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ON ALMOST α-PARA-KENMOTSU MANIFOLDS SATISFYING
CERTAIN CONDITIONS

I. KÜPELI ERKEN

Abstract. In this paper, we study some remarkable properties of almost α-
para-Kenmotsu manifolds. We consider projectively flat, conformally flat and
concircularly flat almost α-para-Kenmotsu manifolds (with the η-parallel ten-
sor field φh). Finally, we present an example to verify our results.

1. Introduction

The study of almost paracontact geometry was introduced by Kaneyuki and
Williams in [7] and then it was continued by many other authors. A systematic
study of almost paracontact metric manifolds was carried out in paper of Zamkovoy,
[17]. However such manifolds were studied earlier, [1], [3], [4], [11]. These authors
called such structures almost para-coHermitian. The curvature identities for dif-
ferent classes of almost paracontact metric manifolds were obtained e.g. in [5], [6],
[13], [17].
Considering the recent stage of the developments in the theory, there is an im-

pression that the geometers are focused on problems in almost paracontact metric
geometry which are created ad hoc.
Almost (para)contact metric structure is given by a pair (η,Φ), where η is a 1-

form, Φ is a 2-form and η∧Φn is a volume element. It is well known that then there
exists a unique vector field ξ, called the characteristic (Reeb) vector field, such that
iξη = 1, iξΦ = 0. The Riemannian or pseudo-Riemannian geometry appears if we
try to introduce a compatible structure which is a metric or pseudo-metric g and
an affi nor φ ((1, 1)-tensor field), such that

Φ(X,Y ) = g(φX, Y ), φ2 = ε(Id− η ⊗ ξ). (1.1)
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We have almost paracontact metric structure for ε = +1 and almost contact metric
for ε = −1. Then, the triple (φ, ξ, η) is called almost paracontact structure or
almost contact structure, resp.
Combining the assumption concerning the forms η and Φ, we obtain many differ-

ent types of almost (para)contact manifolds, e.g. (para)contact if η is contact form
and dη = Φ, almost (para)cosymplectic if dη = 0, dΦ = 0, almost (para)Kenmotsu
if dη = 0, dΦ = 2η ∧ Φ.
Classifications are obtained for contact metric, almost cosymplectic, almost α-

Kenmotsu and almost α-cosymplectic manifolds, e.g [9], [10], for paracontact case
[8].
The projective curvature tensor is an important tensor from the differential geo-

metric point of view. Let M be a (2n+ 1)-dimensional semi-Riemannian manifold
with metric g. The Ricci operator Q of (M, g) is defined by g(QX,Y ) = S(X,Y ),
where S denotes the Ricci tensor of type (0, 2) on M . If there exists a one-to-
one correspondence between each coordinate neighborhood of M and a domain
in Euclidian space such that any geodesic of the semi-Riemannian manifold cor-
responds to a straight line in the Euclidean space, then M is said to be locally
projectively flat. For n ≥ 1, M is locally projectively flat if and only if the well
known projective curvature tensor P vanishes. Here P is defined by [12]

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y,Z)X − S(X,Z)Y ] (1.2)

for all X,Y, Z ∈ T (M), where R is the curvature tensor and S is the Ricci tensor.
In fact M is projectively flat if and only if it is of constant curvature [16]. Thus

the projective curvature tensor is the measure of the failure of a semi-Riemannian
manifold to be of constant curvature.
In semi-Riemannian geometry, one of the basic interest is curvature properties

and to what extend these determine the manifold itself. One of the important
curvature properties is conformal flatness. The conformal (Weyl) curvature tensor
is a measure of the curvature of spacetime and differs from the semi-Riemannian
curvature tensor. It is the traceless component of the Riemannian tensor which has
the same symmetries as the Riemannian tensor. The most important of its special
property that it is invariant under conformal changes to the metric. Namely, if
g∗ = kg for some positive scalar functions k, then the Weyl tensor satisfies the
equation W ∗ = W . In other words, it is called conformal tensor. Weyl constructed
a generalized curvature tensor of type (1, 3) on a semi-Riemannian manifold which
vanishes whenever the metric is (locally) conformally equivalent to a flat metric;
for this reason he called it the conformal curvature tensor of the metric. The Weyl
conformal curvature tensor is defined by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y,Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY ] +
r

2n(2n− 1)
[g(Y,Z)X − g(X,Z)Y ], (1.3)
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for all X,Y, Z ∈ T (M), where R is the curvature tensor, S is the Ricci tensor and
r = tr(S) is scalar curvature [15].
A necessary condition for a semi-Riemannian manifold to be conformally flat is

that the Weyl curvature tensor vanish. The Weyl tensor vanish identically for 2
dimensional case. In dimensions ≥ 4, it is generally nonzero. If the Weyl tensor
vanishes in dimensions ≥ 4, then the metric is locally conformally flat. So there
exists a local coordinate system in which the metric is proportional to a constant
tensor. For the dimensions greater than 3, this condition is suffi cient as well. But
in dimension 3 the vanishing of the equation c = 0, that is,

c(X,Y ) = (∇XQ)Y − (∇YQ)X − 1

2(2n− 1)
[(∇Xr)Y − (∇Y r)X],

is a necessary and suffi cient condition for the semi-Riemannian manifold being
conformally flat, where c is the divergence operator of C, for all vector fields X
and Y on M . It should be noted that if the manifold is conformally flat and of
dimension greater than 3, then C = 0 implies c = 0 [15].
The concircular curvature tensor C̄ of a (2n+1)-dimensional manifold is defined

by

C̄(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
[g(Y,Z)X − g(X,Z)Y ] (1.4)

for all X,Y, Z ∈ T (M), where R is the curvature tensor and r = tr(S) is scalar
curvature [14], [16]. For n ≥ 1, M is coincular flat if and only if the well known
coincular curvature tensor C̄ vanishes.
The paper is organized in the following way.
Section 2 is preliminary section, we remember the class of almost paracontact

metric manifolds which defined by

dη = 0, dΦ = 2αη ∧ Φ, (1.5)

where α is a function. These manifolds are called almost α-paracosymplectic
[8]. They contain properly almost paracosymplectic, α = 0, and almost α-para-
Kenmotsu, α = const. 6= 0 manifolds. In this section, we remember basic properties
of such manifolds.
Section 3 and 4 are devoted to properties of almost α-para-cosymplectic and

almost α-para-Kenmotsu manifolds. Section 5 devoted to almost α-para-Kenmotsu
manifolds with the η-parallel tensor field φh.
In Section 6, 7 and 8 we study, respectively, projectively flat, conformally flat

and concircularly flat almost α-para-Kenmotsu manifolds (with the η-parallel tensor
field φh). Finally, we present an example to verify our results.

2. Preliminaries

Let M be a (2n+ 1)-dimensional differentiable manifold and φ is a (1, 1) tensor
field, ξ is a vector field and η is a one-form on M. Then (φ, ξ, η) is called an almost
paracontact structure on M if
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(i) φ2 = Id− η ⊗ ξ, η(ξ) = 1,
(ii) the tensor field φ induces an almost paracomplex structure on the distrib-

ution D = ker η, that is the eigendistributions D±, corresponding to the
eigenvalues ±1, have equal dimensions, dimD+ = dimD− = n.

The manifold M is said to be an almost paracontact manifold if it is endowed
with an almost paracontact structure [17].
Let M be an almost paracontact manifold. M will be called an almost paracon-

tact metric manifold if it is additionally endowed with a pseudo-Riemannian metric
g of a signature (n+ 1, n), i.e.

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ). (2.1)

For such manifold, we have

η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0. (2.2)

Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ by

Φ(X,Y ) = g(φX, Y ), (2.3)

usually called fundamental form. For an almost α-paracosymplectic manifold, there
exists an orthogonal basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} such that g(Xi, Xj) = δij ,
g(Yi, Yj) = −δij and Yi = φXi, for any i, j ∈ {1, . . . , n}. Such basis is called a
φ-basis.
An almost paracontact metric manifold is called Einstein if its Ricci tensor S

satisfies the condition
S(X,Y ) = ag(X,Y ).

On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by

N (1)(X,Y ) = [φ, φ] (X,Y )− 2dη(X,Y )ξ,

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X,Y ) = φ2 [X,Y ] + [φX, φY ]− φ [φX, Y ]− φ [X,φY ] .

If N (1) vanishes identically, then the almost paracontact manifold (structure) is
said to be normal [17]. The normality condition says that the almost paracomplex
structure J defined on M × R

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),

is integrable.

3. Almost α-Paracosymplectic manifolds

An almost paracontact metric manifold M2n+1, with a structure (φ, ξ, η, g) is
said to be an almost α-paracosymplectic manifold [8], if

dη = 0, dΦ = 2αη ∧ Φ, (3.1)

where α may be a constant or function on M.
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For a particular choices of the function α we have the following subclasses,
• almost α-para-Kenmotsu manifolds, α = const. 6= 0,
• almost paracosymplectic manifolds, α = 0.
If additionally normality condition is fulfilled, then manifolds are called α-para-

Kenmotsu or paracosymplectic, resp.

Definition 1. [8] For an almost α-paracosymplectic manifold, define the (1, 1)-
tensor field A by

AX = −∇Xξ. (3.2)

Proposition 1. [8] For an almost α-paracosymplectic manifold M2n+1, we have

i) Lξη = 0, ii) g(AX,Y ) = g(X,AY ), iii) Aξ = 0,

iv) LξΦ = 2αΦ, v) (Lξg)(X,Y ) = −2g(AX,Y ),

vi) η(AX) = 0, vii) dα = fη if n > 2 (3.3)

where L indicates the operator of the Lie differentiation, X, Y are arbitrary vector
fields on M2n+1 and f = iξdα.

Proposition 2. [8] For an almost α-paracosymplectic manifold, we have

Aφ+ φA = −2αφ, (3.4)

∇ξφ = 0. (3.5)

Let define h = 1
2Lξφ. In the following proposition we establish some properties

of the tensor field h.

Proposition 3. [8]For an almost α-paracosymplectic manifold, we have the follow-
ing relations

g(hX, Y ) = g(X,hY ), (3.6)

h ◦ φ+ φ ◦ h = 0, (3.7)

hξ = 0, (3.8)

∇ξ = αφ2 + φ ◦ h = −A. (3.9)

Corollary 1. [8]All the above Propositions imply the following formulas for the
traces

tr(Aφ) = tr(φA) = 0, tr(hφ) = tr(φh) = 0,

tr(A) = −2αn, tr(h) = 0. (3.10)

Proposition 4. [8]For an almost α-paracosymplectic manifold, we have

φ(∇φXφ)Y + (∇Xφ)Y = −2αη(Y )φX + g(αφX + hX, Y )ξ. (3.11)
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Theorem 1. [8] Let (M2n+1, φ, ξ, η, g) be an almost α-paracosymplectic manifold.
Then, for any X,Y ∈ χ(M2n+1),

R(X,Y )ξ = dα(X)(Y − η(Y )ξ)− dα(Y )(X − η(X)ξ) (3.12)

+αη(X)(αY + φhY )− αη(Y )(αX + φhX)

+(∇Xφh)Y − (∇Y φh)X.

4. Almost α-para-Kenmotsu manifolds

In this section, we give curvature properties of an almost α-para-Kenmotsu man-
ifold.

Theorem 2. [8]Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold.
Then, for any X,Y ∈ χ(M2n+1),

R(X,Y )ξ = αη(X)(αY +φhY )− αη(Y )(αX+φhX)+(∇Xφh)Y −(∇Y φh)X. (4.1)

Theorem 3. [8]Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold.
Then, for any X ∈ χ(M2n+1) we have

R(X, ξ)ξ = lX = −α2φ2X − 2αφhX + h2X − φ(∇ξh)X, (4.2)

(∇ξh)X = −α2φX − 2αhX + φh2X − φR(X, ξ)ξ, (4.3)

1

2
(R(ξ,X)ξ + φR(ξ, φX)ξ) = α2φ2X − h2X, (4.4)

S(X, ξ) = −2nα2η(X) + g(div(φh), X), (4.5)

S(ξ, ξ) = −2nα2 + trh2. (4.6)

5. Almost α-para-Kenmotsu manifolds with the η-parallel tensor
field φh

For any vector field X on M2n+1, we can take X = XT + η(X)ξ, XT is tan-
gentially part of X and η(X)ξ the normal part of X. We say that any symmetric
(1, 1)-type tensor field B on a semi-Riemannian manifold (M, g) is said to be a
η-parallel tensor if it satisfies the equation

g((∇XTB)Y T , ZT ) = 0,

for all tangent vectors XT , Y T , ZT orthogonal to ξ [2].

Proposition 5. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. If
the tensor field φh is η-parallel, then we have

(∇Xφh)Y = η(X)[−lY − α2φ2Y − 2αφhY + h2Y ]

−η(Y )[αφhX − h2X]− g(Y, αφhX − h2X)ξ, (5.1)

for all vector fields X,Y on M .
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Proof. If we suppose that φh is η-parallel, we have

0 = g((∇XT φh)Y T , ZT ) = 0

0 = g((∇X−η(X)ξφh)Y − η(Y )ξ, Z − η(Z)ξ)

0 = g((∇Xφh)Y, Z)− η(X)g((∇ξφh)Y, Z)− η(Y )g((∇Xφh)ξ, Z)

−η(Z)g((∇Xφh)Y, ξ) + η(X)η(Y )g((∇ξφh)ξ, Z) + η(Y )η(Z)g((∇Xφh)ξ, ξ)

+η(Z)η(X)g((∇ξφh)Y, ξ)− η(X)η(Y )η(Z)g((∇ξφh)ξ, ξ),

for all vector fields X,Y on M . After some calculations, we get

0 = g((∇Xφh)Y, Z)−η(Z)g((∇Xφh)Y, ξ)−η(X)g((∇ξφh)Y,Z)−η(Y )g((∇Xφh)ξ, Z).

By (3.9), we obtain

(∇Xφh)Y = η(X)(∇ξφh)Y − η(Y )(αφhX − h2X)− g(Y, αφhX − h2X)ξ.

Using the fact that (∇ξφh)Y = φ(∇ξh)Y and (4.3), we have the requested equation.
�

Proposition 6. An almost α-para-Kenmotsu manifold with the η-parallel tensor
field φh satisfies the following relation

R(X,Y )ξ = η(Y )lX − η(X)lY, (5.2)

where l = R(., ξ)ξ is the Jacobi operator with respect to the characteristic vector
field ξ.

Proof. With the help of the equations (4.1) and (5.1), we get (5.2). �
Theorem 4. Let (M2n+1, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. If the
tensor field φh is η-parallel, then ξ is the eigenvector of Ricci operator on M2n+1.

Proof. First, if we take the inner product of (5.2) with W , we have

g(R(X,Y )ξ,W ) = η(Y )g(lX,W )− η(X)g(lY,W ),

and then replacing X, W by ei in the last equation and taking summation over
i (Let {e1, e2, ..., e2n, ξ} be an φ-basis of the tangent space at any point of the
manifold), we find

2n+1∑
i=1

εig(R(ei, Y )ξ, ei) =

2n+1∑
i=1

εi[η(Y )g(lei, ei)− η(ei)g(lY, ei)]

for all vector fields X,Y on M . From the last equation, one can easily get

S(Y, ξ) = η(Y )tr(l) (5.3)

On the other hand, (5.3) can be written as

Qξ = tr(l)ξ.

So, this ends the proof. �
Using Theorem 9 and Theorem 13 of [8], we can give following corollary.
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Corollary 2. Let (M3, φ, ξ, η, g) be an almost α-para-Kenmotsu manifold. If the
tensor field φh is η-parallel then an almost α-paracosymplectic (κ, µ, ν)-manifold
always exist on every open and dense subset of M.

6. Projectively flat almost α-para-Kenmotsu manifolds (with the
η-parallel tensor field φh)

Theorem 5. A projectively flat almost α-para-Kenmotsu manifold (M2n+1, φ, ξ, η, g)
has a scalar curvature

r = −2ntr(φ(∇ξh)) + S(ξ, ξ)(2n+ 1). (6.1)

Proof. Let us suppose that almost α-para-Kenmotsu manifold is projectively flat. If
we take the inner product of (1.2) with W , we get

g(R(X,Y )Z,W ) =
1

2n
[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )].

Replacing W, X by ξ in the last equation and using (4.2), (4.5), we get

S(Y,Z) = 2n
(
−α2g(Y,Z) + 2αg(φY, hZ) + g(hZ, hY )

+g((∇ξh)Z, φY ) +
1

2n
η(Y )g(div(φh), Z)

)
. (6.2)

Considering the φ-basis and putting Y = Z = ei in (6.2), we obtain

2n+1∑
i=1

εiS(ei, ei) =

2n+1∑
i=1

εi2n
(
−α2g(ei, ei) + 2αg(φei, hei) + g(hei, hei)

+g((∇ξh)ei, φei) +
1

2n
η(ei)g(div(φh), ei)

)
r = 2n(−α2(2n+ 1)− 2αtr(φh) + tr(h2)− tr(φ(∇ξh))

+
1

2n
(g(div(φh), ξ)).

Now, using (3.10), (4.5) and (4.6), we get the requested equation. �

Theorem 6. A projectively flat α-para-Kenmotsu manifold (M2n+1, φ, ξ, η, g) is
an Einstein manifold.

Proof. If we take h = 0 in the proof of Theorem 5, we obtain S(Y,Z) = −2nα2g(Y, Z).
This means manifold is Einstein. �

Theorem 7. Let (M2n+1, φ, ξ, η, g) be an projectively flat almost α-para-Kenmotsu
manifold with the η-parallel tensor field φh. Then r = tr(l)(2n+ 1).
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Proof. Let us suppose that (M2n+1, φ, ξ, η, g) is projectively flat almost α-para-
Kenmotsu manifold with the η-parallel tensor field φh. If we take the inner product
of (1.2) with W , we get

g(R(X,Y )Z,W ) =
1

2n
[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )].

By setting W = X = ξ in the last equation and using Proposition 6 and Theorem
4, we obtain

g(R(Y, ξ)ξ, Z) =
1

2n
[S(Y,Z)− η(Y )S(ξ, Z)]

g(lY, Z) =
1

2n
[S(Y,Z)− η(Y )η(Z)tr(l)].

If we set Y = Z = ei in the last equation, we end the proof. �

7. Conformally flat almost α-para-Kenmotsu manifolds

Theorem 8. A conformally flat almost α-para-Kenmotsu manifold (M2n+1, φ, ξ, η, g)
satisfies the following

0 = tr (φ(∇ξh)) . (7.1)

Proof. Let us suppose that almost α-para-Kenmotsu manifold is conformally flat. If
we take the inner product of (1.3) with W , we get

g(R(X,Y )Z,W ) =
1

2n− 1
[g(Y,Z)g(QX,W )− g(X,Z)g(QY,W )

+S(Y,Z)g(X,W )− S(X,Z)g(Y,W )]

− r

2n(2n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )].

By setting W = X = ξ in the last equation and using (4.2), (4.5) and (4.6), we
obtain

S(Y,Z) = (2n− 1)(−α2g(Y,Z) + α2η(Y )η(Z)− 2αg(φhY, Z) + g(h2Y,Z)

−g(φ(∇ξh)Y,Z))− g(Y, Z)(−2nα2 + tr(h2) + η(Z)(−2nα2η(Y )

+g(div(φh), Y ) + η(Y )(−2nα2η(Z) + g(div(φh), Z)

+
r

2n
(g(Y,Z)− η(Y )η(Z)). (7.2)
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Considering the φ-basis and putting Y = Z = ei in (7.2), we get
2n+1∑
i=1

εiS(ei, ei) = r

=

2n+1∑
i=1

εi

{
(2n− 1)(−α2g(ei, ei) + α2η(ei)η(ei)− 2αg(φhei, ei)

+g(h2ei, ei)− g(φ(∇ξh)ei, ei))

−g(ei, ei)(−2nα2 + tr(h2) + η(ei)(−2nα2η(ei) + (div(φh), ei)

+η(ei)(−2nα2η(ei) + (div(φh), ei) +
r

2n
(g(ei, ei)− η(ei)η(ei))

}
.

Then by (3.10), (4.5) and (4.6)), we obtain

r = tr (φ(∇ξh)) .

�

8. Concircularly flat almost α-para-Kenmotsu manifolds (with the
η-parallel tensor field φh)

Theorem 9. A concircularly flat almost α-para-Kenmotsu manifold (M2n+1, φ, ξ, η, g)
has a scalar curvature

r = (2n+ 1)(S(ξ, ξ)− tr(φ(∇ξh)). (8.1)

Proof. Let us suppose that almost α-para-Kenmotsu manifold is concircularly flat. If
we take the inner product of (1.4) with W , we get

g(R(X,Y )Z,W ) =
r

2n(2n+ 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )].

By setting W = X = ξ in the last equation and using (4.2), we obtain

α2g(φY, φZ)− 2αg(φhY,Z) + g(h2Y,Z)− g(φ(∇ξh)Y,Z) (8.2)

=
r

2n(2n+ 1)
(g(Y, Z)− η(Y )η(Z)).

Considering the φ-basis and putting Y = Z = ei in (8.2), we get
2n+1∑
i=1

εi

(
− α2g(ei, ei) + α2η(ei)η(ei)− 2αg(φhei, ei) + g(h2ei, ei)

−g(φ(∇ξh)ei, ei)
)

=

2n+1∑
i=1

εi

(
r

2n(2n+ 1)
(g(ei, ei)− η(ei)η(ei))

)
.

Then by (3.10), (4.5) and (4.6), we obtain (8.1). �
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Theorem 10. A concircularly flat α-para-Kenmotsu manifold (M2n+1, φ, ξ, η, g)
has a scalar curvature

r = −2α2n(2n+ 1). (8.3)

Proof. If we take h = 0 in the proof of Theorem 9, we obtain the requested equation.
�

Theorem 11. Let (M2n+1, φ, ξ, η, g) be an concircularly flat almost α-para-Kenmotsu
manifold with the η-parallel tensor field φh. Then r = tr(l)(2n+ 1).

Proof. Let us suppose that (M2n+1, φ, ξ, η, g) is concircularly flat almost α-para-
Kenmotsu manifold with the η-parallel tensor field φh. If we take the inner product
of (1.4) with W , we get

g(R(X,Y )Z,W ) =
r

2n(2n+ 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )].

By setting W = X = ξ in the last equation and using Proposition 6 and Theorem
4, we obtain

g(R(Y, ξ)ξ, Z) = g(lY, Z) =
r

2n(2n+ 1)
[g(Y,Z)− η(Y )η(Z)].

If we set Y = Z = ei in the last equation, we end the proof. �

9. Example

Now, we will give an example of a 3-dimensional para-Kenmotsu manifold (α =
1).

Example 1. We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3, z 6= 0}
and the vector fields

X =
∂

∂x
, φX =

∂

∂y
, ξ = (x+ 2y)

∂

∂x
+ (2x+ y)

∂

∂y
+

∂

∂z
.

The 1-form η = dz defines an almost paracontact structure onM with characteristic
vector field ξ = (x+ 2y) ∂

∂x + (2x+ y) ∂∂y + ∂
∂z . Let g, φ be the pseudo-Riemannian

metric and the (1, 1)-tensor field given by

g =

 1 0 − 12 (x+ 2y)
0 −1 1

2 (2x+ y)
− 12 (x+ 2y) 1

2 (2x+ y) 1− (2x+ y)2 + (x+ 2y)2

 ,

φ =

 0 1 −(2x+ y)
1 0 −(x+ 2y)
0 0 0

 ,

with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z .
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Using (3.9) we have

∇XX = −ξ, ∇φXX = 0, ∇ξX = −2φX,
∇XφX = 0, ∇φXφX = ξ, ∇ξφX = −2X,
∇Xξ = X, ∇φXξ = φX, ∇ξξ = 0.

for α = 1. Hence the manifold is a para-Kenmotsu manifold. One can easily
compute,

R(X,φX)ξ = 0, R(φX, ξ)ξ = −φX, R(X, ξ)ξ = −X,
R(X,φX)φX = X, R(φX, ξ)ϕ̃X = −ξ, R(X, ξ)φX = 0,
R(X,φX)X = φX, R(φX, ξ)X = 0, R(X, ξ)X = ξ.

(9.1)

We have constant scalar curvature as follows,

r = S(X,X)− S(φX, φX) + S(ξ, ξ) = −6.

So, we conclude that M is a three dimensional projectively flat and concircularly
flat para-Kenmotsu manifold for α = 1.

References

[1] Bejan, C.L., Almost parahermitian structures on the tangent bundle of an almost para-
coHermitian manifold, In: The Proceedings of the Fifth National Seminar of Finsler and
Lagrange Spaces (Bra sov, 1988), 105—109, Soc. Stiinte Mat. R. S. Romania, Bucharest, 1989.

[2] Boeckx, E. and Cho, J. T., η-parallel contact metric spaces, Differ. Geom. Appl. 22, (2005),
275-285.

[3] Buchner, K. and Rosca, R., Variétes para-coKählerian á champ concirculaire horizontale, C.
R. Acad. Sci. Paris 285 (1977), Ser. A, 723-726.

[4] Buchner, K. and Rosca, R., Co-isotropic submanifolds of a para-coKählerian manifold with
concicular vector field, J. Geometry, 25 (1985), 164-177.

[5] Cappelletti-Montano, B., Küpeli Erken, I. and Murathan, C., Nullity conditions in paracon-
tact geometry, Diff . Geom. Appl. 30 (2012), 665-693.

[6] Dacko, P., On almost para-cosymplectic manifolds, Tsukuba J. Math. 28 (2004), 193-213.
[7] Kaneyuki, S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds,

Nagoya Math. J 1985; 99: 173-187.
[8] Küpeli Erken, I., Dacko, P. and Murathan, C., Almost α-paracosymplectic manifolds, J.

Geom. Phys., 88 (2015) 30-51.
[9] Öztürk, H., Aktan, N. and Murathan, C., Almost α-cosymplectic (κ, µ, ν)-spaces, Submitted.

Available in Arxiv:1007.0527 [math. DG].
[10] Öztürk, H., Murathan, C., Aktan, N. and Turgut Vanlı, A., Almost α-cosymplectic f-
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