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relation is expressed in the form R(x,y), where x and y are distinct generators, and R(:,:) is based on a fixed
cyclically reduced word R(a,b) involving both a and b. A directed graph is constructed for each such presentation,
where vertices correspond to generators and edges represent the relations. In previous research, Cihan

identified 35 families of digraphs satisfying |V(I)|=]A(l)|-1, of which 11 do not contain leaves. This paper
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Introduction

This paper focuses on a distinct category of finite connected
digraphs and their corresponding group presentations, in which
each relator is structured as R (x, y), where x and y are distinct
generators and R(:,-) is determined by some fixed cyclically
reduced word R (a, b) in the free group generated by a and b
that involves both a and b. Such groups have previously been
analyzed in the paper by Cuno and Williams [1].

A fundamental aspect of this study is the construction of a
group presentation from a digraph. Let A be afinite digraph with
a set of vertices V(A) and a set of directed arcs A(A). Each
vertex v € V(A) correspond to the generators x,, while each
arc (u,v) € A(A) correspond to the relators R(x,,x,).
Consequently, the group G (R) is defined by the presentation.

PA(R) = (x, (v €V() | R(xy %) ((wv) € A(A))).

A digraph group is defined as a group that is isomorphic to
G, (R) forsome A and R [1]. In 2020, the terminology of digraph
groups was first introduced by Cuno and Williams [1]. However,
the study of such groups predates this terminology, as several
previously explored group classes fall into the category of
digraph groups, even though they were not explicitly classified
as such. In particular, Cihan and Williams also examined the
Johnson and Mennicke digraph groups in [2].

Consider the free group with basis x, ..., x,_; and letw be
aword in the free group, wheren > 0. The shift, denoted by 8,
is the free group automorphism mapping x; = x;,4, with
subscripts mod n. Then is called a cyclic presentation, and we
write G, (w) for the corresponding cyclically presented group
[3].

If w involves exactly two generators then G,, (W) is a digraph
group by setting A to be a directed n-cycle, ie. V(A) =
{1,2,...,n}and A(A) = {(1,2),(2,3), ..., (n, D}.

demonstrates that, with two exception families, the rank of the associated groups is either 1 or 2.

Keywords: Digraph group, Pride group, Finite cyclic, Rank, Presentations.

Our focus will be on determining when digraph groups are
finite. It is well known that if a group is defined by a presentation
with more generators than relators, it must be infinite, which
can be verified by abelianizing the groups [3-4]. Therefore, we
will concentrate on cases where the number of relators is
greater than or equal to the number of generators (|V| < |4]).
The first case we consider is balanced presentations, where the
number of generators and relators is equal. Cuno and Williams
[1] studied digraph groups Gp(R) under the condition
|[V(T)| = |A(T)|, with the additional assumption that the
undirected graph is triangle-free (i.e., girth(I') > 4). In most
cases, they showed that the corresponding group Gr(R) is
either a finite cyclic group or infinite. Building on this, Cihan [5]
identified 35 digraph families satisfying |V (I')| = |A(T)| — 1,
of which 11 of them do not contain a leaf. In this paper, we aim
to characterize finite cyclic digraph groups within the case
|[V(T)| = |A(T)| — 1, specifically for digraphs without leaves.
Before formally defining these digraph classes, we first construct
graphs that meet the conditions outlined in [5].

Under these circumstances (i), (i), (iv), (v) in [5], there
are possible 11 digraph families without leaf as indicated in
Figure 1 [5].

We will begin by presenting the classes of digraphs in Figure
1 and stating the main theorem. Following this, we will provide
some remarks and lemmas that will be referenced throughout
the paper. Next, we will focus on proving whether the
corresponding groups are finite cyclic groups. For five of these
digraph families, we demonstrate that G, (R) is a finite and
cyclic group (i.e., rank(G,(R)) = 1), and in these cases, we
will determine the group’s order. In four of the families, we
establish that the rank of G, (R) is either 1 or 2.
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Figure 1. Classes of digraphs without leaf referred to in the statement of Main Theorem
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Figure 2. The digraph family that covers all possible digraphs

Main Theorem . Let A be a non-empty finite digraph
without leaf that the number of generators is equal to the
number of relators minus one (|V| =|A|—1) whose
underlying undirected graph has girth n (n > 4) and let
R(a, b) be a cyclically reduced word that involves both a
and b with exponent sums a and —f in a and b,
respectively where |a| > 2, |B] > 2|. If G,(R) is finite,
thena#0, B#0, (a,f)=1, a® =B %0, a*= bk in
K= (ab|R(ab)), Go(R) is non-trivial, and A is the
digraph in Figure 1.

a,, ares  a,, arcs

a arcs a,,arcs

13

of Main Theorem

It is important to note that these digraph families can
also be constructed using alternative notations. For
instance, the digraph (i) can be represented by the
sequence a4, as, ag, 7, A11, A14, A15 , but it is equally valid
to construct it as a,, a;, aq, @11, a45. The primary objective
in constructing these digraph families is to systematically
integrate the designated circle with an appropriate arc,
when applicable, as illustrated in Figure 2.

The possible arcs aiin Figure 2 in which case

0] a1, as, ds, 07, 11, 014, A15 G,(R) = |a:(l'm) — ﬁ(l'm)|

(i) ai, a3, as, as, 011, G14, 415 _
(I<2k) Ga(R) = |aminti=hntl=k=1B(y (m, 2k — ) — g(m, 2k — )|
(I>2k) Ga(R) = |qminten+l=k=1B( (m,1 - 2k) — g(m,1 — 2k)|
(/=2k) Ga(R) = |a™ K (@™ — pm™)|

(i) | a1, a3, a6, a7, 12, G184, O15 G,(R) = |a’min{|”_1l'|t_1|}(a(l,m) - m)|

(iv) a1, a3, 0s, 7, 011, 014, O15, (012 = 1) | rank(Ga(R)) € {1, 2},

(v) aa, ds, ds, 411, 414, 15z, (a1 =1) rank(Ga(R)) € {1, 2},

(vi) ai, 0s, 07, 11, 14, A1s, (aa = 1) rank(Ga(R)) € {1, 2},

(vii) | a3, a3, as, as, 10 G,(R) = |a(l'm) — ﬁ(l'm)|
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(viii) | a1, a3, as, as, awo Ga(R) |a™ntell=kB (5 (m,1 — 2k) — g(m,1 = 2Kk)|
(ix) a», a3, s, As, d1o, (a1 = 1) rank(Ga(R)) € {1, 2},

) as, as, as, as, dio, (a1 = 1) ?

(xi) ay, a3, Gs, As, 1o, (a9 = 1) ?

A Brief Overview Before Proving The Main Theorem

We now state a reflection principle , a convention,
partially introduced by Pride in [6], Lemma 2.4 is a
specialisation of a result due to Pride, which was stated
without proof in [6] and the proof was stated in [1] and
the Lemma 2.5 proved by Cuno & Williams in [1] as we use
them frequently throughout the paper. It is also important
to understand why we have these conditions in our
theorem by the readers.

Remark 2.1 [1]. We will occasionally make use of a
reflection principle: if A is any digraph and R(a, b) is any
word, then we may consider the digraph A’ that is
obtained from A by reversing the direction of each arc and
the word R'(a,b) that is obtained from R(a,b) by
interchanging a and b and further replacing every letter by
its inverse so that also a and 8 are interchanged (without
any change of sign). Then, by definition, G,(R) = G,,(R").

Convention 1 [1] We use o and —[3 to represent the
exponent sums of a and b in a cyclically reduced word
R(a, b), respectively, and K is used to indicate a group
defined by the presentation (a,b|R(a,b) ). As far as
cyclic permutation is considered, the word R has the form
a%bPr ... a%hPr with t > 1 and a;, B; € Z\{0} (1<i<
t).

The following property is defined by Pride in [6]: If no
non-empty word of the form a*b~¢(k, £ €) is equal to the
identity in that group, then a two-generator group with
generators a and b is said to have Property W, (with
respect to a and b). Under the hypothesis that the girth of
the underlying undirected graph of A is at least 4.

Corollary 2.2. [6] Let A be a non-empty finite digraph
whose underlying undirected graph has girth (G) > 4
and let R(a, b) be as in convention 1. If K has Property
W,, then G, (R) is infinite.

It is therefore important to study groups that do not
have Property W;.

Proposition 2.3. [6] If there exist k,€ € Z\{0} with
a¥=b’inK,thena # 0,8 # 0,and a® = b inK.

Therefore, K does not have Property W; if and only if
a#0,B#0,anda* =bPinK.

Lemma 2.4. [1, 6] Let A be a non-empty finite digraph
whose underlying undirected graph has girth at least 4 and
let R(a, b) be a cyclically reduced word that involves both
aandb. Let R(a, b) be asin convention 1 and |a| > 2 and
8] = 2. If GA(R) is finite, then (&, ) = 1 and A has at
most one source and at most one sink.

We will now state Lemma 2.5 (a),(b) proved by Cuno
and Williams [1] and we add (¢), (d). It enables us to
simplify the presentations that arise. Therefore, it is
stated here for later use without further explanation
throughout the paper.

Lemma 2.5. [1] Let R(a, b) be a word such that a* =
bP in K and let G be a group defined by a presentation
(X |R). Further suppose that there are distinct
generators x;,x; € X such that R(xi,x]-) € R. Then the
following hold:

(a) If xiy € R for some y € Z with (a,y) = 1, then every
p € Z with pa = 1 (mod y) yields a new presentation
(X \{x;}|8)of G. The relators § are obtained from
R by removing R(x;x;) and xl?’, replacing all
remaining occurrences of x; by x].pﬁ, and adjoining x].ﬁy.

(b) If x}/ € R for some y € Z with (8,y) = 1, then every
p € Zwithpf = 1 (mod y) yields a new presentation
(X\ {xj} | S ) of G. The relators § are obtained from

R by removing R(x;x;) and xY, replacing all

j
remaining occurrences of x; by x{'*, and adjoining x;"”".
(c) If xiy € R for some y € with (a,y) = 1theneveryp €

Z with pa =1 (mod y) yields a new presentation
(X|S)of GwhereS =R U {xixj_pﬁ,xfy}.
(d) If x}’ € R for some y € with (8,y) = 1theneveryp €

with pf =1 (mody) vyields a new presentation

(X |8 )of GwhereS =R U {x;x; "%, x"}.

If A is a directed n-cycle (n > 4) and R(a,b) is a
cyclically reduced word that involves both a and b, then
GA(R) can never be finite of rank 3 or trivial [1]. We now
give precise statement of Theorem 2.6 that forms the
cornerstone of this paper. The following Theorem 2.6 was
stated without proof in [6], a proof was given in [7] and a
different proof was given in [4].

Theorem 2.6. [1, 6, 7] Let R(a, b) be as in Convention
1. Further suppose that (@, 8) = 1 and a® = bf in K. If
A = A(n), where A(n) is directed n —cycle (n > 2), then
GA(R) = Zjgn_pny.

The Theorem 2.6 is generalized from cyclic
presentations to balanced presentations (i.e. |[V| = |4])in
[4]. We extend the theorem from balanced presentations
to |[V]| = |A| — 1 without leaf in this paper.

Lemma 2.7. [1] Let R(a, b) be asin Theorem 1. Further
suppose that (a,f) =1 and a* = bP in K. Then the
following hold:

(@) If A=A>)) (1>2, m>1), then Gy(R) =
Zigm@n-pmi-
(b) f A= A(n;<)
Lyam o -pmy)-
In many of our digraphs I" there will be a configuration

(n>2, m>1) , then G,o(R) =

of the form A(n;ﬁ) or A(n;z); Lemma 2.7 allows us to
replace this sub-digraph with a vertex x,, and adding a
corresponding relator x£ to the presentation. To assist the
reader in (i) we will explain this reduction in detail, then
in later we will use this technique without further
explanation.
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We now show that if [,k are vertices of a directed

circuit (see Figure 3) then the generator x; can be written  Figure 3,
in terms of generator x;. Then we will use this relation in
our presentations. We set y = a'! — ! and { = B(pa — (x1, %z, ...

1), where pa = 1 (mod y).
Lemma 2.8. Suppose that A; is the circuit in Figure 3

and k, [ are vertices of A; and suppose (a, ) = 1. Letp,q
l kpl-k
be integers such that pa + gff = 1. Then x;, = xl d

1]

) Xj ey X

x}/) R('xlﬂ xZ)l R(

1
R(xy, Xp41) oe)

Gp,(R) = <x2, oy X oo X | XY R (0 63D, ey R(Xge—, X2)s R(Xpes Xpegr) s R(X1-1, xl),R(xl,x;’ﬁ)>

= <x3, ...,xk

P
R, x), R(xy, x4

Proof. In this case, we have the presentation of G, (R) for

X2,X3), e, R(Xp_1, xk),)
R(xl—ll xl)l R(‘xll xl)

Note that pa = 1 (mod y). We continue simplifying this
presentation by Lemma 2.5 (a),

2
' X1 |x§ ¥, R(x3, %), - ROtk—1, %), R (s X 1) ooy RCe1—1, %0, R (01, 25 K )>

B pk_lﬁk 1
Xjer1r R(Xis X 1)y R(Xie1, Xiew2)s oo R(X-0, 1), R, X5 )

kpk
o RQo_1, ), R(xy, x;&f >

pkpk

R(x;_1, 1), R(xy, Xpt1

k+lﬁk+1

k+23k+2

Bk—l.y lﬁk 1
<xk:xk+1v e Xy | Xy R, Xie1)s R(Xpe1s Xie2)s s R(X—1, X0), R(xl’xk )
_ gty o _
= <x  Xig1s -0 X1 | Xy, , X =
pF 1y
=\ Xk Xit1s 0 Xy | X » X = xk+1:R(xk+1:xk+1) R(Xp+1) Xpe42), -
_ ¥y _ _pB Ba-1)
= <x , Xks1s ...,xl| Xy, V Xk = Xph1r Xpgn JR(Xkei1) Xiea2)) wons
_ gty p?p?
= <x s Xpg2s e X | Xy 1 Xje = Xpyo 'xk+2'R(xk+2'xk+3)
Ek_ly 333 EZ
Xy X430 e r X1 | Xy, , X = xk+3 ,xk+3, R(Xpi3, Xk14)) =)

P
R(x1—1, %), R(xp, x4 3

Proving The Main theorem

_ ﬁk_l)/ _ pl_kﬁl k ﬁl k— 15 l 1,8[ 1
= <xk,xl | X, J Xk = X , X R(xl,xl )
_ ﬁk_l)/ _ pl_kﬁl_k ﬁl-k-l( pl_lﬁl_l—a
- <xk,xl |xk VX = X LX) )X )
k-1 l-kpl-k l kpl-k
= <xk,xl | x,’f Vx, = x}’J g > Hence x;, = xl b
W i el i
/ \ A2
,\ /_ lal > 2,181 >
A lf— i i

(i) ay, a3 a6,a7,a11,a14,a45

Figure 1. A;: set up a relation between x;, and x;.

)
)
)

Recall that we can always suppose that a # 0, § # 0,
> 2, (a,B) = 1,and a® = bP in K. Otherwise,
the group K has Property W, and thus G, (R) is infinite by
Corollary 2.2 and Proposition 2.3.

The group G (R) is defined by the presentation

Remark 2.9. Suppose (a,8) = 1,,m > landlety =
at = BLn=a™— ™ Then (a,y) = (B, 1) = 1.
21y ey X R(x4,%3), R(%3,%x3), ..., R(x1, x1),
GF(R) — yl’ ---'ym: R(yllyZ)'R(yZ'y3)l ---,R(ym;y1);
le ""Zn R(ZIIZZ)' R(ZZIZ3)' "'IR(Zn—I'Zn)'

X1 =21,Zn = Ym

a® =bPinK =(a,b|R(a,b)) by Proposition 2.3, thus we get
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-1 1-2p2 -1 l

wf =xf P=xf P == =
m m-1 m-2p2 m-1 m
I S I A

We set y = a’ — B! and = a™ — ™ obtain that x! = 1, and y; = 1 in G;(R). Adjoining the relator x) and y,’
yield
o x}, R(xy,x5), R(%3, x3), ., R(x, %),
Gr(R) = (Y1 Yo yf:R(}’p}’z)'R(yz:ys)' s ROy ¥1),
Z1y ey Zn R(ZDZZ)vR(ZZvZS)' ""R(Zn—lizn)!
X1 =21,Zn = Ym

Applying precisely the same transformations as in the proof of Theorem 2.6, we get

x5V R(xy,%3), o, R(xp, x2F),
X1, o, X,

Gr(R) = (Y1 s Yo YR, 5), s RO Y2,
Z4, s Zn R(z1,23),R(24,23), ..., R(Zp_1, 1),
X1 =21,Zn = Ym

Simplifying this presentation in that way, what remains is

1 xg’
G (R) _ Xz,)/m, y11r11
r =
21 I R(Zl'ZZ)'R(ZZIZ3)' R R(Zn—ltzn)t
X1 =21,Zp = Ym
x|
_ (Y| 20 R(21,2,), R(22,23), ) R (201, 20),
Z1y ey Zpn X, =2z,

Since (5,1) = 1 by Remark 2.9 and an iterated application of Lemma 2.5 (b) for the relation inside the box yields

n-1
GF(R) = (xllzl |le’Zf rl'xl =Z1>
n-1

=(x; |x},x;, ")
(ar-BYH.a™ L (a™-p™)) )
l
((at=BH,(a™-p™)) )
l

=(x; |x

=(x|x
(Im)_p(m)
=(x |xF .

So Gr(R) is finite cyclic of order a*™ — pm),
(ii) a,,a3,0s5,0ag,a11,A14,A15
The group Gr(R) is defined by the presentation

R(xl' xl)l R(xpxz)' R(XZ,X3), ey R(xk—lt xk))
XX [ RO, X-1), R(X—1, X1-2), o) R(Xeg 1, X))
Gr(R) = (Y1 s Yms | R(YV1, ¥2), R(V2, ¥3)s oo ROV Y1),
Z1, 0 Zn | R(24,22),R(25,23), ., R(Zn—1, Zn),
Xk =Z21,Zn = Ym

We setas y = a™ — B™ and after applying precisely the same transformations as in the proof of Lemma 2.5 (b) for
the relation inside the box yields

R(xll xl)' R(xl' xz)' R(xz' X3), R R(xk—li xk)'
X1y s Xy R(xll xl—l)l R(xl—l' xl—Z)l R R(xk+1! xk)'
Gr(R) = (Ym vy,
210 w0 Zn R(Z1'22)'R(22'Z3)' ...,R(Zn_l,Zn),
Xk = 21,Zn = Ym
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R(x, %1), R(x1, %2), R(x2, x3), v, R(Xp—1, X)),
X1y s X | R(X, X0-1), R(X21, X1-2), o) R(Xpe 1, Xpe),

2y, Zn | z¥ R(24,23), R(22,23), o) R(Zn_1, Zp),
Xk = Z1

Since (B,y) = 1 and (see Remark 2.9), an iterated application of Lemma 2.5 (b) yields
X x R(xl'xl)'R(xlixZ)vR(vaxB)v '"!R(xk—lixk)!
Gr(R) = (V77 | RO, xi21), R(—1, X1-2)5 ooy R(Xge 1, Xic),

2z n—1y
Zy y X = Z1

R(x;,x1), R(xq, x3), R(x3, x3), ...,

R(xk—lvxk)'
-1
= X1y s Xpy s X x,fn v

R(xp, x1-1), R(X1—1, X1-2), o, R(Xk 41, Xi)

Since (B,a™ 'y) = (B,¥) = 1 (see Remark 2.9) there exists integers p, q such that pf + qy = 1 and hence pf =
1 (mody), an iterated application of Lemma 2.5 (b) yields

R(xp, 1), R(xq,%2), R(X2, X3), ooy R(Xg—1, x}fi‘ﬂ:
X1, s X1,

ay
Xies1r oo X | Xrewrr RO X121, R(X -1, X1-2)5 oo s R(Xkt 20 X 1)

Gr(R)

2
X Xk R(xy, %1), R(x1, X%2), R(x2, x3), ---'R(xk—px;fzz)'
— yor Tke=10 n+1
X425 o0 X x;‘:+z Y Ry, %021), R(—1, X1-2),s vy R(Xi43) Xic2)

n+l-k-1

x/ Y
_ ¥ X -k
X1 R(xp, x0), R(%1, %2), R(x2, X3), oo s R(Xp—1, X, )
n+l-k—-1
x; Y,
_ xl,...,XR_l, ( )L_k
- X R(xllxl)'R(xl'x2)'R(x2'x3)' "'JR(xk—llxlpa );
i
x; = xl(p“) (1 <i<k—-1)byLemma 2.5 (b)
+l-k-1 2 2 3
xlan Y,R(x,, xlp“),R(xlp“,xl(m) ),R(xl(pa) ,xl(p“) s eees
e xl )k—l -k
R(xl(p“ ,xl(pa) )
n+l-k-1 _ 2_ 2 k—-2_ k-1
xla Y’ xla Brm’ xfa B(pa) ’___’xla(pa) Bpa) )

=(x a(a)* 1-gpatk
Xy

2 2 k-2 k-1
a— a a“— a a(pa - (24
We can remove redundant relators x, pr ,xlp B o X v Blpa)

’

since pf8 = 1 mod y. Thus, we get

n+l-k-1 k-1_k__l-k Il-k
Gr(R) = (x| Y P e

an"'l_k_ly,pk_lak—pl_kal_k[f
= (xl | X )

= (x; | x{ ), where d = (™" 1y, p*"lak — pl=ka'7kp).

d= (dn+l_k_1)/,pk_1(lk _ pl'kal'kﬁ)
= (@™ y, (pB)p*~ta* — p'~Fa'"*B) since pp = 1 (mod y)
— (an+l_k_1)/,ﬁ(pk(lk _ pl—ka,l—k))
— (an+l_k_1)/,pk(lk _ pl—ka,l—k) since (,8, (l)/) =1
= (@™, (pa)* — (pa)' 7).

After that supposing k < | — k and continue to simplify the equation above, we get
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d = (@™ "y, (pa)*(1 — (pa)=2*)) since pf = 1 (mod y)
= (@™, (pa) ((pB)' 2" — (pa)2¥)) since pff = 1 (mod y)
— (an+l—k—1y' (pa)k(pl_ZR(ﬁl_ZR _ al—Zk)))
— (an-fll—k—ly'pl—kak(ﬁl—Zk _ al—Zk))
— (amm{k,nﬂ—k—1}(a(m,l—2k) _ ‘B(m,l—zk)).

Hence, Gr-(R) is finite cyclic of order gmintkInti=k=1} (g (mi-2k) _ p(mi-2k))
Now supposing k > | — k and simplifying the equation, we get

d = (™" y, (pa)' *((pa)**~* — 1)) since pff = 1 (mod y)
= (@™, (pa) T (pa) ™! = (pB)**™h)) since p = 1 (mod y)
— (an+l—k—1y' (pa)l—k(pZR—l(ﬁZk—l _ aZk—l)))
— (an-fll—k—ly'pkal—k(ﬁzk—l _ aZk—l))
— (amm{l—k,nﬂ—k—l}(a(m,zk—l) _ ﬁ(m,zk—l))_

Hence, Gr-(R) is finite cyclic of order gMin{ii=kIn+i=k=1l} (g (m2k=1) _ p(mz2k=1))
Now, supposing k = | — k, we get

k-1,k_l-k,l-k k_ -k ak—(pa)k 0
— pa pa p =x 1
lp a—p"~a'Tp xl( ) —(pa) — xl( ) =(pa) — =1.

(iii) @y, a3, a6, az, a1, a44,a45

The group Gr(R) is defined by the presentation

x), R(xq1, %), R(x3, x3), ., R(31, X1),
X1 X0 3, R, ¥2), R0, ¥3)s s ROms Y1),
Gr(R) = \Y1v s Ym: | R(z,, 2e—1), R(Ze—1> Zo—2)» oor R(22, 21),
Z0 I R(zp, 2p41), R(Ze1s Zesz)s oo R(Zno1, 20),
X1 =Z1,Ym = Zn

n+l-k-1
Thus, we can remove redundant relators from the presentation. Hence, we get Gr(R) = (x,lxla

Therefore, G-(R) is finite cyclic of order a™*"F~1 (@™ — p™).

V).

We set y = a! — ! and n = a™ — ™, and apply precisely the same transformations as in the proof of Theorem

2.6. Then, what remains is

x| Y
Gr(R) = )zCl’ym’z R(z¢,Ze—1), R(Zt—1,Zt—2), -, R(24, 1),
L fn R(Ztﬁzt+1)'R(Zt+1' Zt+2)l ""R(Zn—l' Zn),
X1 = 21,Ym = Zn
Z]}_/'R(Zt'Zt—l)lR(Zt—lth—Z)'"'IR(ZZ'Zl)l >

Zg' R(Ztl Zt+1)' R(Zt+1' Zt+2)l T R(Zn—lt Zn)

= <Zl, ey Zn
Since (f,y) = 1and (f,1) = 1 (see Remark 2.9) and an iterated application of Lemma 2.5 (b) yields

GF(R) — <Zz, ---'Zn—l

23" R(2¢,2¢-1), R(Ze-1, 2¢-2), -, R(23, 22),
Zﬁl: R(Zt, Ze41), R(Zeg1, Ze42)) s R(Zn_2, Zn_1)
t—-1 n—t
=& |z )
_ |z amin{n-tt-1} o (Lm)_g(Lm)y
(7 | = -

Hence, Gr(R) is finite cyclic of order g™n(n=tt=1}(gtm) _ pLm)y,
(iv) a4, a3, a6, a7, a414, @14, a45, (A1 = 1)

The group Gr(R) is defined by the presentation
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R(x1,%2), R(x2, X3), o, R(xy, X1),
R(z1,2,), R(22,23), e, R(Z¢—3, Z¢—1),
X1y ey Xy, X, = 24,
GF(R) = (Y Vm R(}’1'}’2)'R()’2v3’3)' vR(ymv yl);
210 Zn \R(2t, Ze41), R(Zey1s Zer2)s s R(Znot, Z0),
ym = va
R(z¢,2¢-1)

Wesety = a' — Bl and n = a™ — B™, and apply precisely the same transformations as we have in the form I'(n;

T)) for the first box and F(n;z) for the second box, by Lemma 2.7, we get
_ Bt—Z.y an—tn
Gr(R) = (zev,2e | 207,20 " Rzt 2e1) )-

After we get this presentation, we cannot eliminate z,_, or z; from the presentation. It is because we are not able
to apply Lemma 2.5 further since (a™ ‘5, @) # 1 and (8'7%y, ) # 1. Therefore, we cannot go further. Thus, the group
Gr(R) has a 2-generator presentation.

(v) ay, as, ag, ayy, @14, a45,(ay = 1)
The group Gr(R) is defined by the presentation

R(xy, %1-1),
Xp) o) Xy R (X, Xg41)s s R(X1-2, X1-1),
GolR) = [Vor ooy RO 1), ROE3, 22, o R (i, )|
24, e, 2y | RO V2D R(YV2,Y3), o) RO ¥1),
R(Zl' ZZ)' R(ZZI Z3)' ) R(Zn—l' Zn)'
Xk = Z1,Zn = Ym

We sety = a™ — ™ and apply precisely the same transformations as in the proof of (ii) to obtain that

R(xy,x1-4),
Xy R(xk' xk+1)' R R(xl—2'xl—1)'

an

X1, -
Gr(R) =" -1, :
X y ROy, 1), R(x1,%3), o) R(Xpe—1, Xi)

Since (8, @™ 'y) = 1 (see Remark 2.9) and an iterated application of Lemma 2.5 (b) yields

R(x;, x1-1),
GF(R) = xk; xk+1, ,xl R(xk’ xk+1)l LN R(xl—z, xz_l), .
an+k—1y
Xy
1-1-i
Adjoin the relations x; = xl(ff) fork+1<i<l—1,wherep € Z, to the presentation so we get
R(xy, x1-1),
Go(R) = Xir o X=0 XU | R (X, Xpey1)s oo R(X— 2, X121),
n+k-1 1-1—i
Vg =xPP fork+1<i<i-1
R(xl:xl—l)x
@A By H? pB
={X1-1% Xi-1 1 Xi-1 ) s ROXZY, X021),
xan+k—1y
l ’
n+k-1
X Y R(x,%21) )

= <xl—1' X1

After we get this presentation, we cannot eliminate x;_; or x; from the presentation. It is because we are not able
to apply Lemma 2.5 further since (a™*~1y, @) # 1. Therefore, we cannot go further. Thus, the group Gr(R) has a 2-
generator presentation.
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(vi) a3, ag, a7, a1, @14, @45, (a4 = 1)
The group G (R) is defined by the presentation

R(x;, %-1),
X1, X | R(Xp%1), R(X1,%2), ooy R (g =1, Xg),
Gr(R) = (Y Ym | 31, R0, ¥2), RO20 ¥3)s woes ROy 1), |-
Z1r s Zn R(z1,2,),R(23,23), ..., R(Zn_1, Zp),
X1 =21, Ym = Zn

We set y = a™ — ™ and apply precisely the same transformations as in the proof (v) for the relation inside the
box to obtain that

R(xlvxl—l)'
Gr(R) = x4, 2, | RO X0 R, X2, s ROG—2, X101,
X7

l-1-i
Now, adjoin these relations x; = xfﬁ,xl- = xl(ff) for 1 i< l—1, where p € Z, to the presentation and we
get

R(xy,%-1),
R(xp, x1), R(x1,%2), ooy R(X)—2, X1-1),
Gr(R) = (x4, .., x; a™ly

x; 7,
-1
x=xPf = x0T  for1<cici-1
| R(xy, x1-1),
-1 -2 -2 -3
RGP 0, G OD 0D,

= (X X-1, X 2

®B)* ,pB pB
R(x; 27" % 21), R(x 2, x-4),
an—l
l

Y
. - . - 1 o
Since R(xl(pﬁ)L, xl(pﬁ)l )= xla(pﬁ)l B@p™ xl(pﬁ)l @B=F) for 1 <i<l—1,and apf — B = 0 (mody) since
pa = 1 (mod y). Thus, these relations are redundant so can be removed

X_q,X a1y
Gr(R) = ( -1 llxl R (xy, x0-1) ).

After we get this presentation, we cannot eliminate x;_; or x; from the presentation. It is because we are not able
to apply Lemma 2.5 further since (a™ 1y, a) # 1. Therefore, we cannot go further. Thus, the group Gr(R) has a 2-
generator presentation.

(vii) a;, a3, aq, ag, aq

The group Gr(R) is defined by the presentation

xl’ ."’xl’ xZ,R(xl, xZ),R(xZ, X3), ...,R(xl, xl)
GF(R) = Yir - Ym yz?'R(J’pJ’z); R(YZ'YS)I ---1R(ym;y1)1

Xt = VYm-k+tr Xt+1 = Ym—-k+t+1 =Xk = Ym

We set y = a'! — B, n = a™ — B™. Since p;a = 1 (mod y), there is an integer q; € Z such that p;a + ¢,y = 1.
1B

Moreover, p;a = 1 (mod y) implies that y; = yipla = }’13 in G. This allows us to adjoin the relation y; = y;*" and to
eliminate the generator y;, and since p,a = 1 (mod 1), there is an integer q, € Z such that p,a + q,n = 1. Moreover,
p.a = 1 (mod n) implies that x; = x/2* = ijZB in G. This allows us to adjoin the relation x; = ijZB and to eliminate

the generator x; as follows:

2 t-1 m-1
y, = yz(mﬁ) — 3(1715) — e — t(P1ﬁ) — e — yg’lﬁ)

2 t-1 -1
X, = x;l’zﬁ) — X:E,pZB) — e — xfl’zﬁ) — e — xl(Pzﬁ)
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xfy, R(x,,%3), ..., R(x}, foﬁ)

yz; ---;ym Yé;nv R(y2iy3)v 'R(ym'yzplﬁ)'
Xt = VYm-k+t Xt+1 = Ym—k+t+1 = Xk = Ym

GF(R) =

By P28)%
X3;...,Xl; x3 ’R(x3’x4)’".’R(xl’x3 ’ ’

2 2
Y35 s Yim yf T, R(Y3,¥4), ---,R(ym,y§p1ﬁ) )
Xt = Vm—-k+tr Xt+1 = Ym—-k+t+1 1 Xk = Ym

Simplifying in that way, what remains is

N
Gr(R) = <xk' xk’ymk—t k-t k—-t—1 k—t—1 >
Ym x}gpzﬁ) — xl((plﬁ) ,x,EpZB) = x}({l’lﬁ) s X = Vi
x),x))
= <x" B L Y D L L e L xpzﬁ—p1ﬁ>
( ) s X
x7,x,
= <Xk xlfk_t(péc—t_pllc—t)’x}fk—t—l(péc—t—l_pllc—t—l), ...,xf(pz_p1)>
x),x)!
=<xk N I A

_ <xk x,{,xZ,xf(”Z"’l)>
rm.B(2—p1))
=<xk Xk o >

_ <xk | x}({%mm—m))_

Now, p;a@ = 1 (mod y), and we can say p;a¢ = 1 (mod (v, 1)),
p,a = 1 (mod 1), and we can say p,a = 1 (mod (y,7n)). So, pya — p,a = 0 (mod (y, n)).
Since (a,y) =1and (a,n) =1, A = (y,1n, (p1 — p2)) = (v,n, (b1 — p2)@) = (¥,n). Then the presentation is

x(m)
Gr(R) = (X |7k )

xa(l'm)_ﬁ(l'm)
= (xk I k >

So Gr(R) is finite cyclic of order a®™ — gtm),
(viii) a4, a3, ag, ag, a4
The group Gr(R) is defined by the presentation

R(Qxp, x1-1), R(X-1, X1-2), s R(Xpe11, X)),
X1, e X | R(x, %1), R(xq,%2), ooy R(Xe_q, X1),

yl' ---1ym yz?'R(J’pYZ)'R(J’z')%)' ---1R(ym1y1);
Xt = VYm-k+tr Xt+1 = Ym—k+t+1 = Xk = Ym

Gr(R) =

We set n = a™ — B™ and since p;a = 1 (mod 1), there is an integer q; € Z such that p;a + q;n = 1. Moreover,

p1a = 1 (mod 1) implies that y; = yipla = y].piﬁ in G and after applying precisely the same transformations as in the
proof of Lemma 2.5 (a), we get
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R(xy, x1-1), RO, X1-2), ooy R(Xpeq1, X)),
R(xp, 1), R(x1, %2), o) R(Xp—1, Xk),

G (R) _ xl, ...,xl, y‘l]
r - m’
Ym k-t k—t-1
X, = yr(rf’lﬂ) Xy = yr(nmﬁ) o Xpq = yrzrjllﬂ’
= Ym
R(xlv xl—l)' R(xl—lv xl—Z)' Ty R(xk+1! xk)!
= xyy 2 | 20 R 20, Ry, %), o, R (o1, 1),
k-t k—t-1
X, = x(l’lﬂ)  Xpyq = xlgmﬂ) e Xpq = x,flﬁ

Since (B,n) = 1, there are integers p,, q, € such that p, + q,n =1 so p,f =1 (mod n). We can thus apply

Lemma 2.5 (b),
R(xl' xl—l)v R(xl—li xl—Z)v L R(xk+1! x]fi(i)

X1 Xgp v X0 | 207 R (g, %), R (X, %2), o0y R(Xk—20 Xe—1)

GF(R) = Xk+1 X1 (plﬁ)k t (plﬁ)k—t—l
X = x y Xt41 = xk y amuy
— D20p1f
Xk—1 = Xp~q

R X1-1) RO, X1—3), o, R (a1, X750,

X1, X0, eeey X 2
LRz Th=2 et 0 Ry, %), R(X1, %), s R (X3, Xi—2),

= Xg+41) 2 X k-t Ket—1
X, = x}({mﬁ) Xppqg = x}({mﬁ) o
_ m20)*(p1B)?
Xj—2 xk 2

Simplifying in that way, what remains is
X1, X2, ey X, R(xl'xl—l)'R(xl—llxl—Z)' '"'R(xk+1'xt(p2a) )'
k-t
Gr(R) = (X+v X0 [ % 7 R(xp, %1), R(%q, X3), e R(X(_1, Xp),
k-t k-t
X, = xt(pza) ®18)

Since (B, a* tn) = 1, we can thus apply Lemma 2.5 (b),

k-1
x; LR(xp, xy),
R(xllxl 1) R(xl—pxz—z)' L

(p2@)*1

Gr(R) = xk+1' Xi42s =0 X1
R(xk+1lx1 )

akn
xp LR, x-1), RO -1, X1-2), -0

a
Xie+1) Xiew20 0 Xi R(xkﬂ,x(p2 " ),

< x-—xl(pza) fork+1<i<l—1

2 1-k-2
7] R(Xl, Pz“) R(xpza l(pza) ),...,R(Xl(pza)

1—k— k-1 k
) ) R(xl(Pza) ’x(Pza) )

’

(pza

a a Bpoa _pra’—P(pra)?
X, .

“(Pza)l k=2_p(pya)t=h-1 a(ma)’—"-l—ﬁ(pza)"
’ l

0( a a(a— (04
xz B2 x1p2( B2 )

(pza)l o *(a=pp2a) a(pza)l_k_l—ﬁ(pza)k .
Since x*P72% = x~% = 1 mod 1, we get
Gr(R) = (% |xla"n’xfé(pza)l"“l—ﬁ(pza)k ).

Supposing I — k < k, then
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a(p, ) * 1 — B(pa)* = pi*tal* — BpSak
_ pé—k—lal—k _ p§—1ak
_ pé—k—lal—k(l _ p%k—lazk—l)
= pl 1K (p3 B! — p3kla?kl) since p,f = 1 (mod 1)
— pé—k—lal—kp%k—l(ﬁZk—l _ aZk—l)

— péc—lal—k(ﬁZk—l _ (ZZk_l).

Thus, we get
Gr(R) = (X1 | @0, P2 @ ah

— (xl | xamin{k,l—k}(ﬁ(m,zk—l)_a(m,zk—l)) >
! .

Hence, Gr(R) is finite cyclic of order g™nki=k}(g(m2k=1) _ p(m.2k=0)y
Supposing L — k > k, then

a(p20)' ™7t = B(p, ) =pi etk — Bpiat
— pé—k—lal—k _ péc—lak
— pg—lak(pé—zkal—zk _ 1)
= p~lak (pk 2kl — pL B since p,ff = 1 (mod 1)
— pé'k'lak((xl_y‘ _ ﬁl—Zk).

Therefore, we get
k I-k—-1 k., l-2k_ pl-2k
Gr(R) = (Xu | 57, xP2 " @ -F0 )

= (x| xak(a(m,l—zk)_ﬁ(m,l—zk)) )
! .

Hence, Gr-(R) is finite cyclic of order a*(a(™!=2K) — pimi=2k))

k=1 l-k, p2k—l_ -2kl k=1 k., l-2k 1-2k_
Supposing k = [ — k, then x;2  “ B Xz Pz e 0 = g,

k
Therefore, it can be removed from the presentation. Thus, we get G(R) = { x; | xla ™). Hence, Gr(R) is finite cyclic
of order |a®(a™ — f™)|.

(ix) az, a3, ag, ag, ap, (a; = 1)

The group Gr(R) is defined by the presentation

R(xy, x1-1),
X1y s X] R(xp, X415 oo R(X12, X1-1),
GF(R) - Vi Ym R(xl' xl)! R(x1; xz), vy R(xk_1, xk)'

yf'R(YLYZ)lR(yZ'YCB)I ""R(leyl)l
Xt = Ym-k+tr Xt+1 = Ym—k+t+1 = Xk = Ym

We set n = a™ — ™, pa =1 (modn) and p,B =1 (modn) as in (viii) then we apply precisely the same
transformations as in the proof of (viii) for the relations inside the box to obtain that

R(xllxl—l)'
k k
Gr(R) = | Xk1, Xicazs 0 X1 | x]" n,R(xl(pza) s Xper1)s R(ean, Xpea2), e
R(x_2,x1-1)
R(xl' xl—l)l
akn (2)*
xl IR(xl 2 lxk+1)lR(xk+1!xk+2)’ L]
R(x1_2,%1-1),
(2B

=\ Xk+1 Xg425 00 XY

—i
X=X fork+1<igl—-1
R(xllxl—l)'
k k
=\ X—1,X xla "I’ R(xl(pza) 'xk+1)' R(xk+11xk+2)' T R(xl—Z'xl—l)’
X —x(pzml_l_ifork+ 1gigl-1
= -1 XxXtx
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R(xy, %-1),
k k 1-k-2 —k—2 ks
= (x,_1, %, x; ",R(xl(pza) 'xl(fiﬁ) )'R(xl(fiﬁ) ,xl(fiﬁ) N
""R(xlp—zf'xl—l)

Xi—1,X] (Zk’ a k l-k—2
X1, % | IR(xy, x1-1), x; T’,R(xl(p2 ) ,xl(fiﬁ) )

k k l-k-2
an a _ B a(za)® _ | B(p2B)
Xi_1, %X, | Xl =x %, =X}

kn

k l-k-2
= x|, x 02 2 e b >

Xy Xl = X4

<
<

= (v | 2f
|

(@na@a)f-a@p)*2) o ﬁ>

After we get this presentation, we cannot eliminate x;_; or x; from the presentation by our limited knowledge now
(it is because we cannot apply Lemma 2.5 further). Thus, the group Gr(R) has a 2-generator presentation.

(x) az, a,, as, ag, asp, (ay = 1)
The group Gr(R) is defined by the presentation

R(Xp, Xpe41), R(Xpeq1) Xiea2), o R(X1-1, X)),
R (X, Xg—1),
Go(R) = X1 s X | RO Xeg1), R(Xer1 Xe2)s s R(Xpe-2) X)) |
Yo Ym [ ROV 1), ROV, Y2)s oy RVe—1, Ve),
Rm» Ym-1) ROm-1, Ym-2)s - ROt 41, ¥e),
Xt =YmoX1 = Y1,X2 = Yo, Xe = Yt

There are no directed cycles in that graph. Therefore, we cannot apply Theorem 2.6 and thus it is still an open
problem.

(xi) az, a3, ag, ag, ayp, (a9 = 1)
The group Gr(R) is defined by the presentation

R(xt' xt+1)' R(xt+1' xt+2); R R(xl—lJ xl)l
R(xl' xl)' R(xl' x2)' R R(xt—Zl xt—l)l
R(xt' xt—l)'

R(ytl yt+1)l R(yt+1' yt+2); e

R()’m—l: Ym):

X1 =Vm X1 = Y1 X2 = Yo, s Xt = Vi

Gr(R) = (X1, s Xp1s s Ym

There are no directed cycles in that graph. Therefore, we cannot apply Theorem 2.6 and thus it is still an open
problem.
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