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Abstract: In this paper, the new weighted inequalities were derived by p-distance which is similar to the given
inequality for the potential operator defined in [1]. The results presented here would provide extensions of those
given in earlier works.

AMS Subject Classication: 31B10, 26A33, 35B45, 35B65, 46E30, 43A15, 47B37.
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Izotropik Olmayan Potansiyel Teorik Esitsizlik

Ozet: Bu yazida, [1] 'de tanimlanan potansiyel operatdr igin verilen esitsizlige benzer B-mesafesi ile tiiretilen
yeni agirhikli esitsizlikler elde edilmistir. Burada sunulan sonuglar daha onceki ¢alismalarda ki verilenleri
destekler.

Anahtar Kelimeler: Adams iz esitsizligi, Stummel siifi, Morrey uzaylari, izotropik olmayan mesafe.

1. INTRODUCTION

The following inequality has been obtained by D. Adams [1];

Let V be anon negative function in the Morrey space L, , (R”),/i >n—-p.

For Yu e Cg’(R”), gqg= pi,1< p < n, the following inequality is valid;

(1o vtk <co. 20 el

where L, , (R”) is Morrey space.

Morrey spaces , Lp‘ . » were introduced by Morrey in 1938 in connection with certain problems in

elliptic partial differential equations and calculus of variations [7]. Later, Morrey spaces found important
applications to Navier Stokes and Schrodinger equations, elliptic problems with discontinuous

coefficients and potential theory. An exposition of the Morrey spaces can be found in the book [5].
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Morrey spaces were widely studied during last decades, including the study of classical operators
of harmonic analysis such as maximal, singular and potential operators.
Definition 1.1 Let 1< p < oo, 0< A <n. We define the Morrey space , LM( “), as the set of

finite normed locally integrable functions

2
e p
Ifl,,, = suw t7[f]

xeR" t>0 LD(B(X’I)) , (2)

Note thatif p=1, L, , (R”) Morrey space is defined as follows;

LR ={F et R,

3
f(y)dy < +oo}, 0<Ai<n.

1
- P r jxfy\<r

xeRn,r>0

According to the definition of L_ ., the parameter p describes the local integrability, while 4

pA?
describes the global integrability. Unlike L, ; with p >1, itis not the case that we can characterize L, ,

in terms of the Littlewood-Paley decomposition. For this reason, the singular integral operators like the
Riesz transforms are not bounded on L, , . Nevertheless , this space can be compared with other function

spaces. This is what we do in the present paper.

This paper aims at using /3 -distance establish an imbedding similar to (1), assuming more general
hypotheses on the function V .

Firstly, we define a non isotropic distance or S -distance in n dimensional Euclidean space R".

It is well known that the families of integral operators with positive kernels have many
applications in different problems, in the theory of differantial equation, harmonic analysis etc. Integral
operators depending on difference between the variables have princibal aplications. For multidimensional
case, this type of kernels are functions of euclidean distance between two points.

Let ﬁ=(ﬂl,ﬁ2,...,ﬂn),ﬁkz%, k=12,...,n and |B|=B+pB,+...+B,. For
x=(x,...,x,) and y=(y,,...,y,)

1 El 1 1A
|X—y|ﬁ A A P A A D L

is the non-isotropic distance or f -distance x and y, given in [2], ([10]—[13]),[17].

For any positive t, it is easy to see that this distance has the following properties of homogeneity
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[

This equality gives us that the non-isotropic £ -distance is the order of a homogeneous function

18l

1 1 \n 18]
t/1x |4 +...+‘tﬂ”xn ﬁn] =t”|x|ﬁ,t>0. (4)

.
n
Thus the non-isotropic / -distance has the following properties:

1x,=0x=6,0=(00,...,0)
P
2.‘t x‘ﬂ—|t|n|x|ﬁ.

3x+ y|ﬂ < k(|x|ﬁ +|y|ﬂ),

|2
1

where k = Z[Hﬁ”‘”Jn , Bin =MN{B, By B

Here we consider /3 -spherical coordinates by the following formulas:
- 253
X = (pCOS(/’1) t

X, = (psin g, cos g, )2
: ©)
x,_, = (psin ¢, sin p,...sin p,_, cosg, , ) n
x, = (psin ¢ sin @,...sin p,_,sin g )/
where 0<¢,,¢,,...,¢, , <7 and 0< ¢, , <2r.

2/

By using /3 -spherical coordinates, we get that |X|ﬂ =p".

Firstly, we will define the 82— ball B,(x, r) generated by the /3 — distance. For a positive r and

any xeR", the open /3 -ball with radius r and a center X as

B,(x,r)= {J:|x—y|ﬁ < r}
2. PRELIMINARY RESULTS

In this section, we introduce Morrey space Lfi (R“) and Sf , We give some results relating them.
The Stummel class S, was introduced by Ragusa and Zamboni [8]. This class is a class of functions

related to local behavior of mapping by generalized fractional integral operators and the generalized
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Morrey spaces are classes of functions related to local behavior of Hardy-Littlewood maximal
function.Now, we introduce S class depending on /3 -distance as follows.

Definition 2.1 Let 1< p<n,

[f(y)

T dy =#,(r)—>0forr - 0. (6)

n

— | .
s/ =fel™R"):sup
ver? <" (n-p
g

Lf,l( ”) Morrey space is defined as follows.

Definition 2.2 Morrey space Lf,l (R”) generated by /3 -distance;

L R")

{1 Rl o

sup (y)|dy <+4o00.0<A<n

xeRn,r>O

L f
2] -[x—y <r
=i x=Ylg

where A >n—-p.

The next lemma gives a relation between the space Sf and Lf ;-

Lemma 2.1 If V belongs to Lfl( ”), then V. belongsto S% , and

J

V)L L S P

\
T ey

where (n -p

)2|rl18| </12|ﬂ|<n2|ﬂ|.

n n

2
Conversely, if V belongsto S” and 77,(r):r " ,then V belongsto L’ \ﬂ\ (R”)

1,(n-p+a)

Proof. About the first part, we have
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I [V(Y)| dy

|x—y| 5 <r _\2lp]
=yl

IS V(y)

a7 B

2 2 2
py! Gep

<2 2Ny o

()2

=r " C(n, p, A, ﬂ)|[\/|| (w)
The second part is obvious, indeed

S (1) BN
| .

(
I‘ N V(yJdy<r ) \ﬁ\ dy <Cr
x=y|g<r X y\ﬂ | _y|

Lemma 2.2 Let V e S/ Then there exists a positive constant C, = C, (n) such that
r
77ﬁ(r)S Cdnp(i) , I >0.

Proof. Let m=m(n)eN, X,,..., X, € B,(X,, ) such that

We have

and
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VL

. = )
] J‘X"_yﬁ”i_yﬂ'Xi_yﬂ<2|Xo—3/|(n_p)2f ’
B
+J.\ iy < M) 77
Xg y‘ﬁ XJV 2|0_y|(n p)T
B
=A +B

Since

el MO

r
dy<n,(—=
‘Xry‘;fi *p)M y 77,3(2)

Z‘X,——
B,-<f‘ M)

Iy

B

then, we get the conclusion.

The following definition gives a generalization of Sf .

Definition 2.3 Let ¢ ]O +oo[ ]0 +oo[ be a non-decreasing continuous function with

, 1ifand only if there exists a non

lim (p( ) 0.Wesay that V :R" — R belongs to the class Sp
t—0

decreasing function &, : ]0,+0o[ — J0,+o0[ with lim &,(r)=0 such that
r—0

sup ( [\)/ﬂy)I dy<&,(r)l<p<n. (7
eyl ol

In order to show that a function V € S'B belongs to an appropriate S” , we give the following

p.p?
lemma.

Lemma23LetV e Sﬁ such that 3y € J0,1[: It 757 (t)dt < +o0, where nﬁ(t) is the

Stummel modulus generated by /3 -distance of V . Then V € S” , and

px’7ﬂ
I _ [\z/ﬁ(y)| dy < 42,(r), (8)
Py (x—y] )
|X y|ﬁ " Mg X y|,3

where
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J.—lly

Proof. Using Lemma 2.2, we can obtain

| V(y) _& V(y)

. dy —ZI dy
By xey]) R ey (k)

r -7
& r r
: ’7( j”( ﬂ
;g; B 2k i B 2k 1

1-y
e r
o olz)]

The last series converges observing that

+o I
It’l r(Odt =Y [ttt
k=0 ok+1
7 5k sz
~ r 2
2Ejnl=)) 51

3. MAIN RESULTS

In this section ,under the more general hypotheses for function V , we will obtain embeddings
like (1) using p -distance.

Firstly, we need the following definitions:

Let f and h be measurable functions such that f e L'1°°(R") and h>0, we set the fractional
integral generated by /3 -distance of order p as

1002 [y ®
x=yly

and we get generalized fractional integral generated by £ -distance;
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|ﬁ

(=, gy w)
x—y" e h(x-y],)

The important properties of the fractional integrals, their generalizations were studied by many authors.
We refer to papers [6] —[13], [17].

Theorem 3.1 Let V € S/ with ¢(t) and &,(t) as in Definition 2.3. Then, for any o < ]0,1],

there exists a non-decreasing positive function G(t) such that

17 (f°)
J.Bﬂ(y,r)G ” f ”z (X)dX < é:ﬁ (I’) (11)

forall f eC{f( ”) ,where Bﬁ(.,r) is S —ball with radius r containing the support of f. Also

G(t)

lim ——= = +oo. (12)

Proof. For £ >0 and 0 < o <1, we obtain,

) olx-y],)

x=y77 s (], ol v, )

dy

|s¢g(f pXX) = J.X_yﬁ<g

f p
+J‘\x—y\ > | Z(ﬂy)| dy (13)
ey o (- y,)

(n-p22!
Letting ¢ " ¢(s)=d(g) , we choose

gzq)_l( 1 J

ﬁ )

I p.o [f Pj

a choice which makes the two terms on the right hand side of (13) equal.

From (13), we obtain
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17 f°(x) 9
<

p.p°
24|

R (n-p)2A1
o 110 o| o (i
17 (t7) ¢ 17 (t7)

If
V/(t): 2‘25‘
N A e
o) e {‘D (tﬂ
and
G(t)=y(t)
we have

£l

G['f¢a<f pqs 12,(1°)

If11

Finally, using Fubini’s theorem

Lﬁu,rf{M] 1V (x)] dx

I71;

1
<— (yr)lﬁw(f Px) |V (x)] dx
], "
_ 1 | f(y)I°
- ”f”D J.Bﬂ(y,r) IR” (nfp)@
: k=l " ol
_ 1 V(x|
IIfIIEIR” by o' fx—y )
|X_ y|ﬁ P\X— y|p
So (11) was obtained.

(12) is easily seen to be equivalent to

p
p

dy

dx

V (x)dx

[(y) dy <&,(r)

333
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1 (”’p@ T -1
T ) I () I 14)
s—0 S
(-2
Choosing H(t)=t " @(t),(14) can be rewritten as
-1
lim H(CD—(S)) = +o00. (15)
s—0 S
since fim HO@ = lim 509" (s) =0 we obtain (15).
H(s)

p/p
Lemma 3.1 Let h: ]0,4-00[ — J0,+o0[ such that J‘:[h(t)]

dt <+ (p :i.+l:1).Then
t P p

17 (f)<C(n, p, diam(sptf ), h)|| L p)]%
for all fecg°( ”).

Proof. Using the Holder inequality, we get

1

1()I0°(x-y],)

1

oyhe(x-y,)

() =],

dy

1

p p

depl o)

ﬂ(y,r) |X— y|,8

where B,(y,r)> sptf.

Corollary 3.1 Under the hypotheses of Theorem 1 and for all u e Cg;°( ”), letting

on

1p(t)°
[leth”

dt < +o0, we get

IBﬂ(y'r)G[ﬂ}v (x)dx < C(n, p, diam(sptu), @), (r) (16)

[vul;

where B, (y,r)> sptu .

Proof. Using Lemma 2.1 and Theorem 3.1, we have the following inequality
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lulc(n)1Z(vul)

Remark 3.1 If we choose the function ¢“ (t) with a more general non-decreasing function
&2 ]0,400[ = J0,400] such that

lim 5(t)=0, Iim o) 0,

t—0 t—0 (t)

o(t)
5(t)

is non-decreasing, where go(t) is as in Definition 2.3, the previous results are also valid.

Proposition 3.1 Let V € S# .V 20,0 0,1, y = and assume that

+1
p

l’[ﬂﬂ(:)]l_y dt < +o0 17)

Then

VeSs (18)

L

and for every U e Cg"( ”), there exists a non decreasing positive function G(t) such that

juf*
Lﬁ(y,r) [vul’ (x)dx < Cln, p,m, Ju, r) (19)
p
where B,(y,r)> sptu and
uy(r)= gjt‘lnl_y(t)dt. (20)
B C ) B

Now we give an example of a function f €S/, f >0.Butfor 2>n—2,we choose f ¢L7,.

Example 3.1 Let yg (y) be the characteristic function of B and

1
T 1 (),
(3 loglx],

where B, (0,5) the 3 —ball centered in 0 and radius & = €. We obtain that the function
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7,(r)=sup [ j<yy|2_2 .

xR \x—y\ﬂ<r X

is such that

(i) lim r077,(r) =0

1/4
m)ﬂ”ﬂ;p)

dp < +oo,

Proof. For xeR" and r > 0, we obtain

1
J‘\x—y\ <2 n-2 s A8 (y)dy
71yl Ix =1, " loglyl,

1

2 n-2
y|ﬁ|x_y|/3

o TR

d
Iyﬂ<xyﬁ<r |0g|y|ﬂ‘6 2e(y)dy

1
vl x5 logly,

= xs(Y)dy = A +A,

For A, letting & = min (r,5)

1

(y)dy

J-yﬂ<xy/),<r

2 n-2 6 s
y|/;|x_ y|/5' ‘Iog|y|ﬂ‘

1 1

< <rﬁzs(>’)dy =Cln)——.

¥, |y|ﬂ Iog|y|ﬂ (-log o)
and for A, considering that the function m is decreasing in b,efs[, we obtain ;
A <] 1 = 2s(y)dy
ﬂx—y‘ﬂ<r;mﬂx—)"/3<‘y‘ﬂ<‘s} y|2|x — y|nﬂ—2 |Og|y|ﬂ
1
_ d
J.ﬂx—yﬂ<r}mﬂx—y5<Yﬂ<5}|y|;|x — y|nﬁ—2 IOg|y|ﬁ o
dz 1

< Jfy el

————FF =C(n .
2|, (~log|] ,)° ( )(— log o)’

Then we have
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1

n,(r)< L(r)EZC(n)(_IOT‘)S.

Because |lim L(r) =0 we get (i).
r—-0

Only considering r < 9,

1 1

J'rL(p)dp Sjrip)dp
° p ° p
= (zc(n))ijormdp
0
-y — <t
(~log r)a

So, we have proved (ii).

Now, for 4 >n—2, we prove that the function f ¢ Lf’l.

Fore >0,4 =n-2+¢&, the following quantity is unbounded.

1 I 2s(Y) _ c(n) [ P
n-2+¢ r 6 n-2+¢ 20 6
r By )|y|;‘log|y|ﬂ‘ r ° p*(=log p)
C(n) J-r dp
2"2r° %5 (~log p)° p
C(n) 1

1

1
52"2r% | (—logr)® (—log (1 r)° '
2

Remark 3.2 Throughout this study, if we choose g, =4, =..= 3, = % then we have the conclusions

of [8].
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