 
   T s

D X s  and the normal 

of the surface are linearly independent, 

   T s
D X s  is a spacelike vector field. 

Theorem 5 The spacelike ruled surface M  is 

developable if and only if the dispersion parameter 

of M is zero. 

Proof From Theorem 2 and Corollary 1, we get  

 det , , , 0Tc T X D X    

and so it is clear from the definition of the 

dispersion parameter that 

 
 det , , ,

cosh 0
,

T

T T

T X D X
t

D X D X


   . 

Definition 5 If there exists a curve that cuts 

vertically each geodesics of the ruled surface 

in ℍ𝟑, then this curve is called an orthogonal 

trajectory of the ruled surface. 

Theorem 6 Let M  be a spcelike ruled surface 

inℍ𝟑. Then, there is only one orthogonal 

trajectory passing through every point of M .  

Proof Let M  be a spacelike ruled surface given 

by the parametrization  
4

1

3: I J R   H , 

         , cosh sinhs v v s v Z s   . 

Then, the orthogonal trajectory of M  is 

: ,I M I I  % %  

            cosh sinht f t t f t Z t   . 

Since  

     , 0
T t

D t Z t  , 

we get  

     ' ,f t t Z t dt h   , 

where    , 1Z t Z t  . 

If we take  

     ' ,F t t Z t dt  , 

we get 

    f t F t h  . 

Since h  is choosen arbitrary, there are a lot of 

curves that satisfy the condition 

     , 0
T t

D t Z t  . 

 

Figure 3. Orthogonal trajectory of a ruled surface. 

 

Let us now find s R  such that  

         0 cosh sinhp F t h t F t h Z t   

. 

Since  

      0 0 0 0 0cosh sinhp v t v Z t  , 

we get  

         

       0 0 0 0

cosh sinh

cosh sinh

f t t f t Z t

v t v Z t





 

 
  

So,      0 0,t t v f t   . If we choose 

interval I such that  is one to one, then we get 

0t t . Thus,    0 0h f t F t  . Consequently, 

there exists only one orthogonal trajectory passing 

through the point 
0P . Therefore, I% must be equal 

to I .  

Theorem 7 Let M  be an undevelopable spcelike 

ruled surface in ℍ𝟑. Then, the longest distance 

along the orthogonal trajectors between any two 
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geodesics of M  is the distance measured along 

the curve :t I M   

corresponding to  

2 2

1 2
arctan

2 1

a
t h

a c

 
  

  
. 

Proof Let us take two geodesic passing through 

the points  1s  and  2s , where 
1 2,s s I  

and 
1 2s s . Also, let us denote the distance 

obtained along the orthogonal trajector s 

constant between these geodesics by  d t . Then, 

 

   

2

1

2 2 2

2 1cosh sinh sinh

s

s

d t A ds

t a t c t s s



   


  

where  

       cosh sinh sinhA t a t T s c t s   . 

If  ' 0d t  , then  d t  takes the maximum 

value. Hence, we get  

2 2

1 2
arctan

2 1

a
t h

a c

 
  

  
. 

Theorem 8 Let M be a spacelike ruled surface in 

ℍ𝟑 The geodesics of M  are both asymptotic and 

geodesic curves. 

Proof Let X  be the tangent vector field of a 

geodesic of a spacelike ruled surface M . Since 

every geodesic in ruled surface M , it is a geodesic 

in ℍ𝟑. Thus, we get 0XD X  . From Gauss 

equation, we also get  

  ,X XD X D X S X X   .  

Thus, 

  ,XD X S X X  . 

Therefore,  

 XD X M   

and  

   ,S X X M   . Since the metric on 

M  is nondegenered, we get  

     3 M M    H  

and 

     0M M    . 

Thus, 0XD X   and   , 0S X X  .   

Theorem 9 Let M  be a spacelike ruled surface in 

ℍ𝟑. Then,   0hK p   for all p M , where 
hK 

 

is the Gaussian curvature function of M  in ℍ𝟑.  

Proof  Let X  be the tangent vector field of the 

main geodesic at the point p M . And take the 

orthonormal basis  ,X Y  of  M . Since M  

is a ruled surface, X  and Y  are spacelike vector 

fields. The Weingarten operator S 
of M can be 

written  

     

     

, ,

, ,

S X S X X X S X Y Y

S Y S Y X X S Y Y Y

  

  

 

 
. 

In this case, the matrix  

   

   

, ,

, ,

S X X S X Y
S

S Y X S Y Y

 



 

 
 
 
 

 

is corresponding to Weingarten operator S 
. On 

the other hand, the Weingarten operator S 
 is 

self-adjoint,  

   , ,S X Y S Y Y  . 

Also, from Theorem 8, we get 

   , 0, , 0S X X S Y Y   . 

Hence,  

 
2

det ,hK S S X Y      . 

Theorem 10 Let M  be a spacelike ruled surface 

in ℍ𝟑. Then,  
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T X

T X

X T

T X

 

 

 

 

  

   

  

   

 

where T  is the unit tangent vector of the base 

curve,   is the position vector both of the base 

curve of M , X  is the unit tangent vector field of 

the main geodesic of M , and   is the unit normal 

vector field of M . 
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