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Abstract. In this paper, we have considered the coexistence of two quite different structures, the deformed and 

spherical shapes in 190Hg nucleus. To this aim, we have determined the energy spectra and quadrupole transition 

probabilities of this nucleus. A transitional Interacting Boson Model Hamiltonian which are based on affine

(1,1)SU lie algebra have been used to provide a new general technique for description of shape coexistence. 

Parameter free (up to overall scale factors) predictions for theoretical predictions are found to be in good 

agreement with experimental counterparts. Also, our results offer a combination of O(6) and U(5) dynamical 

symmetries for description of regular and intruder configurations, respectively. 

Keywords: Shape coexistence, interacting boson model, affine lie algebra, deformed and spherical shape, energy spectra, 

quadrupole transition. 

Enerji Spektrumları ve Quadrupole Geçiş olasılıklarının 190 Hg'nin 

Teorik Tanımı 

Özet. Bu yazıda, 190Hg çekirdeğindeki iki farklı yapının, deforme ve küresel şekillerin bir arada varlığını 

düşündük. Bu amaçla, bu nükleusun enerji spektrumları ve kuadrupol geçiş olasılıklarını belirledik. Afin yalan 

cebirine dayanan geçişli bir etkileşimli Boson Modeli Hamiltoniyeni, şekil bir arada bulunmanın tanımlanması 

için yeni bir genel teknik sağlamak amacıyla kullanılmıştır. Parametrik olmayan (genel ölçek faktörlerine kadar) 

teorik tahminlere yönelik tahminlerin, deneysel eşlerle iyi bir uyum içinde olduğu bulunmuştur. Ayrıca, 

sonuçlarımız sırasıyla düzenli ve saldırgan konfigürasyonların tanımlanması için O (6) ve U (5) dinamik 

simetrilerin bir kombinasyonunu sunmaktadır. 

Anahtar Kelimeler: Şekil bir arada var olma, etkileşimli bozon model, yalancı yalan cebiri, deforme ve küresel şekil, 

enerji spektrumları, dört kutuplu geçiş. 

 

1. INTRODUCTION 

Shape coexistence in atomic nuclei has become a 

very active field of research during the last 

decades. Clear signals of the existence of shape 

coexistence have been obtained at and near proton 

or neutron closed shells [1–3], more in particular. 

in the light nuclei with a closed neutron shell at N 

= 8, 20, 28 and 40 closed shells as well as in heavy 

nuclei such as the Sn and the Pb nuclei. The shape 

coexistence is associated with the presence of low-

lying excited 0+ states between the levels of ground 

band. To study shape coexistence‚ there are 

available several different approximations. In the 
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first approach, mean-field methods such as the 

Hartree-Fock Bogolibov (HFB) type have been 

used for medium and heavy masses [4-7].  In a 

shell model picture, the excited 0+ states are 

generated by multi-particle multi-hole (mp-mh) 

proton excitations across in mass regions near shell 

closure [8-15]. Many particle-many hole (mp-nh) 

excitations cannot be incorporated easily in full 

large scale shell model studies because of 

extremely large dimensions of the model spaces 

involved. These mp-nh excitations, however, can 

be handled within an algebraic framework of the 

interacting boson model (IBM).  

The interacting boson model (IBM) describes the 

nuclear structure of even–even nuclei the was 

written from the beginning in second quantization 

form in terms of the generators of the U(6) unitary 

lie algebra [12-19]. The IBM-1, which does not 

distinguish between proton and neutron degrees 

of freedom, assumes that low-lying collective 

excitations of the nucleus can be described in terms 

of the number N of s and d bosons. The bosons 

correspond to pairs of nucleons in valance shell, 

coupled to angular momentum (j=0) s boson (j=2) 

d boson. The model presents three special limits 

that can be solved easily. IBM has four dynamical 

symmetries, e.g. U(5), SU(3) , (3)SU and O(6) 

limits which are correspond respectively,  to 

vibrational nuclei with a spherical form, an axially 

symmetric prolate rotor with a minimum in the 

energy at 0  and an axially symmetric oblate 

rotor with a minimum at 60  . The fourth 

symmetry is located in the middle of the 

(3) (3)SU SU transitional region and 

corresponds to a rotor with a flat potential in , e.g. 

O(6) limit [23-25]. 

When the numbers of protons (or neutrons) are 

modified, the energy levels and electromagnetic 

transition rates of atomic nuclei change too and 

suggest a transition from one kind of the 

collective behavior to another [20-34]. The 

transitional Hamiltonians are especially 

interesting cases occur when they describe critical 

points in the transitions from a given shape to 

another. The quantum shape phase transitions 

have been studied 25 years ago with using the 

classical limits of the IBM.  

It is known, by using the predictions of Bohr-

Mottelson Collective model, the Z(5) critical point 

symmetry in the prolate to oblate shape phase 

transitional region which involving large rigid 

triaxiality, is very close to the predictions of  - 

soft models involving  -fluctuation similar to 

O(6) dynamical symmetry. These mean nuclei 

such as 190 Hg which is located near the magic 

number Z = 82 and expect to have spherical 

shape, belong to the so-called transitional region. 

This means that they have O(6)-like structure for 

ground band and U(5) symmetry for the intruder 

states. These combination of these two different 

symmetries make it possible to introduce shape 

coexistence phenomena.  

Three transitional regions of IBM, can consider 

by using the simple Hamiltonian [12-14]:  

2

0

1 ˆ ˆˆ ( , , ) . .              dH N E n Q Q CL
N

 


  


     

where
†. dn d d is the d  boson number 

operator and
† † (2) † (2)( ) ( )Q s d d s d d    

represents the quadrupole operator and 

( )s dN n n   stands for the total number of 

bosons. Also, the an   quantities are regard as 

control parameters and can vary within the range

[0,1] and [ 7 2, 7 2]   . Some 

complicated numerical calculation must be used to 

diagonalize the considered Hamiltonian in these 

transitional regions and critical points. To avoid 

these problems, an algebraic solution has been 

proposed by Pan et al [23-24] which was based on 

the affine (1,1)SU Lie algebra to exhibits the 

properties of nuclei which are located in the 
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U(5)↔SO(6) transitional region. Although the 

results of this approach are somewhat different 

from those of the IBM, but as have presented in 

Refs.[23-24,30-32], a clear correspondence with 

the description of the geometrical model is 

obvious for this transitional region. 

In this study, we focused on the 190Hg nucleus 

with emphasis on the energy levels and 

quadrupole transition probabilities. We have used 

the transitional Hamiltonian [35] to consider the 

evolution of this nucleus between vibrational and 

gamma unstable dynamical symmetries.  

2. THEORETICAL FRAMEWORK 

2.1. Transitional Hamiltonian based on affine  1,1SU algebra 

The (1,1)SU Algebra has been described in detail in Refs.[23-24]. Here, we briefly outline the basic ansatz 

and summarize the results. The Lie algebra corresponds to the (1,1)SU group is generated by S , 0  and

 , which satisfies the following commutation relations: 

0 0[ , ]                                 ,                                        [ , ] 2                                          (1)S S S S S S        

The Casimir operator of (1,1)SU group can be written as: 

0 0

2
ˆ ( 1)                                                    ,                                                                          (2)C S S S S     

Representations of (1,1)SU are determined by a single number , thus the representation of Hilbert space is 

spanned by orthonormal basis   where can be any positive number and , 1,...    . Therefore,  

0

2
ˆ ( (1,1)) ( 1)                             ,                                                        (3)C SU S          

In IBM, the generators of d  boson pairing algebra is created by: 

† † 0 † †1 1 1
( ) ( . )       ,     ( ) ( . )         ,           ( ) ( )                            (4)

2 2 4
S d d d S d d d S d d d d d   



      

Similarly, s  boson pairing algebra forms another (1,1)sSU algebra which is generated by: 

†2 2 0 † †1 1 1
( )               ,             ( )          ,           ( ) ( )                                       (5)

2 2 4
S s s S s s S s s s ss
 

     

On the other hand, the infinite dimensional (1,1)SU algebra is generated by using of [23-24] 

2 1 2 1 0 2 0 2 0( ) ( )                     ,            ( ) ( )                                          (6)n n n n

n s d n s dS c S s c S d S c S s c S d         

Where sc and dc are real parameters and n can be 0, 1, 2,...  . These generators satisfy the commutation 

relations, 

0 0

1[ , ]                                          ,                      [ , ] 2                                        (7)m n m n m n m nS S S S S S   

       
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Then,{ , 0, , ; 1, 2,...}mS        generates an affine Lie algebra (1,1)SU without central extension. By 

employing the generators of (1,1)SU Algebra, the following Hamiltonian is constructed for the transitional 

region between (5) (6)U SO limits [23-24]: 

0

0 0 1 2 2
ˆ ˆˆ    ( (5))  ( (3))                                                                                   (8)H g S S S C SO C SO        

, ,g   and are real parameters where
2
ˆ ( (3))C SO and

2
ˆ ( (5))C SO denote the Casimir operators of these 

groups. It can be seen that Hamiltonian (8) would be equivalent with (6)SO Hamiltonian if s dc c and with

(5)U Hamiltonian when 0 &  0s dc c  . Therefore, the 0s dc c   requirement just corresponds to the 

(5) (6)U SO transitional region. In our calculation we take dc (=1) constant value and sc vary between 0 

and .dc  

Eigenstates of Hamiltonian (8) can obtain with using the Fourier-Laurent expansion of eigenstates and 

 1,1SU generators in terms of unknown c  number parameters ix with 1,2,...,i k . It means, one can 

consider the eigenstates as [23-24]: 

1 2

1 2 1 21 2; ... ... ...                  ,                                                       (9)k

k k

i

nn n

s n n n k n n n

n Z

k n LM a a a x x x S S S lw    





  

Due to the analytical behavior of wave functions, it suffices to consider ix near zero. With using the 

commutation relations between the generators of (1,1)SU Algebra, i.e. Eq.(7), wave functions can be 

considered as: 

1 2
; ...            ,                                                                                                 (10)

ks x x xk n LM NS S S lw    

   

where N is the normalization factor and 

2 2
( ) ( )        ,                                                                                                (11)

1 1i

s d
x

s i d i

c c
S S s S d

c x c x

  
 

 
 

The c-numbers 𝑥i are determined through the following set of equations: 

2 2

2 2

1 5
( ) ( )

22 2  -                                  for i=1,2,...,k                                      (12)   
1 1

s s d

i ji s i d i i j

gc gc

x c x c x x x

 



 

 
  


ò

 

Eigenvalues of Hamiltonian (8), i.e. ( )kE , can be expressed as [23-24]: 

( ) ( ) 0 0 2 2

1 1

1 1 5
( 3) ( 1)              ,           [ ( ) ( )]                            (13)

2 2 2

k k

s s dE h L L c c                  

Which 
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( )

 1

  ,                                                                                                                                     (14)
k

k

i i

h
x





  

The quantum number k, is related to total boson number N, by 

2 sN k      

To obtain the numerical results for ( )kE , we have followed the prescriptions have introduced in Refs.[23-

24], namely a set of non-linear Bethe-Ansatz equations (BAE) with k  unknowns for k  pair excitations 

must be solved. To this aim we have changed the variables as:  

2
( 1   [23-24])                       c = 1                       ys

i d i

d

c
g keV c x

g c


   ò  

so, the new form of Eq.(12) would be: 

2

2

1 5
( ) ( )

22 2  -                                  for i=1,2,...,k                                          (15)
1 1

s

i ji i i i j

c

y c y y y y

 



 

 
  


ò

 

We have solved Eq. (15) with definite values ofc and for 1i  to determine the roots of Beth-Ansatz 

equations (BAE) with specified values of
s and , similar to procedure which have done in Refs.[23-24]. 

Then, we have used the “Find root” in the Maple17 to get all
'

jy s. We carry out this procedure with different 

values of c and  to provide energy spectra (after inserting and ) with minimum variation as compared 

to the experimental counterparts; 

2 1/2
exp

, 

1
(  ( ) ( )  )cal

tot i tot

E i E i
N

    

Which totN is the number of energy levels where are included in extraction processes. We have extracted 

the best set of Hamiltonian’s parameters, i.e.  and , via the available experimental data [31] for excitation 

energies of selected states, 1 1 1 2 2 20 ,2 ,4 ,0 ,2 ,4     
and etc, e.g. 12 levels up to 42 , or two neutron separation 

energies. In summary, we have extracted  and externally from empirical evidences and other quantities 

of Hamiltonian, e.g. c and would determine through the minimization of s . The results for different 

parameters of transitional Hamiltonian in the IBM-1 version are presented in Table 1 The results suggest a 

combination of the vibrational and gamma unstable symmetries must be used to explore the experimental 

energy spectra for 190 Hg nucleus. 

2.2. ( 2)B E Transition 

Electric multiple moments are measures of the charge distribution of nuclear states and especially of their 

deviation from spherical. The reduced electric quadrupole transition probabilities, ( 2)B E , are considered 

as the observables which as well as quadrupole moment ratios within the low-lying state bands prepare more 

information about the nuclear structure. The E2 transition operator must be a Hermitian tensor of rank two 
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and consequently, number of bosons must be conserved. With these constraints, there are two operators 

possible in the lowest order, therefore the electric quadrupole transition operator employed in this study is 

defined as [7], 

( 2) † † (2) † (2)
2 2

ˆ ˆˆ ˆ [   ]  +  [ ]                      ,                                                     (16)ET q d s s d p d d  
     
 

  

2q is the effective quadrupole charge, p2 is a dimensionless coefficient and
† †( )s d represent the creation 

operator of ( )s d boson. The reduced electric quadrupole transition rate between i fI I states is given by:
 

2

( 2)
( 2; )         ,                                                                            (17)

2 1

f i

i f

i

I T E I
B E I I

I
 


  

To analyze the B(E2) transition ratios for isotopic chain, we have calculated the matrix elements of T(E2) 

operator between considered states, then with comparing the results with experimental counterparts[31], we 

can extract 2 2( , )q p quantities. To this aim and also to simplify the description, we have followed the method 

introduced in Refs.[23-24] and in the fitting procedures, these parameters would be described as a function 

of only, total boson number ( )N .  

3. THEORETICAL RESULTS FOR 

ENERGY LEVELS AND TRANSITION 

PROBABILITIES OF 190HG  

Investigations of experimental energy spectra 

which have done in Refs.[9-20], propose the 

configuration mixing of spherical and axially 

deformed symmetries in the 190Hg nucleus.  As a 

results of other theoretical predictions and 

experimental evidences, one may expect a O(6)-

like structure for Hg isotopic chain which are 

located in the oblate to prolate transitional region. 

The existence of some excited levels between the 

states of ground band, intruder states, suggest the 

effect of spherical symmetry together dominant 

O(6) structure. To this aim and consider the both 

shape coexistence and phase transition 

phenomena, we have used a transitional 

Hamiltonian which include both U(5) and SO(6) 

symmetries to describe 190Hg nucleus.   

If we consider cs = 1 which comes from this idea 

that Hg isotopes are located in or near the critical 

point of oblate to the prolate transitional region 

and therefore correspond with SO(6) limit, and 

then extracted other parameters of Hamiltonian, 

the maximum deviation in comparison with 

experimental values are yield as have presented in 

Tables1. The results suggest a combination of the 

vibrational and gamma unstable symmetries must 

be used to explore the experimental energy 

spectra for 190 Hg nucleus. To get best 

combination of these symmetries, we have 

changed the cs values in the 1 to 0.2 region and σ 

values define the best choice of the weight of each 

symmetry.  

Table 1. Parameters of IBM-1 transitional Hamiltonian for 
190Hg. All quantities (except cs) are in keV. 

cs ε δ γ σ 

1 500 29.75 -0.95 449 

0.9 500 28.65 -1.36  415 

0.8 500 27.66 -1.73 390 

0.7 500 26.78 -2.06 374 

0.6 500 26.53 -2.34 367 

0.5 500 25.39 -2.58 361 

0.4 500 24.86 -2.78 360 

0.3 500 24.45 -2.93 362 

0.2 500 24.16 -3.04 363 

 

The best agreement of theoretical predictions with 

experimental values achieved by cs ≈ 0.4. This 
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result confirm our idea for the combination of 

symmetries and therefore, spherical and axial 

deformed shapes coexistence in 190Hg. 

On the other hand, the electromagnetic transition 

rates make it possible to test the wave functions 

which suggested by considered model together 

the accuracy of transition operators. We have 

considered quadrupole transition rates which have 

experimental counterpart. To this aim and by 

using Eqs.(16-17), we have calculated the 

expectation value of transition operator between 

selected states and then, we have extracted q2 and 

p2 quantities in comparison with empirical values.  

Theoretical predictions together their 

experimental counterparts are presented in Figure 

2.  

The best agreement of theoretical predictions with 

experimental values achieved by cs ≈ 0.4. This 

result confirm our idea for the combination of 

symmetries and therefore, spherical and axial 

deformed shapes coexistence in 190Hg. 

On the other hand, the electromagnetic transition 

rates make it possible to test the wave functions 

which suggested by considered model together 

the accuracy of transition operators. We have 

considered quadrupole transition rates which have 

experimental counterpart. To this aim and by 

using Eqs.(16-17), we have calculated the 

expectation value of transition operator between 

selected states and then, we have extracted q2 and 

p2 quantities in comparison with empirical values.  

Theoretical predictions together their 

experimental counterparts are presented in Figure 

2.  

 

Figure 1. Energy spectra (in keV) and transition probabilities (in W.u.) of 190Hg nucleus which are determined by for cs=0.4 as the 

more exact condition. Also, the parameters of E2 transition operator are q2 = 1.844 and p2 = - 0.279 (in W.u.). Experimental 

values are taken from [31]. 

The IBM-1 results for different energy levels and 

transition probabilities are in good agreement 

with experimental evidences. Also, deviation 

from the first approximation which suggest cs=1, 

e.g. completely correspond with SO(6) dynamical 

symmetry limit, confirm the shape coexistence 

and therefore, symmetry combination in this 

nucleus. the Hg isotopic chain expect to be 

located in and near the critical point of prolate to 

oblate transitional region. The results which offer 

the role of spherical symmetry in this isotopic 

chain and consequently the combination of these 

two symmetries, not absolutely but likely, may 

suggest a shape coexistence-like meaning. Also, 
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if we consider that, interplay between the 

stabilizing effect of a closed shell on one hand and 

the residual interactions between protons and 

neutrons outside closed shells on the other hand, 

leads to the concept of ‘shape coexistence’, where 

normal near-spherical and deformed structures 

coexist at low energy, our result show the similar 

competition between these two interactions[32-

36]. 

On the other hand, the great uncertainty of 

theoretical prediction in the excited energy levels 

force us to consider extended version of IBM. As 

have expressed in different lectures such [20-30], 

we expect 2p-2h configuration in the Hg isotopic 

chain and in such conditions, the IBM-2 version 

are usual method which we would consider in the 

next studies. 

4. CONCLUSIONS 

A (1,1)SU -based transitional Hamiltonian in 

the interacting boson model has been used to 

determine the energy spectra and quadrupole 

transitional rates of 190 Hg nucleus. 

Parameters of Hamiltonian and transition 

operator are determined by Bethe-Ansatz 

technique and experimental data. The control 

parameter of model describes the effect of 

each symmetry and suggest a combination of 

spherical shape together deformed one in this 

nucleus. This formalism would extend in 

future studied for Hg isotopic chain via other 

versions of IBM to consider the effect of other 

degrees of freedom. Also, obtained results in 

this study confirm that this technique is worth 

extending for investigating the nuclear 

structure of other nuclei existing around the 

mass of A ~ 200. 
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